ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ГЕОЛОГИИ И МИНЕРАЛОГИИ ИМ. В.С. СОБОЛЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Чугуевский Алексей Викторович

ФОРМЫ НАХОЖДЕНИЯ И ПОДВИЖНОСТЬ ТЕХНОГЕННЫХ ГАММА-ИЗЛУЧАЮЩИХ РАДИОНУКЛИДОВ В ПОЙМЕ РЕКИ ЕНИСЕЙ (БЛИЖНЯЯ ЗОНА ВЛИЯНИЯ КРАСНОЯРСКОГО ГХК)

25.00.09 — геохимия, геохимическая методы поисков полезных ископаемых

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель к.г.-м.н., М.С. Мельгунов

Новосибирск — 2019

Содержание

Глава 1. Современное состояние изученности проблемы загрязнения компонентов окружающей среды техногенными радионуклидами отходов предприятий ядерно-

Введение

окружающей среды техногенными радионуклидами отходов предприяти топливного цикла

1.1. Общая	характеристин	ка предпр	иятий я	дерно-топли	вного	цикла
Сибирского р	оегиона					12
1.2. Радиоакт	ивное загрязн	нение комп	юнентов	водотоков	(вода-	-донные
отложения –	биота) в района	ах расположе	ения преді	приятий ядер	но-топ	ЛИВНОГО
цикла						15
1.3. Миграци	онная способно	ость техноге	нных раді	ионукдидов п	ю резу	ультатам
лабораторны	х экспериментс	B				22
1.4. Определе	ение понятия	«горячая»	частица.	Источники	пост	упления
«горячих» ча	стиц в окружан	ощую среду				26
1.5. Потенциальная миграционная способность техногенных радионуклидов,						
входящих в с	состав «горячих	» частиц.				28

Глава 2. Объекты и методы исследования. Методические подходы и аналитические методы

2.1. Характеристика района проведения работ	31
2.2. Методика пробоотбора и пробоподготовки	34
2.3. Аналитические методы	35

Глава 3. «Горячие» частицы в донных отложениях и аллювиальных почвах ближней зоны влияния Красноярского горно-химического комбината

3.1. Радиоизотопный состав «горячих» частиц по результатам гаммаспектрометрических исследований 50

3.2. Результаты сканирующей электронной микроскопии 56

Глава 4. Техногенные радионуклиды в донных отложениях и аллювиальных почвах островов и правобережья ближней зоны влияния ГХК: формы нахождения и миграционная способность 64 4.1. Проблемы обоснования фона 4.2. Техногенные радионуклиды в донных отложениях косы Атамановской 64 4.3. Содержание техногенных радионуклидов в химических фракциях 73 донных отложений 4.4. Вклад «горячих» частиц во вторичное перераспределение радионуклидов 76 4.5. Результаты лабораторного эксперимента по растворению «горячих» 77 частиц 4.6. Натурный эксперимент по растворению «горячих» частиц80 4.7. Свидетельство растворения «горячих» частиц в естественных условиях 84 Выводы 88 Глава 5. Вклад наземной растительности в миграцию техногенных радионуклидов 89

Выводы	101
Заключение	103
Список сокращений и условных обозначений	105
Список литературы	106
Приложения	119

Выводы

Введение

Актуальность работы. Вторая половина XX столетия ознаменовалась поступлением в окружающую среду огромного количества техногенных радионуклидов (ТРН). Они появились в биосфере как результат создания, испытаний и применения ядерного оружия, аварий на АЭС и других объектах ядерного производства. Значительному загрязнению подверглись крупные речные системы Сибири (Обь и Енисей), в бассейнах которых находятся все три отечественных комбината по наработке плутония, одним из которых является Красноярский Горно-химический комбинат (ГХК, г. Железногорск).

В течение более 30 лет комбинат был источником радиоактивного поймы реки Енисей такими долгоживущими техногенными загрязнения радионуклидами, как ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹³⁷Cs, ⁶⁰Co, ²⁴¹Am, ⁹⁰Sr и изотопы плутония [Носов и др., 1993, 1997; Тимофеев, 1995; Кузнецов и др., 1994; Болсуновский, 2002, Сухоруков и др., 2004 и др.]. ¹³⁷Сѕ и ⁹⁰Sr фиксируются в донных отложениях вплоть до Карского моря [Vakulovsky et al., 1993, Semizhon et al., 2010]. В воде и водных растениях, наряду с перечисленными долгоживущими изотопами, до 2010 года (остановки последнего прямоточного реактора) фиксировались короткоживущие ^{141,144}Ce, ⁵¹Cr, ⁵⁴Mn, ⁵⁸Co, ⁶⁵Zn и др. [Болсуновский и др., 2002, 2007, Зотина, 2009].

Хотя сброс радиоактивных отходов в последние полтора десятилетия существенно (в сотни – тысячи раз) сократился, в отстойниках, расположенных на территории комбината и в аллювиальных отложениях поймы (особенно в ближней зоне влияния ГХК) уже накоплены значительные количества ТРН. Особый интерес вызывает возможность вовлечения их во вторичную миграцию.

В работах, опубликованных в 90-х годах, рассматривается, главным образом, степень загрязненности поймы, характер распределения загрязнения и изотопный состав ТРН в аллювиальных отложениях. С начала 2000-х более пристальное внимание начинает уделяться определению форм нахождения радионуклидов в аллювиальных отложениях и изучению вторичного

перераспределения депонированных ТРН [Pavlotskaya et al., 2003, Сухоруков и др.2004, Бондарева, Болсуновский, 2008, Вакуловский и др., 2008, Bondareva, 2012, Bolsunovsky, Melgunov, 2014, Korobova et al., 2016]. Показано, что большая часть ТРН приурочена к неподвижным и слабо-подвижным формам нахождения, что препятствует их переходу в водные растворы.

Вместе с тем, остается ряд нерешенных вопросов. Так, в частности, по данным некоторых исследователей [Vakulovskii et al., 2008], в пробах воды Енисея даже в дальней зоне влияния ГХК, присутствует ¹³⁷Cs. Этот факт может быть обусловлен либо продолжающимся сбросом ГХК, либо миграцией ¹³⁷Cs из аллювиальных отложений. Еще одним источником его в воде может быть растительность, произрастающая на загрязненной территории. В сходных по проблематике регионах (территории, подвергшиеся загрязнению в результате аварии на ЧАЭС, зона влияния комбината «Маяк») отмечается значительное накопление ¹³⁷Cs в высших наземных растениях [Malek et al., 2002, Korobova et al., 2008, Pozolotina et al., 2010]. В то же время, в зоне влияния ГХК работы по изучению растений береговой зоны, которые подвергаются затоплению во время паводков, к настоящему времени проведены недостаточно полно [Кропачева и др., 2011, Kropacheva et al., 2017].

Кроме того, в опубликованных ранее работах, при изучении миграционной способности ТРН, накопленных в пойме реки Енисей, рассматривается, главным образом, их рассеянная форма нахождения. Степень же вовлечения во вторичную миграцию ТРН, содержащихся в форме «горячих» частиц (ГЧ), к настоящему времени изучена слабо.

Объектом исследования является пойма реки Енисей в ближней зоне влияния Красноярского Горно-химического комбината (0 – 18 км от места сброса).

Предметом исследования являются керны донных отложений, разрезы аллювиальных почв, «горячие» частицы, пробы растений прибрежной зоны.

Задачи исследования:

- 1. Выявить основные формы нахождения техногенных радионуклидов в загрязненных донных отложениях
- 2. и почвах р. Енисей, включая химическую и физическую составляющие.
- Определить природу и оценить вклад «горячих» частиц в общее загрязнение периодически затопляемых почв в ближней зоне влияния Красноярского ГХК.
- 4. Оценить вклад наземной растительности, произрастающей на загрязненной территории, в процессы вторичной миграции техногенных радионуклидов.

Научная новизна.

- 1. Впервые для аллювиальных почв ближней зоны влияния Красноярского ГХК определено наличие водорастворимой формы ¹³⁷Cs. Установлен многостадийный характер вовлечения её во вторичное перераспределение.
- 2. В ходе лабораторных и натурных экспериментов изучена растворимость енисейских «горячих» частиц. Показано, что содержащиеся в них ТРН могут вовлекаться во вторичную миграцию в естественных условиях.
- 3. Изучено распределение ТРН в растительности, произрастающей на периодически затапливаемых участках береговой линии в ближней зоне влияния Красноярского ГХК. Установлен факт накопления в ней ¹³⁷Cs. Впервые проведена количественная оценка вклада наземной растительности в процессы вторичного перераспределения радиоцезия.

Практическая значимость. Установлено регулярное поступление в экосистему реки Енисей «горячих» частиц. Несмотря на общее снижение уровня загрязнения, после выведения из эксплуатации прямоточных реакторов, вследствие «замывания» загрязненных участков поймы, происходит постоянное поступление локальных источников ТРН в верхние горизонты аллювиальных почв и донных отложений, что указывает на необходимость проведения дополнительных мероприятий по изолированию накопленных на территории комбината радиоактивных отходов от окружающей среды.

Выявлены высокие уровни накопления ТРН наземной растительностью прибрежной полосы, которая широко используется местным населением в сельскохозяйственных целях.

Полученные результаты могут быть использованы соответствующими специалистами (медицинского, юридического профиля) при принятии решения о целесообразности ограничения хозяйственной деятельности на рассматриваемых участках поймы.

Защищаемые положения:

1. «Горячие» частицы являются одной из широко распространенных форм нахождения техногенных радионуклидов в загрязненных аллювиальных отложениях реки Енисей. На отдельных участках поймы в ближней зоне влияния Красноярского ГХК их распространенность может достигать нескольких сотен частиц на км². По составу гамма-излучающих радионуклидов «горячие» частицы делятся на два основных типа: моноизотопные (137 Cs либо 60 Co), и полиизотопные (137 Cs, 134 Cs, 154 Eu, 60 Co, 241 Am). Отсутствие активационного изотопа 152 Eu, доминирующего во вмещающих аллювиальных отложениях, и наличие включений, имеющих урановую матрицу, указывает на топливное происхождение большинства енисейских «горячих» частиц.

2. В естественных условиях под воздействием поровых вод происходит постепенное растворение «горячих» частиц, и входящие в их состав радионуклиды могут вовлекаться во вторичную миграцию. Полиизотопные частицы растворяются интенсивнее, чем моноцезиевые – за год в естественных условиях во вмещающую почву выносится до 3,6 и 0,64% исходного количества ¹³⁷Cs соответственно. В высокоактивных почвах, загрязненных в результате растворения «горячих» частиц, присутствует водорастворимая форма ¹³⁷Cs, причем вынос ее происходит многостадийно.

3. Из всех техногенных радионуклидов, депонированных в загрязненных аллювиальных почвах реки Енисей, в растениях береговой зоны в значимых количествах накапливается только ¹³⁷Cs. После завершения цикла развития растений, при попадании отмерших остатков в водную среду происходит быстрый вынос (до 70% – в первые сутки) накопленного ¹³⁷Cs из внутренних клеточных структур растения. Показано, что для модельного участка поймы площадью 14300 м², расположенного в ближней зоне влияния Красноярского ГХК, ежегодно в повторную миграцию за счет жизнедеятельности растений береговой зоны может вовлекаться от $3,8*10^5$ до $1,87*10^6$ Бк ¹³⁷Cs.

Фактический материал В основу И методы исследования. диссертационной работы положены материалы, полученные автором лично при проведении экспедиционных работ в составе отрядов ИГМ СО РАН в период с 2003 по 2016 гг. В лабораторных условиях автором проведено определение содержания гамма-излучающих TPH В почвах, донных отложениях И растительных пробах. Подготовлены колонки осадков для проведения лабораторных и натурных экспериментов по растворению «горячих» частиц. Количество изученных проб: «горячих» частиц — 50, донных отложений — 80, почв – 110; осоки вида *Carex L.* — 55.

Определение радиоизотопного состава почв, донных отложений, «горячих» частиц, наземных растений проводилось автором лично различными вариантами метода полупроводниковой гамма-спектрометрии. Минеральный состав осадков исследован рентгенофазовым анализом на рентгеновском дифрактометре «ARL X'TRA». (лаборатория кайнозоя, геологии палеоклиматологии И минералогических индикаторов климата ИГМ СО РАН, аналитик — н.с. Мирошниченко Л.В.). Определение форм нахождения ТРН в почвах и донных отложениях проводилось методами селективного выщелачивания и фракционного разделения (лаборатория геохимии радиоактивных элементов и экогеохимии ИГМ СО РАН, аналитик: вед. инж. Макарова И.В.). Изучение морфологии, фазового и химического состава «горячих» частиц проведен методом

сканирующей электронной микроскопии (СЭМ) на электронном сканирующем микроскопе LEO1430VP с энерго-дисперсионным спектрометром «OXFORD» (лаборатория рентгеноспектральных методов анализа ИГМ СО РАН, аналитик: к.г.-м.н. Титов А.Т.).

Достоверность защищаемых положений обеспечена статистически значимым количеством проб почв, донных осадков, биологических объектов, современной методикой их отбора и пробоподготовки, применением комплекса высокочувствительных аналитических методов, в том числе по определению форм нахождения THP по общепринятой методике последовательной химической экстракции [Tessier et al., 1979], использованием современного программного обеспечения, глубиной проработки полученного материала и литературы по теме исследований, а также апробацией результатов исследований на российских и зарубежных конференциях.

Апробация работы и публикации. Основные положения диссертационной работы доложены И обсуждены на Международных И Всероссийских конференциях, Представленная работа выполнялась в лаборатории геохимии благородных и редких элементов и экогеохимии ИГМ СО РАН в соответствии с планами научно-исследовательских работ в рамках государственного задания проект № 0330-2016-0011. Результаты исследований по теме диссертаций были представлены на: Международной конференции «Радиоактивность после ядерных взрывов и аварий», (Москва, Россия, 5 – 6 декабря 2005 г.), IV Международной научно-практической конференции "Тяжелые металлы и радионуклиды в окружающей среде" (Семипалатинск, Казахстан, 19 – 21 октября 2006 г.), XI Международном научном симпозиуме имени академика М.А. Усова студентов и молодых учёных "Проблемы геологии и освоения недр", (Томск, Россия, 9 – 14 2007 г.). Международной конференции апреля по радиоэкологии И радиоактивности окружающей среды «ECORAD 2008», (Берген, Норвегия, 15 – 19 июня 2008 г.), V Международной научно-практической конференции "Тяжелые металлы и радионуклиды в окружающей среде" (Семипалатинск, Казахстан, 15 – 18 октября 2008 г.), III Международной конференции «Радиоактивность и радиоактивные элементы в среде обитания человека», (Томск, Россия, 23 – 27 июня 2009 г.), 3-й Международной научной конференции «Геоэкологические проблемы современности». (Владимир, Россия, 23 – 25 сентября 2010 г.), Международной конференции по радиоэкологии и радиоактивности окружающей среды «Environment Nuclear Renaissance» (Гамильтон, Канада, 19 – 24 июня 2011 г.), V «Радиоактивность и радиоактивные элементы в среде обитания человека», (Томск, Россия, 13 – 16 сентября 2016 г.).

Основное содержание и научные положения диссертационной работы опубликованы в 9 статьях (из них 3 под первым авторством) в научных рецензируемых журналах, входящих в перечень ВАК, материалах и тезисах конференций.

Объем и структура работы. Диссертация объемом 148 страниц состоит из введения, обзора литературы (1 глава), объектов и методов исследования (2 глава), результатов и их обсуждения (главы 3, 4, 5), заключения, списка литературы. Работа включает 35 рисунков и 35 таблиц. Список литературы содержит 99 источников, из которых 28 на иностранных языках.

Личный вклад. Автор лично участвовал в экспедиционных работах в составе отрядов ИГМ СО РАН в период с 2003 по 2016 гг. Автор самостоятельно провел пробоподготовку полевого материала, натурные и лабораторные эксперименты. Автором проведена статистическая обработка данных, дана интерпретация полученных результатов и сформулированы защищаемые положения. Диссертационная работа является самостоятельно выполненным научным исследованием.

Благодарности. Автор выражает признательность научному руководителю к.г.-м.н. М.С. Мельгунову за методическую помощь и ценные советы на всем протяжении выполнения работы. Искренняя благодарность д.г.-м.н Г.А. Леоновой за обсуждение результатов подготовленной диссертации и рецензирование статей, подготовленных в 2018 г., к.г.-м.н. М.Ю. Кропачевой, к.г.-м.н. Ю.С. Восель и вед. инж. И.В. Макаровой за сотрудничество в исследовании форм нахождения химических элементов в почвах и донных отложениях, н.с. Л.В. Мирошниченко

за выполнение ренгенофазового анализа по исследованию минерального состава донных отложений. Автор выражает искреннюю признательность всем коллегам лаборатории за поддержку и обсуждение результатов подготовленной диссертационной работы.

Глава 1. Современное состояние изученности проблемы загрязнения компонентов окружающей среды техногенными радионуклидами отходов предприятий ядерно-топливного цикла

1.1. Общая характеристика предприятий ядерно-топливного цикла Сибирского региона

В Сибирском регионе в бассейне рек Обь и Енисей расположены три крупных предприятия ядерно-топливного цикла (ЯТЦ): производственное объединение (ПО) «Маяк» (г. Озерск, Челябинская область), Сибирский химический комбинат (СХК, г. Северск, Томская область) и Красноярский Горнохимический комбинат (ГХК, г. Железногорск, Красноярский край). Основным направлением деятельности предприятий ЯТЦ было производство оружейного плутония, предназначавшегося для изготовления ядерного оружия. Деятельность этих объектов в период 1950–1995 годов оказала существенное влияние на природную среду и привела к формированию специфических геохимических районов, обусловленных ядерным техногенезом [Рихванов, 1994, 1997; Носов и др., 1993; Кузнецов и др., 1994; Сухоруков и др., 2004; Торопов, 2006, 2010; Леонова и др., 2006; Трапезников, 2007; Позолотина, 2008; Рихванов и др., 2015; Линник, 2018 и др.].

ПО «Маяк» было первым в СССР предприятием, созданным для производства оружейного плутония. На ПО «Маяк» первый уран-графитовый промышленный реактор пущен летом 1948 года. В период с 1950 по 1966 год введены в эксплуатацию еще семь реакторов для наработки оружейного плутония. Для охлаждения ядерных реакторов ПО «Маяк» нуждался в больших объемах пресной воды, поэтому он был построен рядом с крупным озером Иртяш. Жидкие радиоактивные отходы (ЖРО) с ПО «Маяк» в период с 1949 по 1956 гг. сбрасывались в р. Теча [Трапезников, 2007; Линник, 2011, 2018]. В результате сброса ЖРО крупномасштабному радиоактивному загрязнению подверглась вся

речная система (пойма и русловая часть). Речная система «Теча-Исеть-Тобол-Иртыш-Обь» с 1963 г. считается находящейся в режиме естественной дезактивации [Мартюшов и др., 1997]. Кроме прямого сброса радиоактивных растворов в р. Теча поступление в неё радионуклидов произошло в результате двух крупных аварий – в 1957 г. взрыв емкости с ЖРО, сформировавший Восточно-Уральский радиоактивный след, и в 1967 г. - ветровой подъем подсохшего ила береговой зоны оз. Карачай, куда многие годы сбрасывались высокоактивные ЖРО [Караваева, Молчанова, 1997]. В конце 1951 г. массовые сбросы радиоактивных отходов в р. Теча были прекращены, однако это не дало ожидаемого эффекта по снижению уровня загрязнения воды вследствие десорбции радионуклидов из донных отложений [Мокров, 2005; Линник, 2011, 2018]. В 1977 году на ПО «Маяк» введен в эксплуатацию завод РТ-1 по переработке облученного ядерного топлива (ОЯТ) с атомных станций, транспортных и исследовательских установок. Последний реактор по наработке плутония был остановлен в ноябре 1990 года. С 1991 начался ввод в эксплуатацию установок по остекловыванию высокоактивных жидких отходов [Крупные радиационные..., 2001].

Суммарный сброс радиоактивных веществ ПО «Маяк» в р. Теча в период с 1949 по 1956 гг. составил 2.75 млн. Ки [Трапезников и др., 1993; Degteva et al., 1994]. По данным реконструкции (определению наиболее достоверных оценок) параметров сбрасываемых ЖРО [Мокров, Шагин, 2001] в период 1949–1954 гг. сброс суммарной активности с учетом вех короткоживущих дочерних радионуклидов равнялся 7.22 млн. Ки. Сток ¹³⁷Cs и ⁹⁰Sr с жидким и твердым стоком в створе населенного пункта Муслюмово оценивается соответственно величиной, равной 5600 Ки (1084 ТБк) [Мокров, 2005]. По существующим оценкам [Strand et al., 1999], в результате сбросов ¹³⁷Cs и ⁹⁰Sr в период 1949–1957 гг. загрязненными оказались 240 км² пойменных земель р. Теча, из них 80 км с уровнем выше 1 Ки/км² (37 кБк/м²). В настоящее время верховья р. Теча (ниже плотины) считаются максимально загрязненной территорией (район Асановских болот), здесь загрязнение почвенного покрова превышает тысячи микрокюри на квадратный метр [Линник, 2018].

На СХК в 1953 году пущен в работу промышленный ядерный реактор И-1, работавший только для производства плутония. В начале 1958 г. был пущен в эксплуатацию двухцелевой реактор ЭИ-2, а в сентябре того же года от тепловой энергии этого реактора заработала Сибирская атомная электростанция, первая промышленная АЭС в Советском Союзе. В 1964-1965 гг. пущены в эксплуатацию двухцелевые энергетические ядерные реакторы АДЭ-4, а в. – АДЭ-5. В июле 1965г. заработала вторая очередь Сибирской АЭС. В 1990 г. остановлен реактор И-1. В 2008 году остановлены последние ядерные реакторы. Радиоактивные отходы радиохимического, химико-металлургического, сублиматного заводов, до ввода в строй в 1963 г. площадок глубинного захоронения жидких радиоактивных отходов, накапливались в открытых хранилищах на территории комбината [Рихванов, 1994, 1997; Торопов, 2006, 2010].

Красноярский горно-химический комбинат (ГХК), расположенный на правом берегу р. Енисей в 60 км ниже по течению о г. Красноярска, начал свою деятельность в 1958 году. ГХК включает три реактора, завод по переработке облученного топлива и хранилище РАО. Первый прямоточный реактор был пущен в августе 1958 г., второй – в 1961 г., третий, с замкнутым циклом, – в 1964 г. Первые два реактора работали в проточном режиме, т.е. вода для снятия тепла с активной зоны реакторов забиралась из Енисея, проходила через технологические каналы реактора и затем сбрасывалась в Енисей. Третий реактор работал по замкнутому циклу. В 1965 г. был запущен в работу Радиохимический завод (РХЗ), на котором облученный уран перерабатывается для разделения урана, плутония и продуктов деления. В 1992 г. – два прямоточных реактора были остановлены, в 2010 г. – выведен из эксплуатации третий реактор, использовавшийся для теплоснабжения г. Железногорска. В 2014-2015 гг. остановлена работа Радиохимического завода, на котором с начала 90-х годов проводилась переработка отработанного ядерного топлива (ОЯТ). Высоко- и средне- активные ЖРО, которые образовывались в ходе работы предприятия, закачивались в два водоупорных пласта-коллектора (на глубине 370-465 м и 180-280 м). Менее активные ЖРО и твердые радиоактивные отходы (ТРО) накапливались в отстойниках на территории комбината [Болсуновский и др., 1998, 1999; Сухоруков и др., 2000, 2004а,б; Sukhorukov et al., 2009; Semizhon et al., 2010 et al.].

1.2. Радиоактивное загрязнение компонентов водотоков (вода-донные отложения-биота) в районах расположения предприятий ЯТЦ

В результате деятельности всех трех предприятий ЯТЦ произошло значительное загрязнение речных систем Оби и Енисея, в бассейнах которых они находятся, сходным спектром техногенных радионуклидов (TPH). Рассматриваемые радионуклиды можно разделить на две группы короткоживущие (Т_{1/2} от суток до года) и долгоживущие. К короткоживущим относятся активационные (²⁴Na, ⁴²K, ⁴⁶Sc, ⁵¹Cr, ⁵⁴Mn, ⁵⁶Mn, ⁵⁹Fe, ⁶⁵Zn, ⁷⁶As, ²³⁹Np) и осколочные (⁸²Br, ⁹⁹Mo, ¹²⁵Sb, ¹³¹I, ¹³³I, ¹⁴⁰La, ¹⁴⁰Ba) радионуклиды. К долгоживущим – ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹³⁷Cs, ⁶⁰Co, ²⁴¹Am, ⁹⁰Sr и изотопы U и Pu [Сапожников и др., 2006].

Радиоактивные изотопы, поступающие в водоемы от предприятий ЯТЦ, быстро поглощаются водными организмами и грунтами, в результате чего их содержание в воде резко снижается. Короткоживущие ТРН накапливаются, как правило, в водных растениях и рыбе [Соломатина и др., 2000; Матишов, Матишов, 2001; Леонова и др., 2003, 2004а,6, 2005, 2006; Вакуловский и др., 2004; Рябов и др., 2005; Торопов, 2006, 2010; Болсуновский и др., 2007; Зотина, 2009; Зотина и др., 2014 и др.]. Долгоживущие ТРН накапливаются в донных отложениях, аллювиальных почвах и наземных растениях [Тимофеев, 1995; Караваева, Молчанова, 1997; Павлоцкая и др., 1997; Кузнецов и др., 2000; Цибульчик и др., 2000, 2001; Сухоруков и др., 2000, 2004; Pavlotskaya et al., 2003; Торопов и др., 2003; Бондарева и др., 2005; Вакуловский и др., 2008: Semizhon et

al., 2010; Линник, 2011, 2018: Kropatcheva et al., 2012; Korobova et al., 2016; Чугуевский и др., 2019 и др.].

Установлено, что короткоживущие изотопы (⁵⁸Co, ⁵¹Cr, ¹⁴P) фиксируются только вблизи источников поступления их в окружающую среду [Мартынова, Шабанов, 2000; Линник, 2018 и др.]. Изотопы ¹³⁷Сs, ⁶⁰Со, ¹⁵²Eu, ¹⁵⁴Eu до настоящего времени формируют загрязнение пойменных почв и растительного покрова в ближней зоне комбината на удалении до 21 км [Kropatcheva et al., 2012]. Долгоживущие (в частности, ¹³⁷Cs, ⁶⁰Co и ⁹⁰Sr) обнаружены на расстояниях свыше 2000 км в донных Карского моря. Летом 1971 отложениях Г. экспедиция Института экспериментальной метеорологии (Обнинск), исследовавшая радиоактивное загрязнение континентального шельфа Карского моря, обнаружила аномально высокие уровни радиоактивности ¹³⁷Сs в донных осадках Енисейского залива, составившие 15 кБк/м², что в 4-8 раз выше, чем уровень загрязнения в результате глобальных выпадений. Были обнаружены также относительно короткоживущие изотопы ⁵⁴Mn и ⁶⁵Zn. С 1972 г. проводились исследования техногенной радиоактивности на протяжении 2000 км по Енисею от Красноярска до Дудинки [Кузнецов и др., 1994; Матишов, Матишов, 2001; Вакуловский и др., 2008].

Наиболее высокий уровень радиоактивности донных осадков Красноярского ГХК наблюдался вблизи места сброса РАО (до 5800 кБк/м²). Около половины радиоактивности приходилось на ⁵¹Cr и ⁶⁵Zn. На расстоянии 250 км вниз по течению Енисея общая радиоактивность осадков снижалась на порядок. На расстоянии 800 км от места сброса активность уменьшалась на два порядка, основной вклад вносили ⁶⁵Zn и ¹³⁷Cs. Влияние Красноярского ГХК прослеживалось до 2000 км вниз по реке. В 1991 г. в поверхностной воде Енисея вблизи места сброса были обнаружены высокие уровни радиоактивности короткоживущих радионуклидов ²⁴Na (650 \pm 300 Бк/л), ³²P (20 \pm 20 Бк/л), ⁵⁶Mn $(300 \pm 200 \text{ Бк/л})$, ²³⁹Np (80 ± 60 Бк/л) и ⁵¹Cr (26 ± 14 Бк/л). По мере удаления от сброса радиоактивность существенно снижалась, однако искусственные

радионуклиды обнаруживались на расстоянии свыше 1300 км от источника [Сухоруков и др., 2004].

Большинство радионуклидов (⁴⁶Sc, ⁵⁴Mn, ⁵⁸Co, ⁵⁹Fe, ⁶⁰Co, ⁶⁵Zn) мигрируют со взвесью, за исключением ⁵¹Cr и ²⁴Na, которые присутствуют в основном в растворенной форме. Промежуточное положение занимают ³²P и ¹³⁷Cs. Таким образом, из долгоживущих радионуклидов, сбрасывавшихся Красноярским ГХК в Енисей, Карского моря мог достичь только ¹³⁷Cs. Всего за 1958 г. по оценкам [Вакуловский и др., 2008] в Карское море поступило 30–100 ТБк ¹³⁷Cs, сброшенного комбинатом. Это величина сопоставима со вкладом Селлафилда (150 ТБк) и примерно на порядок ниже, чем поступило в результате глобальных выпадений (1400 ТБк). После выведения из работы прямоточных реакторов на Красноярском ГХК содержание радионуклидов в воде Енисея существенно снизилось [Сапожников и др., 2006].

В открытой печати работы по проблеме воздействия предприятий ЯТЦ на окружающую среду стали появляться с начала 1990-х годов. Несмотря на прекращение непосредственного поступления ТРН из систем охлаждения реакторов по причине вывода их из эксплуатации, одной из наиболее важных проблем является анализ возможных последствий попадания радионуклидов в гидросферу с водосборных площадей и из водоемов-отстойников, которые используются для хранения слабоактивных радиоактивных отходов.

В работе [Рябов и др., 2005] показано, что содержание ¹³⁷Сѕ в донных отложениях р. Исеть в месте впадения ее в р. Тобол составляет около 2 кБк/м², что говорит о том, что перенос радионуклидов по водной системе Исеть–Тобол– Иртыш–Обь будет происходить еще длительное время. В донных отложениях эстуария Оби согласно данным [Матишов и др., 1997; Матишов, Матишов, 2001], спектр и количество нуклидов отражает явное влияние радиоактивных заводских сливов. Об этом свидетельствуют аномальные величины запасов плутония, кобальта и стронция в донных осадках на акватории Обской губы Карского моря.

Первые открытые публикации по вопросу радиоактивного загрязнения экосистемы р. Томь от сбросов СХК появились в начале 90-х годов ХХ столетия [Рихванов, 1994. 1997]. Позже сведения 0 присутствии техногенных радионуклидов в различных компонентах природной среды в зоне влияния СХК Гидрометеослужбы, стали размещаться В ежегодных отчетах Центра государственного санэпиднадзора и природоохранных органов. Результаты исследования водных биоценозов рек Ромашка (являющейся, фактически. Томь технологическим каналом CXK) И по накоплению техногенных радионуклидов в рыбе и водных растениях представлены в публикациях [Торопов, Зубков, 2000; Леонова и др., 2003, 2004, 2005, 2006; Торопов, 2006, 2010]. В них показан специфический спектр короткоживущих техногенных радионуклидов в биообъектах, отличный от спектра радионуклидов в речных донных отложениях, что свидетельствует о высокой эффективности захвата живым веществом наиболее подвижных в водной среде техногенных гаммаизлучающих радионуклидов – ²³⁹Np, ²⁴Na, ⁷⁶As и др. (табл. 1.1).

Таблица 1.1. Содержание техногенных радионуклидов в водных растениях (Бк/кг сырой массы) р. Ромашка и протоки Чернильщиковой р. Томь, июль 2002 г. [Леонова и др., 2006]

Радионуклид	Дата отбора проб (25.07.2002 г.) – дата измерений (27.07.2002 г.)			
	Нитчатые	Осока	Хвощ	Рдест
	водоросли		приречный	блестящий
²⁴ Na	410	130	415	_
⁴⁶ Sc	1320	90	300	400
⁵¹ Cr	8000	850	1600	2000
⁵⁴ Mn	343	180	417	1000
⁶⁰ Co	670	200	340	800
⁶⁵ Zn	2850	360	650	3500
⁷⁶ As	11600	1050	3500	7000

¹⁴⁰ La	97	-	96	_
⁵⁹ Fe	350	-	98	100
²³⁹ Np	6600	900	1700	1800

При сравнении радионуклидного состава индикаторного «сквозного» растения рдеста блестящего, отобранного в р. Томь в зоне влияния СХК [Леонова и др., 2006] и такового в зоне влияния Красноярского горно-химического комбината р. Енисей по данным [Сухоруков и др., 2004] установлено, что спектры короткоживущих техногенных радионуклидов в водных растениях схожи (табл. 1.2) и свидетельствуют об их присутствии в сточных водах обоих предприятий.

Таблица 1.2. Сравнительный радиоактивный состав водных растений р. Томь [Леонова, 2006] и р. Енисей [Сухоруков и др., 2004] в зоне влияния предприятий ядерно-топливного цикла

Радионуклид	Potamogeton lucens (р. Томь,	Potamogeton lucens (р. Енисей	
	пр. Чернильщикова), 2002 г.	у с. Атаманово), 2001 г.	
²⁴ Na	1008	2000	
⁴⁶ Sc	60	33	
⁵¹ Cr	215	690	
⁵⁴ Mn	211	20	
⁵⁹ Fe	20	20	
⁶⁰ Co	143	180	
⁶⁵ Zn	461	190	
⁷⁶ As	2141	440	
¹⁰³ Ru	10	5	
¹³¹ I	33	5	
¹³³ I	162	-	
¹³⁷ Cs	5	23	
¹⁴⁰ Ba	53	-	

¹⁴⁰ La	123	25
¹⁴¹ Ce	13	16
²³⁹ Np	1700	370

В работе [Трофимова и др., 2012] проведено сравнение содержания ТРН в пробах водного мха и ихтиофауны, отобранных в ближней зоне влияния ГХК в 2009 г. (в период работы реакторного производства) и осенью 2010 г., когда последний, третий реактор, уже был выведен из эксплуатации. Показано, что в рыбе и водном мхе содержатся 65 Zn, 60 Co и 137 Cs, причем удельные активности их, в обоих случаях, существенно не отличаются. В водном мхе, кроме того, содержится ряд изотопов с наведенной активностью (24 Na, 46 Sc. 51 Cr, 54 Mn, 58 Co, 239 Np) и продукты ядерного деления 141 Ce и 144 Ce.

В более поздней работе этих же авторов [Зотина и др., 2014, 2016] приведены данные по содержанию радионуклидов в пробах тех же гидробионтов, полученные в 2011–2012 гг. Сделан вывод о том, что в последний год работы реактора и в течение 3 лет после его остановки, содержание радионуклидов с наведенной активностью в биомассе снижалось в течении времени наблюдения, тогда как снижения содержания ¹³⁷Cs не наблюдалось. Радионуклиды с наведенной активностью с относительно небольшим периодом полураспада (⁶⁰Co, ⁶⁵Zn) наиболее быстро исчезли из биомассы рыб.

В изученных разрезах донных отложений основное внимание уделено распределению долгоживущего радиоизотопа ¹³⁷Cs. В работах [Цибульчик, Степин, 1996; Цибульчик и др., 2000, 2001], показано, что в донных отложениях устьевой части Томи и среднем течении Оби (ниже СХК) фиксируются концентрации техногенных радионуклидов, превышающих уровень глобальных выпадений в этом районе. Уровень активности ¹³⁷Cs в целом относительно невысокий и изменяется в интервале 2–90 Бк/кг сухой массы. Относительно повышенная активность этого радионуклида (до 35–90 Бк/кг в отдельных пробах)

установлена в осадках устья протоки Чернильщиковой и устья р. Томи, в осадках р. Оби ниже впадения Томи (табл. 1.3). Ниже по течению в осадках р. Оби во вскрытых разрезах донных осадков фиксируется более низкая активность ¹³⁷Cs (2–12 Бк/кг). Осадочный материал, содержащий ¹³⁷Cs, имеет в составе заметную долю глинистой компоненты. Ни в одной из проб, представленных кварц-полевошпатовым песчаным материалом, активность ¹³⁷Cs не зафиксирована [Леонова, 2006].

Таблица 1.3. Распределение ¹³⁷Cs, ¹⁵²Eu и ⁶⁰Co в донных осадках на различных участках рек Томь и Обь по данным [Цибульчик и др., 2001; Леонова и др., 2006]

Интервалы	Удельная активность, Бк/кг, воздушно-сухой материал			
опробования см	¹³⁷ Cs	¹⁵² Eu	⁶⁰ Co	
	Донные осадки в ус	стье р. Томь (ст. 56)		
0-5	54± 8	18±3	18±3	
30-35	48±8	15±2	14±3	
55-60	90±10	10±3	15±3	
Донные осадки в устье протоки Чернильщикова (ст. 60)				
0-5	29±5	13±4	24±3	
25-30	60±3	8±3	8±2	
45-50	90±10	10±3	15±2	
Донные осадки р. Обь ниже устья р. Томь (ст. 13)				
0-5	16±4	14±3	20±3	
45-50	30±4	10±3	14±3	
100-105	66±9	20±5	22±3	

1.3. Миграционная способность техногенных радионуклидов по результатам лабораторных экспериментов

После изучения пространственного распределения и уровней содержания техногенных радионуклидов в различных компонентах окружающей среды стали проводиться исследования по определению их миграционной способности. В зоне аварии на Чернобыльской АЭС такие работы стали проводиться уже с 1986 года.

В работе [Бобовникова и др., 1990] рассматриваются химические формы нахождения долгоживущих ТРН в почвах, загрязненных в ходе аварии на ЧАЭС. Выделяются водорастворимые, обменные, необменные и прочносвязанные формы. До 80–90% ⁹⁰Sr и ¹³⁷Cs в почвах и донных отложениях, отобранных в 1986 году, связаны с необменными и прочносвязанными формами, что авторы объясняют тем, что основная часть этих радионуклидов выпала в виде топливных частиц. Рассмотрена трансформация форм нахождения радионуклидов с течением времени, отмечается различие этих процессов для двух изотопов. Для ⁹⁰Sr не происходит существенного перераспределения подвижных и неподвижных форм. Водорастворимая фракция переходит в обменное состояние. Нерастворимая часть выпадений остается в неизменном виде и не принимает участия в процессах обмена с водорастворимыми компонентами почвы. В случае ¹³⁷Сs ситуация иная. Водорастворимая его фракция после поглощения почвенным комплексом переходит в обменную форму, которая быстро фиксируется, переходя в необратимо сорбированное состояние за счет процессов включения В кристаллическую решетку минералов. Характерное время закрепления ¹³⁷Сs в почве составляет несколько десятков суток.

В работе [Булгаков и др., 1990] рассматриваются механизмы вертикальной миграции долгоживущих ТРН в почвенном слое. Показано, что миграция 134 Cs, 137 Cs, 106 Ru и 144 Ce в верхнем слое почвы (0–5 см) происходит, главным образом, за счет биоперемешивания и просеивания содержащих радионуклиды почвенных частиц. В миграцию 90 Sr в верхнем слое почвы значительный вклад вносит перенос его растворенных и коллоидных форм инфильтрационным потоком.

Миграция ¹³⁴Cs, ¹³⁷Cs, ¹⁰⁶Ru и ¹⁴⁴Ce в нижних слоях почвы в значительной степени определяется переносом их растворенных и коллоидных частиц поровыми растворами.

Изучение форм нахождения ТРН в аллювиальных отложениях загрязненных в ходе деятельности Красноярского ГХК начинается с середины 2000-х годов. В работе [Бондарева и др., 2005] описан лабораторный эксперимент по оценке миграционной способности трансуранового элемента ²⁴¹Am и ¹⁵²Eu в донных отложениях р. Енисей методом химического фракционирования на модельных системах. Сначала в ходе эксперимента образцы донных отложений, отобранные в ближней зоне влияния ГХК, были искусственно загрязнены ²⁴¹Am. Затем для взаимодействия внесенного выяснения типов америция И изначально содержащегося в образцах ¹⁵²Eu с поглощающим комплексом донных отложений было проведено фракционирование, с определением содержания изотопов в каждой из фракций. Было установлено, что ¹⁵²Eu и ²⁴¹Am распределены по фракциям примерно одинаково: в подвижных формах содержится до 16-20% активности, в малоподвижных – 78-82%, и около 2% радионуклидов остается в нерастворимом остатке.

В работе [Bondareva, Bolsunovskii, 2008] изучена миграционная способность 60 Co, 137 Cs, 152 Eu и 241 Am в верхних слоях донных отложений, отобранных на разных участках ближней зоны влияния ГХК. Показано, что 60 Co, 137 Cs, 152 Eu и 241 Am связаны, главным образом, с гуминовыми и фульвокислотами. Миграционная способность уменьшается в ряду 152 Eu> 241 Am> 60 Co> 137 Cs. Отмечено, что наличие в донных отложениях радиоактивных микрочастиц, значительно усложняет распределение радионуклидов, в частности 137 Cs и 241 Am, среди миграционных форм.

В работе [Brown et. al., 2009] изучено вертикальное распределение техногенных радионуклидов в разрезах загрязненных аллювиальных почв. Отложения имеют различный гранулометрический состав, от илов до песчаных илов, причем в большинстве случаев размер зерен не изменяется с глубиной, Глинистые минеральные ассоциации сильно отличаются в пределах различных опробованных участков, смектит доминирующим является глинистым минералом, присутствующим в большинстве глинистых образцов. Значения ¹³⁷Сs составили 23–3770 Бк/кг, причем во многих случаях в активности приповерхностных слоях фиксируются максимумы его концентрации. Авторы объясняют это образованием этих слоев в период активного функционирования комбината. Активность 137 Cs во всех пробах прямо коррелирует с содержанием илистой компоненты. Концентрации активности ^{239,240}Ри находились в диапазоне <0,01–14,2 Бк/кг, причем в некоторых разрезах повышенные концентрации Ри приурочены к нижним их уровням. Концентрации активности ⁻²³⁹ ²⁴⁰ Ри также во всех случаях коррелируют с содержанием ила.

В работе [Bondareva, Artamonova, 2011] проводится сравнение двух вариантов проведения химического фракционирования для оценки миграционной способности ТРН, содержащихся в донных отложениях. Одна схема основана на геохимических свойствах химических элементов (в частности, Fe), входящих в состав минералов, слагающих осадки. Другая – учитывает физико-химические свойства самих минералов. Для более полного описания поведения радионуклидов в донных отложениях предлагается использовать обе схемы. На основании полученных в ходе экспериментов результатов, сделан вывод о том, ЧТО при изменении физико-химических условий, например, В процессе гумификации, подвижные формы радионуклидов переходят в неподвижные. В других случаях, неподвижные формы могут трансформироваться в подвижные, и становиться источником вторичного загрязнения радионуклидами поймы р. Енисей.

В работе [Когоbova et. al., 2016] проводится сравнение распределения 60 Co, 137 Cs и 152 Eu в гранулометрических и фракциях органических компонентов (соединениях) аллювиальных почв и донных отложений. Показано, что 137 Cs содержится в тонкозернистых песках, илистых и глинистых частицах, которые могут образовывать механические конгломераты. 152 Eu 60 Co приурочены, главным

образом, к пелитовой фракции. Распределение радионуклидов в органических фракциях (фульвокислоты, гуминовые кислоты и твердый остаток, состоящий из минеральных частиц и нерастворимой органической компоненты), что определяет их потенциальную подвижность в природных условиях, оказалось принципиально различным. Так, с фульвокислотами, низкомолекулярными органическими соединениями, наиболее подвижной частью органики, связано 72% ¹⁵²Eu, 46% ⁶⁰Co и только 0,4% ¹³⁷Cs. В составе кислотоустойчивых гуминовых комплексов, практически нерастворимых в природных водах гумидной зоны, фиксируется только ¹³⁷C в количестве \approx 10%. Таким образом, в твердом остатке, в прочно фиксированной форме содержится свыше 90% ¹³⁷Cs. Наблюдаемые различия в распределении радионуклидов по предположению авторов, можно объяснить разной формой нахождения (растворенной или сорбированной), в которой ⁶⁰Co, ¹³⁷Cs и ¹⁵²Eu были представлены в сбросных водах.

В работе [Pavlotskaya et. al., 2003] изучено распределение ²⁴¹Ат и изотопов Ри в аллювиальных почвах и донных отложениях. В ходе ряда экспериментов по селективному выщелачиванию установлено, что в наиболее подвижных формах (водорастворимой, обменной и легкорастворимой, и подвижной, согласно методике, приведенной в работе [Павлоцкая и др., 1997]) находится 35 и 69% ²⁴¹Ат (значительно больше, чем изотопов Pu) в аллювиальных почвах и донных отложениях соответственно. Это свидетельствует о высокой вероятности вовлечения его во вторичное перераспределение. Сделан вывод, что ²⁴¹Am и Pu присутствуют во всех минеральных и органических компонентах. Миграционная способность этих радионуклидов определяется как их химической природой, так и физико-химических характеристиками самих аллювиальных почв и донных отложений, и зависит от многих природных факторов. Трансурановые элементы не имеют стабильных изотопов и встречаются в компонентах экосистемы в количестве, недостаточном для образования собственных соединений. Поэтому их подвижность определяется миграционной способностью макроскопических носителей, в которые они входят.

1.4. Определение понятия «горячая» частица. Источники поступления «горячих» частиц в окружающую среду

Наряду с рассеянной формой, значительная часть радионуклидов, поступивших в окружающую среду, связаны с «горячими» частицами. К «горячим» частицам относят «... частицы, имеющие микрометровые И субмикрометровые размеры, обладающие на несколько порядков большей активностью, чем средняя активность почвы тех же размеров» [Быховский, Зараев, 1974]. По определению МАГАТЭ [Salbu, 2007] радиоактивные частицы в окружающей среде определяются как локализованные агрегаты радиоактивных атомов, которые дают повышение неоднородности распределения радионуклидов, существенно отличную от таковой в фоновой матрице. Как правило, к частицам относят образования, превышающие по размерам 0.45 мкм [Salbu, 2007].

В окружающую среду «горячие» частицы поступают во время различных катастрофических событий: ядерных испытаниях (Семипалатинский, Новоземельский полигоны) [Радиоактивные частицы..., 1963; Freiling, 1963; Salbu et al., 1997], авариях на атомных станциях и предприятиях ЯТЦ (Чернобыльская АЭС, 1986) [Devell et al., 1986; Лощилов и др., 1992; Tcherkezian et al., 1993; Tcherkezian (Cherkezyan) et al., 1994, 1995], инцидентах с ядерным оружием и радиоактивными отходами [Болсуновский и др., 1998, 1999, 2000; Bolsunovsky, Tcherkezian, 2001; Salbu, 2001, 2004], применении боеприпасов с обедненным ураном [Salbu et al., 2003, 2009]. Изучение радионуклидного и элементного состава «горячих» частиц во многих случаях позволяет определить, как физико-химические механизмы их образования, так и источник загрязнения.

История изучения «горячих» частиц, связанных с деятельностью Красноярского ГХК, начинается с 1994 года, когда они впервые были обнаружены В.А. Тимофеевым в пойме реки Енисей в районе г. Енисейска (330 км от места сброса) [Тимофеев, 1995]. Гамма-спектрометрический анализ найденных им частиц показал наличие большого числа радионуклидов как с коротким периодом полураспада (⁵¹Cr, ⁵⁴Mn, ⁵⁹Fe, изотопы рутения и церия, и др.), так и долгоживущие – ¹³⁷Cs и изотопы европия [Тимофеев, 1995]. В августе 1995 года во время совместной экспедиции Института биофизики СО РАН и ГХК одним из участников (Болсуновским А.Я.) «горячие» частицы были обнаружены на островах р. Енисей возле села Атаманово, в непосредственной близости от промзоны ГХК и места сброса комбинатом загрязненных радионуклидами вод [Болсуновский и др., 1998]. Впоследствии, в 1997–2001 гг., им же и другими исследователями ежегодно обнаруживались новые «горячие» частицы [Сухоруков и др., 20046; Болсуновский и др. 1999, 2000; Гритченко и др., 2001]. Кроме косы и острова Атамановского, частицы были обнаружены также на правом берегу Енисея у с. Б. Балчуг и на острове «Тайвань».

Помимо ближней зоны влияния Красноярского ГХК (10-15 км от точки найдено большинство сброса). гле было «горячих» частиц, последние обнаруживались и в дальней зоне (д. Смородинка, 263 км [Болсуновский и др., 2000] и г. Енисейск, 330 км от ГХК [Сухоруков и др., 2004]). Все найденные на Енисее «горячие» частицы являются сильными гамма-излучателями. Именно это свойство позволяет выявлять их в полевых условиях по резкому (в десятки раз) повышению МЭД в местах нахождения в загрязненном аллювии. По составу гамма-излучающих радионуклидов все «горячие» частицы, данные по которым приведены в указанных работах, можно условно разбить на три группы: моноизотопные – содержат только 137 Cs с активностью до 2×10^6 Бк на частицу; двухизотопные, содержащие 137 Cs и 134 Cs с активностями в диапазоне $2.7 \times 10^{4-}$ 30×10^6 Бк и 10–7500 Бк соответственно; полиизотопные – ¹³⁷Cs (4×10⁴–7×10⁵ Бк), ¹³⁴Сs (180–1250 Бк), ¹⁵⁴Eu (1000–5000 Бк), ¹⁵⁵Eu (300–1400 Бк), ⁶⁰Со (20–30 Бк), ²⁴¹Ат (20-75 Бк). Следует отметить доминирующую роль ¹³⁷Сs. Во всех «горячих» частицах, для которых проводились соответствующие определения, присутствуют изотопы ²³⁸Pu, ^{239,240}Pu и ⁹⁰Sr с активностями от 0.01 до 7 Бк на частицу для ^{239,240}Pu, 0.03–120 Бк для ²³⁸Pu и 30–1350 Бк для ⁹⁰Sr. При этом встречаются частицы с величиной отношения ²³⁸Pu/^{239,240}Pu 50 и выше [Сухоруков

и др., 2000; Гритченко и др., 2001]. Все частицы обнаруживаются в верхних горизонтах почв на глубине 5–10 см, реже до 25 см. По данным различных исследователей распространенность таких «горячих» частиц составляет от 60 до 70 частиц на км² [Болсуновский и др., 2000; Chuguevskii et al., 2010].

1.5. Потенциальная миграционная способность техногенных радионуклидов, входящих в состав «горячих» частиц.

После определения механизмов поступления ГЧ в окружающую среду, установления факта их широкой распространенности, изучения радионуклидного состава, встал вопрос об оценке возможности вовлечения во вторичную миграцию содержащихся в них радиоактивных изотопов. До чернобыльской аварии практически полностью отсутствовали данные о поведении в окружающей среде радионуклидов, выпавших в составе ГЧ.

В работе [Бобовникова и др., 1990] рассматривается поведение топливных частиц, попавших в окружающую среду в результате аварии на ЧАЭС. Показано, что с течением времени в почве проходит их разрушение, в результате чего часть радионуклидов переходит в обменные формы. Однако ¹³⁷Сs быстро фиксируется, в связи с чем содержание его обменных форм в почве со временем практически не меняется, доля необратимо сорбированного ¹³⁷Cs растет, а вклад топливных частиц в общий уровень загрязнения снижается. Скорость закрепления ⁹⁰Sr в почве существенно ниже скорости его выщелачивания при разрушении частиц. Поэтому c течением времени происходит увеличение содержание его водорастворимой и обменной форм, причем с глубиной их доля увеличивается. Проведена оценка характерного времени выщелачивания ⁹⁰Sr и ¹³⁷Cs из топливных частиц. По авторским данным оно составляет от 280 суток до 6,7 лет для 90 Sr и от 370 суток до 3,2 лет для 137 Cs, в зависимости от типа почв.

В статье [Кашпаров и др., 1997] проводится анализ скорости растворения чернобыльских топливных частиц в почве в естественной среде при различных почвенно-климатических условиях. Получены математические зависимости

скорости растворения частиц. Показано, что определяющим фактором являются физико-химические свойства самих частиц. Так, наименее окисленные частицы первого выброса наиболее химически устойчивы, независимо от почвенных характеристик. Через десять лет после аварии, до 70% ⁹⁰Sr все еще находилось в матрице топливных частиц. Частицы же длительное время отжигавшиеся во время аварии и выброшенные позднее при аналогичных почвенных условиях растворились в большей степени. Отмечается, что в наибольшей степени частицы сохранялись в слабокислых почвах (pH 5,2-5,6).

В более поздней работе этих же авторов [Кашпаров и др., 2000] описан модельный эксперимент по кинетике растворения различных топливных частиц (окисленных и неокисленных) в растворах разной кислотности. Показано, что наименьшую скорость растворения имеют неокисленные частицы механически разрушенного ядерного топлива. За время эксперимента (342 суток) в растворы с рН 5-7 перешло менее 2% активности, при рН 4 и 9 – около 5%. Только для кислых растворов с рН 3, нетипичных для окружающей среды, переход радионуклидов составил 30%. Частицы, отжигавшиеся на воздухе, растворились в значительно большей степени. Так, даже для рН 7 в раствор перешло 20% активности, а при рН 3 вынос составил 80%. Таким образом, для частиц обоих типов независимо от степени их окисления минимум скорости растворения наблюдается при рН около 7. Как в кислой, так и в щелочной среде скорость растворения топливных частиц увеличивается.

Отмечается, что скорость растворения как неотжигавшихся, так и отжигавшихся в течении разного времени топливных частиц, в течение первого месяца растворения в растворах с различной кислотностью выше по сравнению с последующим периодом. Авторы связывают это с тем, что в первую очередь растворение идет по различным дефектам структуры более быстро по сравнению с глубинными, более стойкими слоями.

Показана удовлетворительная сходимость полученных экспериментальных данных с реально наблюдаемыми результатами, полученными в естественных

условиях. Наблюдаемые расхождения обуславливаются объективными причинами – в естественных условиях химический состав поровых вод отличается от модельного, pH изменяется в течение года, в холодное время года при нахождении в верхних слоях почвы при отрицательных температурах эффективная скорость растворения частиц снижается.

Работ по изучению миграционной способности ТРН, входящих в состав «горячих» частиц реки Енисей в открытой печати обнаружить не удалось.

Глава 2. Объекты и методы исследования. Методика пробоотбора и пробоподготовки. Методические подходы и аналитические методы

2.1. Характеристика района проведения работ

Исследования проводились в среднем течении реки Енисей, в ближней зоне влияния Красноярского ГХК. Ближняя зона влияния выделяется достаточно условно (по фиксированию в воде короткоживущих ТРН) и представляет собой участок поймы протяженностью ≈18 км от места сброса ГХК (60 – 78 км вниз по течению от г. Красноярска) до Балчуговской протоки. Схема района проведения исследований представлена на рис. 2.1 и 2.2.

Рис. 2.1. Район проведения работ (2а – коса Атамановская, 2б – остров Атамановский, 2в – устье реки Большая Тель, 2г – остров Березовый, 2д – Балчуговская протока, 2е – правый берег р. Енисей, фоновый участок).

В 5 км вниз по течению от места сброса расположена коса Атамановская (в данный момент это остров), отделенная от правого берега протокой шириной

около 30 м (рис. 2.2а). Коса покрыта редкой кустарниковой растительностью и густым травостоем. Во время весеннего половодья и катастрофических затоплений полностью затапливается водой, в результате чего на ней сформировался достаточно мощный (до 1,2 м) покров аллювиальных почв. В протоке, отделяющей косу от правого берега, на некоторых участках образовался небольшой (до 30 см) слой донных отложений.

Остров Атамановский (1 км вниз по течению от косы Атамановской), расположен в срединной части реки, имеет вытянутую вдоль течения эллипсовидную форму, протяженность его более 1,4 км (рис. 2.2б). На нем выделяются две зоны – регулярно или периодически зат

опляемая, с травянистой или кустарниковой растительностью (главным образом, головная часть острова), и незатопляемая, залесенная, на расстоянии 2/3 его длины от головы в осевой части.

Остров Березовый (14 – 17 км от места сброса) – самый крупный из островов ближней зоны влияния, расположен напротив с. Большой Балчуг, ближе к правому берегу, отделен от него Балчуговской протокой (рис. 2.2г). Головная, более низкая часть острова, покрыта травянистой и редкой кустарниковой регулярно затапливается В Мощность растительностью, ходе паводков. почвенного слоя невысока (до 20 см). Остальная часть острова Березового расположена существенно выше уреза воды И затапливается только в Покрыта древесной и исключительно высокие паводки. кустарниковой растительностью, мощность почвенного слоя увеличивается и в хвостовой части достигает 50 см [Сухоруков и др., 2004].

Правый берег реки Енисей был исследован на двух участках: 1) в месте впадения реки Большая Тель (13 км от места сброса) (рис. 2.2в). В устье образовался залив, отделенный от Енисея полосой берега (высотой до 3 м). При прохождении высоких паводков и залив и перемычка затапливаются енисейскими водами, 2) в застойном болотистом заливе в Балчуговской протоке (15 км от места сброса), в котором при прохождении высоких паводков создается краткосрочный

проточным режим и образуется дополнительная протока, в силу чего создаются условия для накопления радионуклидов, переносимых на взвесях (рис. 2.2д).

Рис. 2.2. Район проведения работ. (а – коса Атамановская, б – остров Атамановский, в – устье реки Большая Тель, г – остров Березовый, д – Балчуговская протока, е – правый берег р. Енисей, фоновый участок).

2.2. Методика пробоотбора и пробоподготовки

Объектами исследования являлись почвы, донные отложения, растительность и «горячие» частицы загрязненных (острова и пойма р. Енисей ниже по течению от места сброса ГХК) и фоновых (район д. Шивера) территорий. Отбор проб осуществлялся в ходе полевых работ в 2003–2010 гг.

Почвы. Выбор места отбора проб почв (2003–2010 гг.) определялся характеристикой почвенного покрова, прежде всего его мощностью и представительностью для рассматриваемой территории, уровнем и качеством травостоя, степенью регулярного и периодического затопления. Пробы почв отбирались по стандартизованной методике [Сухоруков, 2004], состоящей в послойном (по 5 см) опробовании почвенного разреза на всю его глубину до подстилающих пород путем последовательного задавливания (забивания) стального кольца диаметром 82 мм (объем извлеченного материала почвы составляет 264 см³). Это позволяет, используя весь извлеченный материал для замера после его взвешивания, определить не только удельную активность, но и плотность загрязнения каждого слоя.

Донные отложения. При отборе проб донных отложений (2003 г., протока между правым берегом р. Енисей и косой Атамановской) использовался цилиндрический пробоотборник с вакуумным затвором конструкции НПО «Тайфун» диаметром 84 мм и длиной 50 см, позволяющий извлекать илистые сильнообводненные и песчанистые осадки. Полученный керн разделялся перпендикулярно оси на слои по 1 см.

Поиск «горячих» частиц осуществлялся с помощью радиометра СРП68. При отборе в полевых условиях «горячие» частицы изымались вместе с вмещающей почвой. Окончательная их локализация и выделение проводилось в лабораторных условиях.

В лабораторных условиях пробы почв и донных отложений доводились до воздушно-сухого состояния, тщательно перемешивались и взвешивались. Затем из них отбирались навески стандартного объема, которые анализировались на содержание техногенных радионуклидов. Подобным же образом осуществлялась пробоподготовка и анализ вмещающих почв, из которых были извлечены «горячие» частицы.

Растения. Пробы растений (<u>осоки</u>, относящейся к роду *Carex* L.), отбирались в ходе полевых работ 2004–2007 гг. Изучались участки, характеризующиеся максимальным уровнем радиационного фона (100 – 150 мкР/час) и наибольшей плотностью травостоя. Причем, опробовались территории как подвергавшиеся затоплению в результате паводка (в год проведения работ), так и зоны такому воздействию не подвергавшиеся. В 2004 г. рассматривалась только растительная часть, в 2005–2007 гг. параллельно отбиралась вмещающая почва (в 2005 г. – валовая проба, в 2007 г. – почвенные разрезы, профили).

В лабораторных условиях пробы растений высушивались и разделялись на стебли, молодые листья, старые листья и колосья. Промывание образцов не производилось.

С целью снижения порога обнаружения пробы были озолены в муфеле при температуре 450⁰ С согласно методическому подходу [Карякин, Грибовская, 1979]. В золе растений и вмещающей почве проводилось определение содержания гамма-излучающих ТРН. В ряде случаев (в частности, при проведении лабораторного эксперимента по выносу накопленных растениями ТРН) озоление проб не производилось. Пробы доводились до воздушно-сухого состояния, после чего проводилось определение концентрации ТРН.

2.3. Аналитические методы

Методы анализа. Изучение радионуклидного состава отобранных образцов и определение активностей обнаруженных радиоизотопов проводилось в стационарных, лабораторных условиях в Аналитическом центре ИГМ СО РАН (ЦКП Многоэлементных и изотопных исследований СО РАН) на методической и аппаратурной базе лаборатории «Геохимии редких элементов и экогеохимии». При выполнении настоящей работы определение активностей гамма-излучающих радионуклидов в изучаемых объектах проводилось методом высокоразрешающей полупроводниковой гамма-спектрометрии с использованием методических подходов и оборудования, подробно описанных ранее [Сухоруков и др., 2004]. Сущность применяемых при этом подходов и методик сводится к ряду основных положений.

В зависимости от характера решаемых задач и используемых методик гамма-спектрометрический анализ выполнялся с помощью измерительных спектрометрических линеек на основе следующего аналитического оборудования: 1. Коаксиального HPGe полупроводникового детектора (ППД) EGPC 20-1.80-SHF 00 30A (фирма EURISYS MEASURES (Франция), с относительной эффективностью регистрации 20% и разрешением по линии 1332.5 кэВ (⁶⁰Co)-1.8 кэВ), периферийного спектрометрического оборудования, многоканального анализатора PCA III-4000 в составе ПК IBM PC и программного комплекса INTERWINNER-GAMMA той же фирмы;

- Коаксиального Ge(Li) ППД ДГДК-100В (производство ИФТП, г. Дубна, с относительной эффективностью регистрации 10% и разрешением по линии 1332.5 кэВ – 2.6 кэВ), периферийного спектрометрического оборудования, многоканального анализатора АЦП-8К-2 в составе ПК IBM PC и программного комплекса ANGAMMA фирмы "АСПЕКТ" (г. Дубна);
- Планарного НРGe ППД (производство ИФТП, г. Дубна, эффективная площадь регистрации – 100 мм², разрешение по линии 59,54 кэВ (²⁴¹Am) – 420 эВ), периферийного спектрометрического оборудования, многоканального анализатора АЦП-8К-2 в составе ПК IBM PC и программного комплекса АNGAMMA фирмы "АСПЕКТ" (г. Дубна);
- Колодезного коаксиального НРGe ППД с низкофоновым криостатом EGPC 192-P21/SHF 00-30A-CLF-FA (фирма EURISYS MEASURES (Франция), с активным объемом 200 см³, абсолютной эффективностью регистрации 15%, разрешением по линии 1332.5 кэВ 2.2 кэВ, по линии 121.78 (¹⁵²Eu) 1.4 кэВ,
размерами колодца 21×60 мм), комплексного спектрометрического процессора FP-6300 той же фирмы, многоканального анализатора АЦП-8К-2 в составе ПК IBM PC и программного комплекса ANGAMMA фирмы "АСПЕКТ" (г. Дубна).

Используемое оборудование позволяло проводить измерение интенсивностей гамма-линий в рабочем диапазоне энергий от 20 кэВ до 2000 кэВ. Для защиты от естественного фонового гамма-излучения применялась пассивная защита из радиационно-чистого свинца толщиной 10-15 см. В случае использования высокоэффективной системы регистрации на основе колодезного HPGe детектора для подавления фоновой компоненты в низкоэнергетической области спектра в конструкцию защиты дополнительно включались модули из вольфрама, кадмия и меди.

Время замера изучаемых образцов определялось уровнем активности анализируемых радиоизотопов и варьировало в пределах от 2-3 до 24 часов. Длительность единичного измерения подбиралось таким образом, чтобы статистическая погрешность определения площадей регистрируемых аналитических фото-пиков не превышала величину 5%.

Измерения проб почв и донных отложений показали, что помимо изотопов, соответствующих продуктам радиоактивного распада естественных ²³⁸U и ²³²Th, а также ⁴⁰K, в той или иной мере в них присутствуют долгоживущие TPH: ¹⁵²Eu (период полураспада 13,537 года), ¹⁵⁴Eu (8,593), ¹⁵⁵Eu (4,761), ¹³⁷Cs (30,07), ⁶⁰Co (5,271). В отдельных пробах отмечено присутствие ¹³⁴Cs (2,0648 года). В единичных растительных пробах фиксировался ⁶⁵Zn (244,26 суток). Данные по значениям периодов полураспада изотопов приведены из работы [Сухоруков и др., 2004]. На рис. 2.3a и 2.3б представлены разные энергетические диапазоны регистрации.

Рис. 2.3. Гамма-спектр типичной активной пробы почвы из района о. Атамановского. Дата замера 27 ноября 1998 г., время замера 47830 сек [Сухоруков и др., 2004]. Характеристики пиков указаны в табл. 2.1.

б)

a)

Выделенные пики соответствуют долгоживущих гамма-линиям техногенных радионуклидов (см. табл. 2.1). Эти гамма-пики являются основными, по которым может производиться дальнейший расчет активностей определяемых техногенных радионуклидов. Остальные, неотмеченные пики являются либо фоновыми гамма-линиями продуктов распада естественных U и Th, либо слабыми пробе радионуклидов, линиями присутствующих В техногенных неиспользуемыми для расчетов.

Таблица 2.1. Гамма-линии долгоживущих ТРН [Сухоруков и др., 2004].

№ п/п	Энергия, кэВ	Фон, импульс	Площадь,	Нуклид
			импульс	
1	105,3	154 892	29 379	¹⁵⁵ Eu
2	344,3	47 593	270 798	¹⁵² Eu
3	661,66	30 843	55 336	¹³⁷ Cs

38

4	723,07	31 221	37 000	¹⁵⁴ Eu
5	778,9	20 713	59 677	¹⁵² Eu
6	873,2	19 685	17 946	
7	964,1	14 878	56 272	¹⁵² Eu
8	996,3	12 739	14 768	¹⁵⁴ Eu
9	1004,7	11 710	28 574	¹⁵⁴ Eu
10	1112,1	9808	47 286	¹⁵² Eu
11	1173,2	9186	17 963	⁶⁰ Co
12	1274,4	3475	40 815	¹⁵⁴ Eu
13	1332,5	1667	15 839	⁶⁰ Co
14	1408,1	697	57 726	¹⁵² Eu
15	1460,8	440	5952	⁴⁰ K

Идентификация и расчет активностей основных радиоактивных изотопов проводились по следующим гамма линиям:

¹⁵² Eu:	121.78 кэВ (0.284)*)	¹⁵⁴ Eu:	123.07 кэВ (0.406)
	344.3 кэВ (0.266)		723.3 кэВ (0.197)
	778.9 кэВ (0.1294)		1274.5 кэВ (0.3549)
	1408.01 кэВ (0.208)		
¹⁵⁵ Eu:	105.3 кэВ (0.2058)	¹³⁷ Cs:	661.66 кэВ (0.852)
⁴⁰ K:	1460.8 кэВ (0.1067)	⁶⁰ Co:	1173.2 кэВ (0.9989)
			1332.2 кэВ (0.99983)

^{*)} – в скобках указаны квантовые выходы гамма-линий.

Расчет активностей определяемых радиоизотопов проводился по алгоритму, включенному в состав программного комплекса ANGAMMA. Калибровка спектрометрических трактов по эффективности проводилась с использованием следующих эталонных источников:

 Объемного эталонного источника, приготовленного на основе кварцевой крупки и образцового радиоактивного раствора ¹⁵²Eu (свидетельство № 42280.74558 ГНМЦ "ВНИИФТРИ" Госстандарта России, 1997 г.) и аттестованного в качестве эталонного образца предприятия (СТЕu-1(O)). Удельная активность ¹⁵²Еu в источнике (на 1.06.1998) – 5160 Бк/кг.

 Рабочих эталонов II разряда – объемных сыпучих гранулированных источников гамма-излучения (свидетельство регистрации № 02208.04К61), изготовленных ГНМЦ "ВНИИФТРИ" Госстандарта России в декабре 2000 года и аттестованных на ¹³⁷Cs (420/0102); ¹⁰⁹Cd, ¹⁵²Eu, ²⁴¹Am (420/0103 и 420/0104).

Оценка случайной (воспроизводимость) и систематической (правильность) составляющих погрешности анализа проводилась по методике, приведенной в отраслевом стандарте «Управление качеством аналитических работ» (ОСТ 41-08-205-81) с использованием стандартного объемного образца предприятия СТЕи-1(О). Результаты измерений приведены в табл. 2.2.

Таблица	2.2.	Оценка	случайной	(воспроизводимость)	И	систематической
(правильность) составляющих погрешности анализа						

Номер	Результат измерения	$\mathbf{d_i} = \mathbf{C_i} - \mathbf{C_{cp}}$	d_i^2	
измерения	А _{уді} ¹⁵² Еи, Бк/кг			
1	5,28	0,12	0,0150	
2	5,24	0,08	0,0065	
3	5,21	0,05	0,0024	
4	5,21	0,05	0,0024	
5	5,08	-0,08	0,0058	
6	4,99	-0,17	0,0288	
7	5,07	-0,09	0,0074	
8	5,05	-0,11	0,0115	
9	5,13 -0,02		0,0006	
10	5,16 0,00		0,0000	
11	5,12	-0,03	0,0012	
12	5,24	0,08	0,0065	
13	5,27	0,11	0,0125	
14	4 5,16 0,00		0,0000	
15	5,17	0,01	0,0001	

Сумма А _{уд} і:	Сумма d _i ²
77,37	0,10

1. Средний результат анализа:

$$A_{y\partial cp} = \frac{\sum A_{y\partial i}}{n} = \frac{77,37}{15} = 5,16 \, \text{KK/C}$$

2. Среднеквадратичное отклонение:

$$S = \sqrt{\frac{\sum d_i^2}{n-1}} = \sqrt{\frac{0.10}{14}} = 0.085 E\kappa / 2$$

3. Относительное среднеквадратичное отклонение случайной составляющей погрешности:

$$S_r = \frac{100 * S}{A_{yocp}} = \frac{100 * 0,085}{5,16} = 1,65\%$$

4. Систематическая составляющая погрешности анализа:

$$S_s = A_{y\partial cp} - A_{y\partial, p} = 5,16 - 5,14 = 0,02 \mathcal{K} / \mathcal{Z}$$

5. Относительная систематическая составляющая погрешности анализа:

$$S_{s,r} = \frac{100 * S_s}{A_{y\partial,p}} = \frac{100 * 0.02}{5.14} = 0.39\%$$

6. Погрешность измерения образца:

$$S_{obp} = \sqrt{S_r^2 + S_{s,r}^2} = 1,70\%$$

Так как погрешность измерения пробы (1,7%) не превышает погрешности аттестации ОРР (3,5%), то за суммарную погрешность анализа была принята погрешность аттестации ОРР, равная величине 7% (Р=0,95). За аттестованное значение удельной активности изотопа ¹⁵²Eu для СОП СТEu-1(О) на момент аттестации по результатам измерений было принято:

$$A_{yo} = 5,16 \pm 0,36 \, \text{KK/C}$$

Данная величина хорошо согласуется с расчетным значением удельной активности изотопа ¹⁵²Еи в СОП СТЕU-1(О).

В зависимости от количества вещества, доступного для проведения гаммаспектрометрического анализа, использовались разные методические подходы:

Анализ проб большого объема. Для повышения эффективности аналитического сигнала измерения проб большого объема регистрации проводились в сосудах Маринелли (250 см³). Масса навески исследуемых образцов составляла при этом от 150 до 420 гр. Пределы обнаружения ¹⁵²Eu, ¹⁵⁴Eu, ¹³⁷Сs, ⁶⁰Со при такой геометрии измерения составили от 5 до 10 Бк/кг. Воспроизводимость анализа для объемного эталонного источника с активностью ¹⁵²Еи около 5000 Бк/кг по критерию 2[°] не превышает 6%. При расчете активностей радиоизотопов в реальных пробах не учитывалась возможная неравномерность распределения последних по объему исследуемого образца.

Анализ проб малого (<150см³) объема. Анализ таких образцов, к которым относятся все донные осадки, навески вмещающих почв и, частично, растительные пробы, проводился с использованием торцевой геометрии. При этом изучаемый образец засыпали в цилиндрические кюветы объемом от 3-х до

70 см³. Кювета располагалась для измерения на верхнем торце детектора. Масса навески, подготавливаемой для измерения, составляла от 3 до 100 гр. Время замера варьировало в пределах 2 - 24 часов и лимитировалось, как и в предыдущем случае, активностью определяемых радиоизотопов в образце. Расчет активностей радионуклидов проводился по алгоритму, описанному выше, с использованием тех же эталонных источников. Пределы обнаружения ¹⁵²Eu, ¹⁵⁴Eu, ¹³⁷Cs, ⁶⁰Co при такой геометрии измерения составили от 10 до 20 Бк/кг в зависимости от объема используемых навесок.

Анализ «горячих» частиц. Анализ «горячих» частиц на радионуклидный состав проводился в точечной геометрии. Этому способствовали их малые размеры и значительная активность. При такой геометрии измерения изучаемый образец размещался на расстоянии 5-10 см от верхнего торца детектора. Время замера составляло от 1 до 12 часов. Большая активность радиоизотопов в «горячих» частицах позволяла определять их не только с помощью коаксиальных ППД по высокоэнергетическим гамма-линиям, но И по линиям низкоэнергетического гамма-диапазона с помощью планарного HPGe детектора. Прежде всего, это относится к ²⁴¹Am (59,54 кэВ) и ¹⁵⁵Eu (105,3 кэВ). Для расчета активностей радиоизотопов, входящих в состав «горячих» и активных частиц, а также проб сверхмалого объема использовались образцовые спектрометрические гамма-источники (ОСГИ), по которым проводилась калибровка по эффективности спектрометрических трактов. ОСГИ и образцы замерялись в одной геометрии. Чувствительность определения радиоизотопов в такой геометрии составляла величину не хуже 1 Бк.

Анализ проб сверхмалого объема. Для определения гамма-излучающих радионуклидов в малых и сверхмалых навесках массой от 0.5 до 15 грамм использовался колодезный ППД. Благодаря большому активному объему (200 см³) и наличию колодца внутри активной области детектора, позволяющему проводить измерения в геометрии, приближенной к 4π , детектор характеризуется высокой эффективностью регистрации гамма-квантов в широком энергетическом диапазоне от 30 до 2000 кэВ. Конструктивно детектор относится к детекторам Р-

типа. Для подобных детекторов характерен максимум кривой эффективности регистрации для гамма-квантов с энергией в диапазоне 30–150 кэВ. При размещении пробы внутри колодца эффективность регистрации гамма-квантов с энергиями 59.54 кэВ (²⁴¹Am) и 105.3 кэВ (¹⁵⁵Eu) достигает 50 %. Таких показателей, безусловно, невозможно достичь при использовании обычных коаксиальных и планарных ППД.

Образец, засыпанный в специальную кювету, размещался для измерения внутри колодца детектора. Размеры колодца составляли: диаметр 21 мм, глубина 60 мм. Использование сверхмалых навесок для определения активностей радиоизотопов на уровне 0,01–0,1 Бк накладывает жесткие требования к фону измерительной установки. Для дополнительного снижения фона в низкоэнергетической области гамма-спектра (< 100 кэВ) помимо внешней Pb-W защиты применялась дополнительная защита из меди и кадмия, расположенная непосредственно вокруг измерительного блока детектора. Для уменьшения вклада фоновой составляющей, связанной с влиянием гамма-излучающих продуктов распада радона, детектор располагался в специальной камере с постоянной продувкой атмосферным воздухом, отбираемым с высоты 6 метров над поверхностью земли. Все эти мероприятия позволили снизить общий фон установки более чем на порядок по сравнению с обычной защитой. Время измерения единичного образца варьировалось от 1 до 24 часов. Высокая эффективность регистрации и комплексная защита от фонового излучения ПОЗВОЛИЛИ ПОЛУЧИТЬ чувствительность определения для всех изучаемых радионуклидов, включая ²⁴¹Am и ¹⁵⁵Eu, на уровне не хуже 0.01 Бк.

Определение форм нахождения радионуклидов. С целью изучения форм нахождения ¹³⁷Cs были проведен эксперимент по селективному растворению [Обухов и др., 1991; Павлоцкая и др., 1997] (аналитик И.В. Макарова), схема его проведения представлена в табл. 2.3.

При этом брали навеску почвы или донного осадка массой 50 г, помещали в полиэтиленовую емкость 1000 мл, заливали 500 мл H₂O или ацетатно-

аммонийным буфером (т:ж = 1:10), осторожно перемешивали и выдерживали 24 ч. при комнатной температуре, затем смесь снова перемешивали и фильтровали.

N⁰	Реагент	Условия	Фракция
1	H ₂ O	24 ч., 25°С, перемешивание	Водорастворимая
2	CH ₃ COOHNH ₄ pH=4,8	24 ч., 25°С, перемешивание	Обменная и легкорастворимая
3	1M HCl	2 ч, водяная баня перемешивание	Подвижная
4	1M HNO ₃	2 ч, водяная баня перемешивание	Кислоторастворимая
5	5M HNO ₃	2 ч, водяная баня перемешивание	Кислоторастворимая

Таблица 2.3. Схема проведения эксперимента по селективному растворению

Выщелачивание кислотами выполнялось иначе: 50 г почвы или донного осадка помещали в термостойкий стакан, заливали 100 мл кислотного раствора (т:ж = 1:2) м выдерживали на водяной бане 2 ч при периодическом помешивании, затем раствор фильтровали. Высушенные твердые остатки, полученные в результате выщелачивания растворов, сами растворы, а также исходный материал анализировали на содержание в них радионуклидов.

Фракционное разделение радионуклидов. С целью изучения распределения радионуклидов между компонентами поглощающего комплекса донных отложений был проведен эксперимент по фракционному разделению радионуклидов [Tessier at. al., 1979; Бондарева и др., 2005] (аналитик И.В. Макарова). Схема его проведения представлена в табл.2.4.

Фракционирование проводилось при соотношении образец: раствор = 1:10. Все жидкие фракции отфильтровывались через фильтр «синяя лента». Перед каждым следующим реагентом донные отложения дважды промывались дистиллированной водой при перемешивании и в стакане, и на фильтре. С фильтра донные отложения смывались следующим раствором реагента. Полученные растворы, твердые остатки, а также исходный материал анализировались на гамма-спектрометрах.

Таблица 2.4. Схема проведения эксперимента по фракционному разделению.

$\mathbb{N}_{\underline{0}}$	Реагент	Условия	Фракция
1	СН ₃ СООНNН ₄ (1 моль/л)	24 ч,	Обменная
	pH=7	перемешивание	
2	СН ₃ СООНNН ₄ (1 моль/л)	на ночь (8-10 ч),	Карбонаты
	+ HNO ₃ (1 моль/л)	перемешивание	
3	NH ₂ OH – HCl (0,2 моль/л)	3ч,	Оксиды и
	в СН ₃ СООН (25%)	перемешивание	гидроксиды
			Fe и Mn
4	$H_2O_2(35\%) + HNO_3$	3ч,	Органика
	(1 моль/л) до 0.05 моль/л	перемешивание	
		85° C	
5	1) NaOH (0,2 моль/л)	40 мин	Аморфные
	2) HNO ₃ (0,5 моль/л)	перемешивание	силикаты
		85° C	

Лабораторный эксперимент по выносу ¹³⁷Cs из растений. Для оценки миграционной способности ¹³⁷Cs, накопленного растениями, был проведен лабораторный эксперимент, в ходе которого 19 неозоленных образцов осоки помещались в дистиллированную воду на сроки от 0,5 часа до 19 суток. Периодически осуществлялось перемешивание. По окончании эксперимента вода сливалась. Полученные растворы фильтровались, упаривались и анализировались на содержание ¹³⁷Cs. Концентрации ¹³⁷Cs определялись также в высушенных остатках растений. Более подробно эксперимент представлен в главе, посвященной роли растительности в миграции ТРН.

Лабораторные эксперименты по растворению «горячих частиц». Для выявления характера поведения «горячих» частиц в природных условиях под воздействием воды был проведен ряд лабораторных экспериментов. Частицы помещались в колонки, заполненные образцами донных отложений, отобранных на фоновой территории, содержащие только ¹³⁷Cs на уровне фоновых выпадений. Подготовленные колонки подвергались воздействию дистиллированной водой в различных режимах (от застойных до слабо проточных). По окончании эксперимента колонки разрезались послойно (по 5 мм). Частицы изымались. Полученный материал высушивался и измерялся на содержание ТРН. Их собранной концентрации определялись также В BO время эксперимента фильтрованной воде.

Натурные эксперименты по растворению «горячих частиц». С целью изучения поведения «горячих» частиц в естественных условиях года был проведен натурный эксперимент. Подготовленные вышеуказанным способом колонки с частицами были заложены в почву на глубину 35 – 40 см в пойменном участке левого берега реки Енисей, расположенном в фоновом районе, выше по течению от места сброса ГХК. Две колонки располагались вертикально, одна – горизонтально. Через год колонки были извлечены. В лабораторных условиях каждая колонка послойно разрезалась, частицы изымались. Полученный материал высушивался и измерялся на содержание ¹³⁷Сs, результаты представлены в главе 5.

Исследования методами сканирующей электронной микроскопии (СЭМ). С целью изучения морфологии, фазового и химического состава «горячих» частиц был проведен ряд исследований с помощью методов СЭМ. Они проводились на электронном сканирующем микроскопе LEO1430VP с энергодисперсионным спектрометром «OXFORD» (аналитик к.г.-м.н. А.Т. Титов). Применяли различные режимы детектирования: режим вторичных электронов, позволяющий получить данные о морфологии рельефа; режим отраженных электронов или режим фазового контраста, который дает возможность получить картину распределения электронной плотности в исследуемом образце; режим характеристического рентгеновского излучения, позволяющий провести рентгеноспектральный микроанализ и получить данные по элементному составу образца.

Изучение минерального состава донных отложений. Минеральный состав донных отложений исследован рентгенофазовым анализом (метод порошковой дифрактометрии) на дифрактометре ДРОН-4, режим съемки 40кВ, 24 мА, медное излучение (Си-α) в лаборатории геологии кайнозоя, палеоклиматологии и минералогических индикаторов климата ИГМ СО РАН (аналитик Л.В. Мирошниченко).

Определение органического углерода (С_{орг}) в пробах донных отложений проведено по методике Тюрина [Воробьева, 1998] в Институте почвоведения и агрохимии СО РАН (аналитик Л.Д. Черепахина).

Определение основных породообразующих оксидов в донных отложениях выполнено рентгенофлуоресцентным анализом на рентгеновском спектрометре ARL-900-XP фирмы Applied Research Laboratories в лаборатории рентгеноспектральных методов анализа ИГМ СО РАН (аналитик Н.Г. Карманова) по общепринятой методике [Унифицированные..., 1979]. Диапазон определяемых содержаний и относительное стандартное отклонение (погрешность) для отдельных определяемых компонентов приведены в табл. 2.5.

Таблица 2.5. Характеристики для полного силикатного рентгенофлуоресцентного анализа

Компонент	Диапазон	определяемых	Относительное	стандартное
	содержаний, %		отклонение*, %	
Na ₂ O	0,04-15		28-3,5	
MgO	0,05-45		30-1,7	
Al ₂ O ₃	0,01-100		30-1,1	
SiO ₂	0,01-100		30-0,7	
P ₂ O ₅	0,01-2		21-4,3	

K ₂ O	0,01-10	30-3,5
CaO	0,01-100	30-1,2
TiO ₂	0,01-100	27-0,8
MnO	0,01-2	24-3,4
Fe ₂ O ₃	0,01-100	30-0,7
BaO	0,005-0,5	30-16
SO ₃	0,04-60	21-1
V ₂ O ₅	0,01-0,15	25-16
Cr ₂ O ₃	0,01-50	14-2,5
NiO	0,01-0,3	23-5
П.п.п.	0,2-50	11-1,4

*Для нижней и верхней границ определяемых содержаний

Глава 3. «Горячие» частицы в донных отложениях и аллювиальных почвах ближней зоны влияния Красноярского ГХК

3.1. Радиоизотопный состав «горячих» частиц по результатам гаммаспектрометрических исследований

Неравномерность распределения радионуклидов в донных отложениях и почвах поймы реки Енисей во многом обусловлена тем, что важной формой нахождения радионуклидов в аллювиальных отложениях ближней зоны являются «горячие» частицы (ГЧ). Некоторыми авторами [Гритченко и др., 2001], помимо «горячих» частиц 1-го рода, соответствующих общепринятому определению (горячие частицы – это частицы, обладающие активностью, на несколько превышающих удельную активность вмещающих отложений), порядков выделяются «горячие» частицы 2-го рода, активность которых на несколько порядков ниже, чем частиц 1-го рода. Как показано в ранее проведенных работах [Гритченко и др., 2001; Сухоруков и др., 2004], распространенность горячих» частиц 2-го рода намного выше, они могут составлять до 80% суммарной активности радионуклидов в почвах и донных отложениях. В данной работе рассматриваются только «горячие» частицы 1-го рода или просто «горячие» частицы.

Впервые соискателем «горячие» частицы были обнаружены на косе Атамановской в сентябре 2003 года в ходе полевых работ Института геологии и минералогии СО РАН. Было выделено три «горячих» частицы. Проведенный в лабораторных условиях анализ показал, что две из них являются моноизотопными – в них содержится только ¹³⁷Cs. Активности этих частиц составили 640 тыс. и 2.5 млн. Бк на частицу соответственно. Третья частица содержала несколько изотопов. Их активности составили: ¹³⁷Cs – 172 тыс. Бк, ¹³⁴Cs – 640 Бк, ¹⁵⁴Eu – 4510 Бк, ¹⁵⁵Eu – 1450 Бк, ⁶⁰Co – 147 Бк. Примечательным является отсутствие ¹⁵²Eu, повсеместно распространенного в аллювиальных отложениях ближней зоны влияния ГХК. Этот факт является доказательством реакторного (осколочного) происхождения частиц 1-го рода. ¹⁵²Еи в них отсутствует потому, что основная его часть имеет активационную природу и образуется за счет облучения нейтронами стабильного изотопа ¹⁵¹Еи.

В дальнейшем автором было отобрано несколько десятков ГЧ. Причем количество их обнаружений очень неравномерно в разные годы (рис. 3.1).

Рис. 3.1. Количество обнаруженных «горячих частиц» по годам. (в 2006, 2012, 2014, 2015 гг. поиск частиц не проводился)

«Горячие» частицы, в основном, обнаружены в верхнем слое почв, а массовое их распространение зафиксировано на косе Атамановской (площадью 0,0143 км²): например, только в 2007 году было обнаружено 4 частицы, что в разы превосходит принятое их распространение (~ 70 частиц на км²) [Болсуновский и др., 2000; Гритченко и др., 2001] и свидетельствуют о регулярном дополнительном поступлении частиц в ходе паводков.

В табл. 3.1 представлены результаты определения содержаний гаммаизлучающих радионуклидов в горячих частицах, выделенных соискателем в ходе полевых работ 2007–2010 гг. (схемы участков отбора на рис. 3.2), проводившихся коллективом сотрудников Лаборатории геохимии благородных и редких элементов и экогеохимии ИГМ СО РАН в 2007-2010 гг.

Рис. 3.2. Участки поймы р. Енисей, на которых были обнаружены «горячие» частицы. (а – коса Атамановская, б – остров Атамановский, в – устье реки Большая Тель, г – остров Березовый, д – Балчуговская протока).

Приведенные в табл. 3.1 данные показывают, что из 50 частиц и их фрагментов 23 оказались моноизотопными. Из них 21 частицы содержат только 137 Cs, а две (Gch-1 и ГЧ08-06) – только 60 Co. Монокобальтовые частицы обнаружены впервые за все время наблюдения. В трех частицах (Gch-2-2, ГЧ10-04-3 и ГЧ10-04-5) помимо 137 Cs присутствует 241 Am. Все остальные частицы являются полиизотопными и содержат в различных сочетаниях: 154 Eu, 155 Eu, 134 Cs, 60 Co, 241 Am, а 8 из них и короткоживущий 239 Np. Частицы с 239 Np обнаружены на косе Атамановской, острове Атамановском и на правом берегу Балчуговской протоки. Активационный изотоп 152 Eu не зафиксирован ни в одной частице.

Таблица 3.1. Радионуклидный состав «горячих» частиц из почв ближней зоны влияния ГХК (отбор 2007–2010 гг.)

Maara arfana	Время	Номер			A	ктивность	, Бк		
Meero oroopa	отбора	частицы	¹⁵⁴ Eu	¹⁵⁵ Eu	^{134}Cs	¹³⁷ Cs	⁶⁰ Co	²⁴¹ Am	²³⁹ Np
Коса Атамановская	Сентябрь 2007 г.	Gch-1					32300		
Коса Атамановская	Сентябрь 2007 г.	Gch-2-1	465	160	27	22170	12	1115	236
Коса Атамановская	Сентябрь 2007 г.	Gch2-2				104600		15	
Коса Атамановская	Сентябрь 2007 г.	Gch4/1				8500000			
Балчуговская протока	Сентябрь 2007 г.	Gch5	3080	849	148	102600	88	91	
Балчуговская протока	Сентябрь 2007 г.	Gch-6	170	51	9	14070	10	809	91
Балчуговская протока	Сентябрь 2007 г.	Gch7	1402	417	64	45100	50	36	
Балчуговская протока	Сентябрь 2007 г.	Gch8	65			49930	7		
Остров Березовый	Сентябрь 2007 г.	Gch9				217000			
Устье р. Большая Тель	Сентябрь 2007 г.	Gch10	137		40	59640	5		

Остров Атамановский	Сентябрь 2007 г.	Gch11	319			425900	104	1571	
Остров Атамановский	Сентябрь 2007 г.	Gch12	2040	588	110	79130	51		
Остров Атамановский	Сентябрь 2007 г.	Gch13/1	272	81	16	11440	13	5	
Остров Атамановский	Сентябрь 2007 г.	Gch13-2	383	100	27	16410	17	11	
Остров Атамановский	Сентябрь 2007 г.	Gch13-3	860	230	50	36180	33	21	
Остров Атамановский	Сентябрь 2007 г.	Gch14	232	125		29210	11	2650	190
Коса Атамановская	Сентябрь 2008 г.	ГЧ08-01				2324000			
Коса Атамановская	Сентябрь 2008 г.	ГЧ08-02				242000			
Остров Атамановский	Сентябрь 2008 г.	ГЧ08-03				135500			
Балчуговская протока	Сентябрь 2008 г.	ГЧ08-04	1305	620	37	36880	32		
Остров Березовый	Сентябрь 2008 г.	ГЧ08-05				43340			
Остров Березовый	Сентябрь 2008 г.	ГЧ08-06					46440		
Устье р. Большая Тель	Сентябрь 2009 г.	ГЧ09-01				218900			
Устье р. Большая Тель	Сентябрь 2009 г.	ГЧ09-02	1424	283	37	52790	36	65	
Остров Березовый	Сентябрь 2009 г.	ГЧ09-03				479300			
Остров Березовый	Сентябрь 2009 г.	ГЧ09-04	1537	406	36	49390	33	55	
Коса Атамановская	Сентябрь 2009 г.	ГЧ09-05				1592000			
Коса Атамановская	Сентябрь 2009 г.	ГЧ09-06	4071	2463	28	235100	186	11800	3130
Коса	Сентябрь	ГЧ09-07				78190			

Атамановская	2009 г.								
Коса	Сентябрь	ГЧ09-08				36000			
Атамановская	2009 г.								
Коса	Сентябрь	ГЧ09-09	538	145	28	49360	14	1163	152
Атамановская	2009 г.	1 109 09	550	110	20	17500	11	1105	102
Коса	Сентябрь	FU00 10				70140			
Атамановская	2009 г.	1 909-10				70140			
Остров	Сентябрь	ГЧ10-01	23			8250		9	
Березовый	2010 г.	1 110 01	25			0250			
Остров	Сентябрь					60452			
Березовый	2010	1 910-02				00432			
Остров	Сентябрь	FU10_03				123113			
Березовый	2010	1 110-03				123113			
Остров	Сентябрь	ГЧ10-				760764			
Березовый	2010	04-1				/09/04			
Остров	Сентябрь	ГЧ10-				16404			
Березовый	2010	04-2				10494			
Остров	Сентябрь	ГЧ10-				00002			
Березовый	2010	04-3				90803		66	
Остров	Сентябрь	ГЧ10-				55720			
Березовый	2010	04-4				55739			
Остров	Сентябрь	ГЧ10-				10072			
Березовый	2010	04-5				10863			
Балчуговская	Сентябрь	FII10.05				15770		265	
протока	2010	1 910-03				43778		203	
Балчуговская	Сентябрь	FU10.06	303	110	51	32610	2	258	127
протока	2010	1 110-00	575	110	51	52010	2	230	127
Балчуговская	Сентябрь	FU10 07	2207	176	16	30080	70	65	
протока	2010	1 110-07	2307	470	10	30000	70	05	
Коса	Сентябрь	FU10 08							
Атамановская	2010	1 -110-08							
Коса	Сентябрь	ГЧ10-09	410	78	7	36420	18	3479	82
Атамановская	2010	1 110 05	410	70	/	50420	10	5477	02
Коса	Сентябрь	ГЧ10-10				96314			
Атамановская	2010	1 110 10				20211			
Коса	Сентябрь	ГЧ10-11	395	221		42250	8	558	312

Атамановская	2010								
Остров	Сентябрь	ГЧ10-12				1351330			
Атамановский	2010	1 110 12				1001000			
Устье р.	Сентябрь	ГЧ10-13	2733	611	43	100100	56	88	
Большая Тель	2010	1 110 15	2155	011	-13	100100	50	00	
Устье р.	Сентябрь	ГЧ10-14			6	78610			
Большая Тель	2010	1 110-14			0	70010			

Примечания: пределы обнаружения для всех изотопов составляют величину не хуже 5 Бк. Относительная ошибка определения по критерию 2s для ¹³⁷Cs и ¹⁵⁴Eu не превышает $\pm 10\%$, для ¹³⁴Cs, ¹⁵⁵Eu, 60Co (кроме Gch-1 и ГЧ08-06), ²⁴¹Am и ²⁴³Cm - ± 15 -20%.

3.2. Результаты сканирующей электронной микроскопии

Детальное изучение некоторых «горячих» частиц, представленных в табл. 3.1, проводилось методами сканирующей электронной микроскопии (СЭМ). На рис. 3.3 приведены фотографии СЭМ, характеризующие внешний вид и геометрические размеры изученных «горячих» частиц, которые колеблются от 160 мкм (Gch-8) до 1000 мкм (Gch-13/3). Условно можно выделить «монолитные» частицы (Gch-1, Gch-2-2, Gch-8, Gch-9, Gch-11, Gch-13/1, Gch-13/2), частицы, имеющие рыхлую структуру (Gch-5, Gch-6, Gch-7, Gch-10, Gch-14), и микроконгломераты (Gch-12, Gch-13/3).

Для некоторых частиц проведено более детальное исследование с целью выяснения их состава и природы. На рис. 3.4 и 3.5 представлены фотографии Gch-6. обратно-рассеянных частицы снятые В режиме электронов, пространственного распределения некоторых элементов по площади сканирования выделенной области частицы и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках.

Яркие, светлые области на изображениях частиц Gch-6 (рис. 3.4, 3.5) и Gch-14 (рис. 3.6, 3.7), полученные в режиме обратно-рассеяных электронов, соответствуют участкам, материал которых включает значительные количества химических элементов с большими атомными номерами. В нашем случае, это, предположительно, уран. И действительно, результаты сканирования выделенных областей частиц показывают полное совпадение пространственного распределения урана по площади со светлыми областями.

Рис. 3.3. Внешние характеристики «горячих» частиц р. Енисей по данным сканирующей электронной микроскопии.

Рис. 3.4. Образы «горячей» частицы Gch-6, полученные в режиме обратнорассеянных электронов и пространственное распределение некоторых элементов по площади сканирования выделенной области частицы по данным СЭМ.

Рис. 3.5. Образ выделенной области «горячей» частицы Gch-6, полученный в режиме обратно-рассеянных электронов и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках.

Таблица 3.2. Элементный состав (в %) материала «горячей» частицы Gch-6 в выбранных точках по данным микрозондового анализа

Точка	C	0	Al	Si	Р	S	Ca	Fe	U	Total
1	5.22	19.62							75.16	100
2	7.43	17.53							75.04	100
3	7.72	22.41		1.04					68.83	100
4	65.34	25.33	1.52	0.59	0.52	0.67	0.66	1.65	3.73	100
5	88.23	11.4		0.37						100

Микрозондовый анализ частицы Gch-6 в пяти точках (номера спектров на рис. 3.5 соответствуют номерам точек опробования) показывает большое содержание урана в точках 1, 2 и 3, выбранных на светлых участках. В точке 4 урана мало, а в точке 5, взятой за пределами светлой аномалии, он вообще не обнаруживается. Из результатов расчета вещественного состава исследуемого полученных материала, ПО данным энерго-дисперсионного анализа И приведенных в табл. 3.2, видно, что в точках 1-3 состав материала частицы определяется в основном ураном и представляет собой, по-видимому, окись урана. В точках 4 и 5 основным элементом матрицы является углерод, что говорит о графитовой природе «горячей» частицы Gch-6.

50 mkm

Рис. 3.6. Внешний вид «горячей» частицы Gch-14 (а), образ, полученный в режиме обратно-рассеянных электронов (б) и (в) и пространственное распределение урана (г) в выделенной области частицы по данным СЭМ.

Рис. 3.7. Образ выделенной области «горячей» частицы Gch-14, полученный в обратно-рассеянных электронов и энерго-дисперсионные спектры, режиме характеризующие элементный состав материала частицы в выбранных точках.

Точка	0	Na	Mg	Al	Si	Р	S	K	Ca	Fe	U	Total
1	26.98			0.76						1.5	70.76	100
2	18.87			1.26							79.87	100
3	28.19			2.79	0.61					0.78	67.63	100
4	52.21	0.72	1.49	5.75	31.99		0.52	0.74	1.92	4.65		100
5	49.62		0.52	24.13	8.54	1.56	1.67	0.91	1.45	9.46	2.13	100

Таблица 3.3. Элементный состав (в %) материала «горячей» частицы Gch-14 в выбранных точках по данным микрозондового анализа

Аналогично, микрозондовый анализ частицы Gch-14 (рис. 3.6, 3.7) показывает большое содержание урана также на светлых участках в точках 1, 2 и 3. В точке 4 уран не обнаруживается, а точке 5 его мало. По результатам расчета вещественного состава материала частицы в выбранных точках (табл. 3.3) видно, что в точках 1-3 основу матрицы составляет, как и в случае горячей частицы Gch-6, уран. В точках 4 и 5 основными элементами матрицы являются кремний и алюминий. Соответственно, частица Gch-14 представляет собой алюмосиликатную матрицу с внедренными зернами окиси урана.

Принципиально иным оказался состав монокобальтовой частицы Gch1. На рис.3.8 представлены фотографии частицы, снятые в режиме обратно-рассеянных электронов, и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках.

Поверхность частицы плоская и практически однородная. Во всех трех опробованных точках присутствует углерод и ни в одной не обнаружен уран (см. табл. 3.4). В составе небольших светлых вкраплений (точка 1 на рис. 3.8) и матрицы (точка 2) основным элементом является железо. В меньших количествах присутствуют хром, хлор и, в первом случае, никель. В точке 3 железа и хрома нет, основными компонентами (помимо C) являются хлор, азот, кислород и никель.

Результаты изучения методами СЭМ других ГЧ представлены в приложении (рис. 1–8, табл. 6–13).

Рис.3.8. Внешний вид горячей частицы Gch-1(а), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области «горячей» частицы Gch-1, полученный в режиме обратно-рассеянных электронов (б) и энергодисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).

Таблица 3.4. Элементный состав (в %) материала «горячей» частицы Gch-1 в выбранных точках по данным микрозондового анализа

Точка	С	Ν	0	Si	Cl	Cr	Fe	Ni	Cu	Pb	Total
1	31.15		15.99		2.60	8.49	36.76	4.30			100
2	24.77		33.97		8.49	5.86	26.92				100
3	43.16	16.00	7.52	0.72	30.45			2.87	0		100

Выводы:

1. Два факта: отсутствие активационного изотопа ¹⁵²Eu и обнаружение соединений урана (UO₂) свидетельствуют о реакторном (топливном) происхождении, по крайней мере, части «горячих» частиц.

2. Нахождение «горячих» частиц в верхнем слое почв, массовое их появление после сильных паводков 2006-2007 гг., обнаружение частиц в местах, где их не находили ранее, появление монокобальтовых частиц, которые ранее так же не обнаруживались, свидетельствует о продолжающемся поступлении горячих частиц в экосистему Енисея.

Глава 4. Техногенные радионуклиды в донных отложениях и аллювиальных почвах островов и правобережья ближней зоны влияния ГХК: формы нахождения и миграционная способность

4.1. Проблема обоснования фона

При любом геохимическом исследовании важным моментом является оценка фоновой компоненты и учет ее вклада при анализе полученных данных. Основным источником поступления техногенных радионуклидов в окружающую среду поймы Енисея являются сбросы вод из систем охлаждения реакторов, вод радиохимического производства и имевшие место в прошлом аварийные выбросы. Кроме того, некоторый вклад в радиоактивное загрязнение аллювиальных отложений в зоне влияния комбината, несомненно, вносят глобальные радиоактивные выпадения, источником которых служили проводимые в прошлом наземные и атмосферные ядерные взрывы на испытательных полигонах, а также аварии на предприятиях ядерно-топливного цикла. С целью определения размера вклада глобальных выпадений (фоновой компоненты) в ближней зоне ГХК, был проведен отбор проб донных отложений и аллювиальных почв на территории, расположенной выше по течению от точек сброса, и, следовательно, не подверженной влиянию комбината (район д. Шивера, рис. 2.2e). Поскольку изотопы Eu и ⁶⁰Co в глобальных выпадениях отсутствуют, в пробах был обнаружен только ¹³⁷Cs. В донных отложениях его содержание составило, в среднем, в аллювиальных почвах 9 Бк/кг, в донных отложениях – 12 Бк/кг

4.2. Техногенные радионуклиды в донных отложениях косы Атамановской

Донные отложения широко распространены в долине реки Енисей. Они присутствуют в многочисленных старичных водоемах и протоках, а также в ухвостьях островов и теневых частях выступов берегов реки и островов (мощность их колеблется от нескольких до десятков сантиметров). По литологическому и гранулометрическому составу и количеству органического материала они сильно различаются в зависимости от места их накопления, но в большинстве случаев представлены гомогенной массой гумусированного, пелитового, суглистого и супесчаного гранулометрического состава с прослоями связного и рыхлого песка и включениями растительных остатков, корней, иногда гальки.

Донные отложения главная депонирующая среда наряду С аллювиальными почвами для техногенных радионуклидов, поступивших и продолжающих поступать в Енисей в результате деятельности ГХК. Это зависит не только от того, что общий объем осадков превосходит объем затопляемых аллювиальных почв береговой зоны и островов, но и от того, что донные осадки находятся в постоянном контакте с водами, переносящими радионуклиды, в том числе и сорбированные на взвесях, из которых они в основном и формируются. В почвах же островов и береговых зон радионуклиды накапливаются только во время паводков. Правда при этом надо иметь в виду, что в паводки почвы загрязняются не только за счет присутствующих в воде радионуклидов, но и за счет вторичного привноса в составе материала донных осадков. Сорбция радионуклидов на переносимых рекой взвесях и ранее отложившихся частицах в верхних слоях осадков – это доминирующий фактор миграции и накопления радиоизотопов в донных отложениях [Носов и др., 1993, 1997; Вакуловский и др., 2008]. Важное значение. особенно В ближней зоне. для накопления радионуклидов в донных отложениях имеет форма поступления их в реку. Заметная доля радионуклидов в донных осадках ближней зоны присутствует в виде тонкодисперсных активных частиц разной природы, которые, вероятно, встречаются и в осадках дальней зоны. Донные осадки легче и в больших масштабах, чем обычно задернованные аллювиальные почвы островов и береговой зоны, вовлекаются в многократное переотложение. Наиболее подвержены этому верхние нелитифицированные их горизонты, а в высокие паводки мигрирует значительная их доля. В дальней и реже (после постройки

ГЭС) в ближней зоне донные осадки и почвы прибрежной полосы перемещаются льдом во время ледохода. Лед не только эродирует их, но и переносит вмороженные в него прибрежные донные осадки и почвы [Сухоруков и др., 2004].

В сентябре 2003 года у правого берега косы Атамановской, напротив центральной ее части, были отобраны три колонки донных отложений. (Е02-1, Е02-2 и Е03, рис. 4.1).

Рис. 4.1. Схема отбора проб донных отложений

Ранее в данном месте отбор проб донного осадка не проводился. Вертикальное распределение ТРН в колонках показано на рис. 4.2. Основной вклад в общую активность вносят изотопы европия (главным образом, ¹⁵²Eu). Такое распределение радионуклидов, как уже отмечалось, является характерным аллювиальных образований для ближней зоны влияния ГХК. Средняя концентрация ¹⁵²Еи составляет 1800 Бк/кг (максимальное значение – 10650 Бк/кг, проба Е02-2ДОЗ), ¹⁵⁴Еи – 410 Бк/кг (максимальное значение – 3000 Бк/кг, проба E02-2ДОЗ), ¹⁵⁵Eu – 75 Бк/кг. Наблюдается закономерность в изменении концентраций изотопов европия, что обусловлено, по всей видимости, наличием общего носителя активности.

б)

B)

Рис.4.2. Вертикальное распределение радионуклидов в донных отложениях, отобранных в районе косы Атамановской: а) колонка E02-1; б) колонка E02-2; в) колонка E03).

Средняя концентрация ¹³⁷Cs составляет 810 Бк/кг, при максимальном значении 7300 Бк/кг в пробе E02-1ДО20. Средние концентрации ⁶⁰Co – 570 Бк/кг. Максимальное значение зафиксировано в пробе E02-1ДО18 – 1800 Бк/кг.

Таким образом, донные отложения, отобранные в районе косы Атамановской, имеют тот же радионуклидный состав, который характерен для аллювиальных отложений других островов, расположенных в ближней зоне влияния Красноярского ГХК. Наблюдаемая неравномерность распределения радионуклидов подтверждает сделанный ранее вывод [Гритченко и др., 2001; Сухоруков и др., 2004], о широком распространении в аллювиальных отложениях. ближней зоны влияния ГХК активных частиц.

В нескольких горизонтах колонок E02-1 и E02-2 полным силикатным анализом было проведено определение содержаний основных породообразующих элементов. Результаты представлены в табл. 4.1. Химический состав донных

отложений в обеих колонках практически не различается и не изменяется с глубиной. Основным компонентом является оксид кремния SiO_2 , его содержания варьируют в пределах 67–70%. Вторым по содержанию является оксид алюминия Al_2O_3 , (12–13%). Содержание оксида кальция CaO составляет 2,4–3,6%. Потери при прокаливании составили 1,9–5,3%.

Полученные результаты по содержанию основных оксидов близки к результатам изучения донных отложений ближней зоны влияния ГХК, представленным в работах [Bondareva, 2012, Korobova at. al. 2014]. Исключением является более высокие значения потерь при прокаливании, приведенные во второй указанной работе, которые составили 9–19%. По всей видимости, это обусловлено тем, что в составе ранее изученных образцов, отобранных в Балчуговской протоке, которая характеризуется иным, более застойным гидрологическим режимом, содержалось больше органического материала (растительных остатков).

Проба	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	BaO	SO ₃	V_2O_5	Cr ₂ O ₃	NiO	LOI	SUM
Е02- 1До10	69,88	0,59	12,47	3,94	0,06	1,87	2,83	2,94	1,89	0,13	0,07	<0,03	0,01	0,01	0,01	3,18	99,88
Е02- 1До12	70,33	0,69	12,13	4,29	0,08	1,90	2,96	2,93	1,85	0,12	0,05	<0,03	0,02	0,02	0,01	1,88	99,23
Е02- 1До16	67,34	0,63	12,96	4,18	0,06	1,97	2,69	2,83	1,94	0,14	0,06	<0,03	0,02	0,01	0,01	5,26	100,09
Е02- 1До21	66,76	0,72	13,08	4,35	0,06	2,08	2,89	2,82	1,87	0,15	0,07	<0,03	0,02	0,01	0,01	5,16	100,06
Е02- 1До26	70,12	0,45	12,09	2,79	0,05	1,45	2,39	2,84	2,00	0,11	0,06	<0,03	0,01	0,01	0,01	5,31	99,70
Е02- 2Доб	69,35	0,58	12,78	3,93	0,06	1,85	2,74	3,02	2,00	0,14	0,06	<0,03	0,01	0,01	0,01	3,11	99,66
Е02- 2До10	70,04	0,56	12,97	3,78	0,06	1,86	2,98	3,15	1,98	0,13	0,06	0,05	0,01	0,01	0,01	2,46	100,12
Е02- 2До12	66,47	0,94	12,85	5,77	0,09	2,33	3,64	2,95	1,78	0,17	0,06	0,09	0,02	0,02	0,01	2,91	100,13
Е02- 2До16	70,43	0,59	12,77	3,80	0,06	1,82	2,73	3,03	2,00	0,12	0,07	<0,03	0,01	0,01	0,01	2,61	100,08
Е02- 2До20	70,56	0,64	12,59	4,01	0,07	1,84	2,76	3,04	1,99	0,11	0,07	<0,03	0,02	0,01	<0,01	2,34	100,07
Е02- 2До21	69,79	0,82	12,30	4,94	0,09	1,87	2,88	2,95	1,90	0,11	0,06	<0,03	0,02	0,02	0,01	2,33	100,09

Таблица 4.1. Средний химический состав донных отложений (колонки Е02-1 и Е02-2)

Для определения минерального состава донных отложений был проведен рентгенофазовый анализ некоторых слоев разреза из колонок E02-1 и E02-2. Результаты представлены на рис. 4.3. и рис. 4.4.

Рис. 4.3. Минеральный состав донных отложений (колонка E02-1) на разных глубинах (6, 12 и 21 см) по результатам рентгенофазового анализа (РФА).

Рис. 4.4. Минеральный состав донных отложений (колонка E02-2) на разных глубинах (10, 16 и 26 см) по результатам рентгенофазового анализа (РФА).
Основными минералами, его слагающими, являются кварц, плагиоклаз, калиевый полевой шпат. Содержатся небольшие количества амфибола, хлорита, слюды. Минеральный состав отложений не меняется с глубиной и является типичным для речных отложений в западносибирском регионе. В пробах из колонки E02-1 было определено содержание органического углерода. Значения для слоев До6, До12 и До21 составили 0,56, 0,67 и 0,9% соответственно.

4.3. Содержание техногенных радионуклидов в химических фракциях донных отложений

Подвижность техногенных радионуклидов (ТРН), депонированных в донных отложениях и аллювиальных почвах, зависит от прочности их фиксации, что, в свою очередь, определяется распределением их между компонентами поглощающего комплекса.

Для определения форм нахождения ТРН в донных отложениях косы Атамановской был проведен эксперимент по фракционному разделению радионуклидов по методике, предложенной в работах [Tessier et al., 1979; Бондарева и др., 2005] и подробно описанной в главе 2. Для этого были отобраны 7 проб из колонки E02-1. Результаты эксперимента для ¹⁵²Eu, ¹³⁷Cs и ⁶⁰Co представлены на рис. 4.5, 4.6 и 4.7 соответственно.

Наличие обменной фракции ¹⁵²Eu отмечено в трех пробах, причем, если в двух из них его содержание составляет первые проценты, в пробе E02-1До12 оно возрастает до 20%. Доля карбонатной фракции также невелика и составляет, в среднем, 7,3 % при колебаниях от 3,2 до 11,7 %. Оксиды Fe и Mn (в среднем 26%) и органическая фракция (в среднем, 51%, с максимумом до 78%) присутствуют во всех изученных пробах и являются основными носителями ¹⁵²Eu. В двух пробах вся активность европия связана с этими двумя фракциями. В аморфных силикатах и твердом остатке содержится до 35% ¹⁵²Eu.

Рис. 4.5. Результаты фракционного разделения ¹⁵²Eu (колонка E02-1, коса Атамановская).

Количество обменной фракции ¹³⁷Cs примерно одинаково для шести проб (колеблется в пределах 14 – 21%), и лишь в одном случае (проба E02-1ДО12) достигает 51,7%. Карбонатная фракции ¹³⁷Cs приурочена к средним и нижним частям колонки и составляет, в среднем, 6,9 % (3,5 – 7,6%). Наличие радиоцезия в оксидах и гидроксидах Fe и Mn установлено только в одной пробе в количестве 0,8%. С органической фракцией связано 11,5% (от 3,2 до 20, 7%). С нерастворимыми аморфными силикатами связано, в среднем, 10% активности ¹³⁷Cs. В твердом остатке содержится основная часть ¹³⁷Cs, среднее содержание составляет 56% (максимальное и минимальное значения 28,5 и 75 %).

Распределение ⁶⁰Со характеризуется ярко выраженной неравномерностью для разных исследованных проб с чередованием вниз по колонке (рис. 4.7). Так, в одних пробах (Е02-1До6, Е02-1До12, Е02-1До20 иЕ02-1До25) представлены все фракции в примерно равных соотношениях (15–20%). В других (Е02-1До10, иЕ02-1До16, иЕ02-1До21) резко преобладает ⁶⁰Со, связанный с твердым остатком (75 – 95%).

74

Рис. 4.6. Результаты фракционного разделения ¹³⁷Сs (колонка E02-1, коса Атамановская).

Рис. 4.7. Результаты фракционного разделения ⁶⁰Со (колонка E02-1, коса Атамановская).

На основании полученных в результате эксперимента по фракционному разделению данных можно сделать выводы о возможности выноса техногенных радионуклидов из донных осадков косы Атамановской. Согласно работе [Бондарева и др., 2005] к подвижным формам относятся обменная, карбонатная

форма и оксиды и гидроксиды Fe и Mn. К слабо-подвижным – связанные с органикой и аморфные силикаты. Вместе с тем принято считать, что оксиды и гидроксиды железа И марганца становятся подвижными только В восстановительных условиях, a В рассматриваемом случае условия окислительные. Поэтому в данной работе к подвижным формам отнесены обменная и карбонатная фракции, условно-подвижным – три остальные.

Таким образом. В естественных условиях подвижных формах В присутствуют, в среднем, 16% ¹⁵²Eu, 22% ¹³⁷Cs и 15% ⁶⁰Co. Радионуклиды, приуроченные к остальным фракциям поглощающего комплекса донных естественных условиях отсутствии катастрофических отложений, В при физико-химических изменений условий В раствор не переходят. Иx перераспределение может происходить только при механическом переносе вешества.

4.4. Вклад «горячих» частиц во вторичное перераспределение радионуклидов

Важнейшим свойством, во многом определяющим радиоэкологическую опасность «горячих» частиц, помимо высокой удельной активности входящих в ее состав радионуклидов, является потенциальная возможность выноса их при выветривании за пределы области локализации частицы в окружающую среду. Считается, что частицы являются биологически инертными образованиями, хотя, и могут аккумулироваться различными фильтрующими организмами (пассивное поглощение).

Однако, проявление механизмов ремобилизации (десорбция, растворение и процессы дисперсии) может приводить к изменению форм нахождения ассоциированных радионуклидов и переходу их в биологически доступные формы [Salbu et. al., 2004; Salbu, 2007]. Эффективность таких процессов рассматривается А. Булгаковым с соавторами на примере растворения чернобыльских «горячих» частиц [Кашпаров и др., 1997, 2000, Булгаков и др.,

76

2005]. Публикаций об изучении растворимости енисейских «горячих» частиц в открытой печати найти не удалось.

4.5. Результаты лабораторного эксперимента по растворению «горячих» частиц

Для выявления характера поведения енисейских «горячих» частиц в природных условиях под воздействием воды был проведен лабораторный эксперимент с двумя частицами: цезиевой ГЧ08-2 и полиизотопной ГЧ08-4 (см. табл. 3.1). Схема проведения эксперимента показана на рис. 4.8.

Рис. 4.8. Схема проведения лабораторного эксперимента по растворению «горячих» частиц в проточном режиме: А – ГЧ08-02; Б – ГЧ08-04.

Частицы помещались в колонки, заполненные образцами типичных отобранных енисейских почв, В фоновых районах. Из аллювиальных искусственных гамма-излучающих радионуклидов в таких почвах в небольших количествах присутствовал только ¹³⁷Cs, что учитывалось при проведении расчетов. Подготовленные колонки подвергались воздействию дистиллированной водой в различных режимах (от застойных до слабо проточных). Во всех случаях наблюдались процессы растворения и выноса доминирующего радионуклида ¹³⁷Сs за пределы области локализации частиц. Эксперимент проводился со следующими параметрами:

Высота колонки для частицы ГЧ08-2 составляла 15 см, для частицы ГЧ08-4 – 16 см. Диаметр колонок 1.5 см. Частица ГЧ08-2 помещена в горизонт 1.3-1.6 см (слой 02-05), частица ГЧ08-4– 2.2-2.5 см (04-08).

- Режим взаимодействия с водой – слабопроточный. Вода проходила через колонку за счет процесса естественной фильтрации.

- Длительность эксперимента – 11 дней. За этот период через колонку с частицей ГЧ08-2 прошло 750 мл воды, через колонку с частицей ГЧ08-4 – 720 мл.

- По окончании эксперимента колонки разрезались послойно (по 3-4 мм). Частицы изымались. Полученный материал высушивался и измерялся на содержание ¹³⁷Cs.

- Собранная во время эксперимента фильтрованная вода упаривалась до объема 5-7 мл и также измерялась на содержание ¹³⁷Cs. Результаты эксперимента представлены на рис. 4.9.

Анализ результатов эксперимента показывает на значительный вынос ¹³⁷Cs за пределы областей локализации частиц. В случае полиизотопной частицы ГЧ08-4 вынос ¹³⁷Cs идет более активно, а его проникновение происходит на большую глубину. Наивысшие концентрации ¹³⁷Cs, сорбированного после растворения, соответствуют горизонтам, в которых находились «горячие» частицы. Интересно, что значимые концентрации ¹³⁷Cs наблюдаются и в вышележащих горизонтах. Это явно указывает на наличие процессов диффузии ¹³⁷Cs от места локализации частиц в окружающий материал. Растворенный ¹³⁷Cs фиксируется и в фильтрованной воде в количествах 0.15 Бк/л для частицы ГЧ08-2 и 0.22 Бк/л для частицы ГЧ08-4, что также свидетельствует о его значительной подвижности с переходом в растворенное состояние. В ходе эксперимента за 11 дней из частицы ГЧ08-2 было вынесено порядка 38.7 Бк, а из частицы ГЧ08-4 – 159 Бк ¹³⁷Cs. Сопоставление этих величин с исходными активностями (табл. 3.1) говорит о значительном времени жизни частиц во влажных условиях естественного залегания (> 10 лет).

Рис. 4.9. Результаты лабораторного эксперимента по растворению «горячих» частиц (А -- моноизотопная, Б - полиизотопная).

Для выявления форм нахождения ¹³⁷Cs во вновь сформированном в ходе эксперимента загрязненном материале, проведено фракционное разделение радионуклидов в слоях, из которых были извлечены частицы, по методике [Tessier at. al., 1979; Бондарева и др., 2005]. Результаты показаны на рис. 4.10

Рис. 4.10. Результаты эксперимента по фракционному разделению ¹³⁷Cs в загрязненном в ходе эксперимента материале.

Значительная часть ¹³⁷Cs (35 и 45% для моноцезиевой и полиизотопной частиц соответственно) находится в обменной фракции, что согласуется с его высокой подвижностью, проявленной в ходе эксперимента, и значительно превышает значения, полученные в ходе эксперимента с донными отложениями (рис. 4.6). Около 5% содержится в подвижной форме, связанной с карбонатами. В твердом остатке находится 25 и 15 процентов ¹³⁷Cs, что также существенно отличается от результатов ранее проведенного эксперимента.

4.6. Натурный эксперимент по растворению «горячих» частиц

С целью изучения поведения ГЧ в естественных условиях в сентябре 2009 года был начат натурный эксперимент с тремя частицами: моноцезиевыми ГЧ08-01, ГЧ08-02, полиизотопной ГЧ08-04 (табл. 3.1). Частицы были помещены в колонки, заполненные образцами фоновых аллювиальных почв, и заложены на глубину 35 – 40 см в пойменном участке левого берега реки Енисей у д. Шивера в фоновом районе (рис.2.2е). Схема расположения частиц указана на рис. 4.11. Две колонки были размещены вертикально (моноцезиевая и полиизотопная), одна – горизонтально (моноцезиевая).

80

Рис. 4.11. Схема проведения натурного эксперимента по растворению «горячих» частиц. Черным прямоугольником отмечены слои, в которые помещались ГЧ (А и Б – моноизотопные, В – полиизотопная).

В сентябре 2010 года колонки были извлечены. Дальнейшие этапы эксперимента проводились в лабораторных условиях. Каждая колонка разрезалась на слои 1 см толщиной. Частицы изымались. Полученный материал высушивался и измерялся на содержание ¹³⁷Cs. Результаты измерений приведены на рис. 4.12.

Колонка с частицей ГЧ09-01 в ходе эксперимента располагалась горизонтально. Частица изъята из слоя 01-10, с ним и связана наибольшая активность 137 Cs – около 380 тыс. Бк/кг. Вниз до конца колонки (в слоях 01-11 – 01-18) также содержатся высокие концентрации 137 Cs, причем количество его постепенно снижается с 675 до 160 Бк/кг. В двух слоях, расположенных выше (01-9 и 01-8), содержания цезия также повышены, причем резко снижаются – 27,4 тыс. и 45 Бк/кг соответственно. Далее вверх по колонке содержание 137 Cs в слоях не отличается от начального.

Колонка с ГЧ09-02 располагалась вертикально. Частица была изъята из слоя 02-10, активность ¹³⁷Cs составила 53,6 тыс. Бк/кг. Повышение содержания отмечены в слоях 02-11 – 02-14 (значения снижаются с 350 Бк/кг до 25 Бк/кг). Также повышено содержание ¹³⁷Cs в слое 02-9 – до 30 Бк/кг. Во всех остальных

слоях, и вверх и вниз по колонке, значения активности ¹³⁷Cs составляют фоновые значения (12 Бк/кг).

Рис. 4.12. Результаты натурного эксперимента по растворению «горячих» частиц.

Колонка с полиизотопной частицей ГЧ09-04 также располагалась вертикально. Частица изъята из слоя 04-9. Содержание ¹³⁷Cs в этом слое составило 35,4 тыс. Бк/кг. Несколько повышены значения активности в вышележащем слое (04-8) – до 30 Бк/кг. Во всей остальной колонке уровень содержания ¹³⁷Cs не изменился.

Таким образом, растворение ГЧ происходит во всех трех случаях, вне зависимости от их типа (моно- или полиизотопные). При этом, в случае

относительно статичного гидродинамического режима (в случае вертикального расположения колонок) этот процесс происходит с гораздо меньшей интенсивностью, и растворенные радионуклиды концентрируются рядом с частицей. В более динамичной обстановке (при горизонтальной ориентировке колонки) растворение частицы происходит более интенсивно и ТРН (по крайней мере, ¹³⁷Cs) переносятся на значительно большее расстояние.

Результаты натурного и лабораторного экспериментов по растворению «горячих» частиц приведены в табл. 4.2.

Таблица 4.2. Вынос ¹³⁷Cs, из «горячих» частиц в ходе лабораторного и натурного эксперимента (в % от исходного содержания)

	Паб	อกลาอกมนหั			Натурный
	эксперимент вертикальное положение		Натурны	й эксперимент,	эксперимент,
			вертикал	ьное положение	горизонтальное
	вертикал	ликальное положение,			положение
	Моно С Полиизотопная		Моно Cs	Полиизотопная	Моно Cs
Вынос ¹³⁷ Cs, %	0,02	0,43	0,09	3,6	0,64

На основании полученных данных можно сделать следующие выводы. В случае моноцезиевой частицы определяющим фактором, обусловливающим скорость ее растворения, является гидродинамический режим, в котором находится окружающий субстрат – количество ¹³⁷Cs, переходящего в водный раствор, на порядок выше в случае горизонтального расположения колонки, по сравнению с вертикальным (0,09 и 0,64% соответственно). При этом время, в течение которого частица подвергается растворению, не оказывает решающего влияния (11 суток – 0,02, 1 год – 0,09% ¹³⁷Cs).

Для полиизотопных частиц время нахождения частицы под действием фильтрующейся воды и влаги поровых растворов играет важную роль. Выход ¹³⁷Cs в водный раствор возрастает с 0,43% (11 – суточный лабораторный эксперимент) до 3,6% (годовой натурный).

Находясь в естественных условиях залегания в затопляемых почвах и донных отложениях пойменной части р. Енисей, «горячие» частицы постепенно растворяются, а входящие в их состав радионуклиды вовлекаются в повторную миграцию.

4.7. Свидетельство растворения «горячих» частиц в естественных условиях

В 2001 году на правом берегу Балчуговской протоки была отобрана проба аллювиальной (E514). Первоначально высокоактивная почвы предполагалось, что высокая активность (2500 мкрентген/час на поверхности по данным измерения полевым поисковым радиометром СРП-68) обусловлена наличием "горячей" частицы. Однако, в результате проведенного в лабораторных условиях последовательного квартования и гамма-спектрометрических измерений выяснилось, что активность распределена по пробе практически равномерно и обусловлена исключительно радиоактивным изотопом ¹³⁷Cs. Среднее значение удельной активности ¹³⁷Cs в пробе составило величину 9×10⁶ Бк/кг. Это на 2-3 порядка выше максимальных значений, характерных для загрязненных почв ближней зоны влияния ГХК. Основными минералами в пробе являются кварц, плагиоклаз, калиевый полевой шпат и гидрослюды.

При попытке выделить основной носитель активности ¹³⁷Cs из общего объёма пробы была отобрана навеска массой 45 гр. Просеиванием через сита она была разделена на 4 фракции – < 0,1 мм, 0,1 - 0,5 мм, 0,5 - 1 мм и > 1 мм, каждая из которых была проанализирована на содержание ¹³⁷Cs. Данные по массовому соотношению фракций и их вкладу в общую активность измеренного образца (с указанием удельной активности) приведены в табл.4.3.

Удельная активность возрастает с уменьшением размера фракции (от $5,53 \times 10^6$ для фракции > 1 мм до $1,63 \times 10^7$ для фракции < 0,1 мм). По-видимому, это связано с неодинаковой сорбционной способностью различных фаз, слагающих пробу и с их неравномерным распределением по фракциям.

Фракция,	%, масс.	%, акт.	Удельная
ММ			акт., Бк/кг.
< 0,1 мм	22,05	33,12	$1,63 \cdot 10^7$
0,1 - 0,5 мм	74,64	58,89	9,16·10 ⁶
0,5 - 1 мм	2,32	7,30	$7,0.10^{6}$
>1 мм	0,99	5,53	$5,53 \cdot 10^{6}$

Таблица 4.3. Массовые соотношения гранулометрических фракций и их вклад в общую активность ¹³⁷Cs в пробе E514.

Нельзя исключить здесь и влияние наличия активных частиц, а точнее, их неравномерного распределения по объему исследуемых образцов. В работах [Korobova at. al. 2014, Линник, 2018], в которых рассматривается характер распределения ¹³⁷Cs по гранулометрическим фракциям, показано, что при существенном различии удельных активностей в пробах, отобранных на различных участках (средняя и нижняя пойма), наблюдается общая тенденция – удельная активность ¹³⁷Cs увеличивается с уменьшением размера частицносителей в связи с увеличением площади поверхности, благоприятствующей сорбции радиоизотопа. Отмечается также значимая корреляция удельных активностей ¹⁵²Eu, ¹⁵⁴Eu, и ⁶⁰Co с содержанием пелитовой фракции (размер частицменее 0,01 мм).

Таким образом, выделить носитель ¹³⁷Cs не удалось. Первоначально был сделан вывод, что высокая удельная активность пробы E514 обусловлена тем, что вещество, слагающее ее, представляет собой концентрированный материал, накопленный в одном из отстойников радиоактивных отходов, расположенных на территории ГХК. Формирование в аллювиальных отложениях подобных, резко обогащенных ¹³⁷Cs слоев описано в литературе (устье р. Большая Тель, о. Городской) [Сухоруков и др., 2003] где отмечались удельные активности этого изотопа на уровне n*10⁴ Бк/кг.

Результаты лабораторных и натурных экспериментов по растворению ГЧ, проведенных в более позднее время, позволяют сделать другое предположение. Проба E514 представляет собой конечный результат нахождения «горячей» частицы в природной среде – она полностью растворилась, а входивший в ее состав ¹³⁷Сs перешел во вмещающую почву.

Учитывая результаты изучения пробы E514, при определении радионуклидного состава ГЧ, отобранных автором, производился также анализ почвенных проб, из которых они непосредственно извлекались. В зависимости от объема, они разбивались на ряд навесок различной массы, в каждой из которых определялось содержание гамма-излучающих ТРН. (см табл. 1 - 5 в приложении). Результаты можно разделить на две неравные группы. В большинстве случаев наблюдается многократное (до двух порядков) увеличение содержания ¹³⁷Сs в материале навесок по сравнению с типичными его содержаниями на соответствующих участках поймы. Для монокобальтовой частицы Gch1 это же отмечается по ⁶⁰Со (содержание в почвах косы Атамановской – 70-100 Бк/кг, в материале навесок – 15-20 тысяч Бк/кг). Полученные результаты служат дополнительным доказательством растворения «горячих» частиц в естественных условиях.

Вместе с тем, в нескольких случаях (моноцезиевые Gch08-5, Gch09-5, Gch09-7 и монокобальтовая Gch08-6) значительного увеличения содержания ¹³⁷Cs и ⁶⁰Co в пробах, из которых были извлечены ГЧ, не наблюдается. Возможно, в данном случае частицы были обнаружены и извлечены по истечении небольшого количества времени после их поступления в аллювиальные отложения, и растворение в полной мере еще не началось.

Для определения форм нахождения ¹³⁷Cs в материале пробы E514 был проведен эксперимент по селективному выщелачиванию радионуклидов по методике, предложенной в работах [Обухов и др., 1991; Павлоцкая и др., 1997]. В подвижных формах содержится 25% ¹³⁷Cs, в кислоторастворимых – 60%, в твердом остатке – около 15%. По сравнению с данными по формам нахождения

¹³⁷Cs почв ближней зоне влияния ГХК [Сухоруков и др., 2004], в рассматриваемой пробе заметно выше содержание подвижных форм. Кроме того, в пробе E514 зафиксировано наличие не менее 0,26 % водорастворимой формы ¹³⁷Cs, чего ранее не отмечалось [Сухоруков и др., 2000, 2003, 2004]. Возможно, это связано, с тем, что удельная активность этого изотопа в исследованных в указанных работах образцах были на 2 -3 порядка ниже, и пределы обнаружения используемого метода анализа не позволяли зафиксировать слишком низкие уровни активностей ¹³⁷Cs с хорошей достоверностью.

С целью подтверждения результата, полученного для водорастворимой формы 137 Cs, был проведен повторный эксперимент по выщелачиванию ещё одной 3 граммовой навески пробы E514. В результате в водный раствор в течение суток перешло 0,67 %. 137 Cs. Таким образом, наличие в пробе водорастворимой формы 137 Cs было установлено и при дублирующем эксперименте.

После этого с навеской №1 (из которой уже было извлечено 0,26% водорастворимого 137 Cs), было проведено еще два последовательных эксперимента: еще один суточный и, после высушивания и проведения измерений, пятисуточный, оба при комнатной температуре и периодическом перемешивании. В первом случае в водный раствор перешло 0,3% 137 Cs, во втором – еще 0,55%, то есть в два раза больше. Результаты экспериментов представлены в табл. 4.4. Таким образом, переход 137 Cs в водный раствор происходит в несколько этапов и зависит от продолжительности нахождения загрязненной почвы в водной среде.

Таблица 4.4. Содержание водорастворимой формы ¹³⁷Cs по результатам лабораторного эксперимента.

Навеска	Условия проведения эксперимента	Переход ¹³⁷ Cs в водный раствор, %
1a	H ₂ O, комнатная температура, 1 сутки,	0,26

	перемешивание	
16	H ₂ O, комнатная температура, 1 сутки, перемешивание	0,3
1в	H ₂ O, комнатная температура, 5 суток, перемешивание	0,55
2	H ₂ O, комнатная температура, 1 сутки, перемешивание	0,67

Выводы:

Большая часть ТРН, содержащихся в аллювиальных отложениях ближней зоны влияния ГХК, содержится в неподвижных химических формах; при отсутствии катастрофических изменений физико-химических условий их перераспределение может происходить только при механическом переносе вещества в составе взвеси. В подвижных формах присутствуют, в среднем, 16% 152 Eu, 22% 137 Cs и 15% 60 Co

В ходе проведенных лабораторного и натурного экспериментов показано, что находясь в естественных условиях залегания в затопляемых почвах пойменной части р. Енисей, «горячие» частицы под действием фильтрующейся воды и влаги поровых растворов постепенно растворяются, а входящий в их состав ¹³⁷Cs вовлекается в повторную миграцию.

Глава 5. Вклад наземной растительности в миграцию техногенных радионуклидов

Ранее было показано [Носов и др., 1997; Сухоруков и др., 2004], что все формы нахождения ТРН, определяющие их сохранность в аллювиальных почвах, препятствуют переходу их в водные растворы. Основные запасы ТРН, поступившие в р. Енисей в результате деятельности ГХК, прочно депонированы в почвах и донных осадках, и их водная миграция возможна только в составе взвесей. Вместе с тем, по некоторым данным [Вакуловский и др., 2008], в пробах воды реки Енисей, даже в дальней зоне влияния ГХК, фиксируется ¹³⁷Cs. Этот факт может быть обусловлен либо продолжающимся сбросом ГХК, либо повторной миграцией ¹³⁷Cs из загрязненных аллювиальных отложений. Еще одним источником его в воде может быть растительность, произрастающая на загрязненной территории. В сходных по проблематике регионах (территории, подвергшиеся загрязнению в результате аварии на ЧАЭС, зона влияния комбината «Маяк») отмечается значительное накопление ¹³⁷Cs в растениях [Когоbova et al., 1998; Malek et al., 2002; Pozolotina et al., 2008].

В данной работе на примере одного из островов (косы Атамановской), расположенного в ближней зоне влияния ГХК, была произведена оценка возможного вклада растительности береговой зоны в процесс вторичного перераспределения радионуклидов. Несмотря на то, что в рассматриваемом районе с начала 2000-х годов ведется интенсивное изучение накопления радионуклидов водными растениями и животными [Сухоруков и др., 2004; Болсуновский и др., 2007; Зотина, 2009; Зотина и др., 2014], работы по изучению растений береговой зоны, которые подвергаются затоплению во время паводков к настоящему времени проведены недостаточно полно [Кропачева и др., 2011, Кгорасheva at. al., 2017].

Целью работы была оценка возможного вклада растительности береговой зоны в процесс вторичного перераспределения радионуклидов.

Отбор материала проводился дважды: 1) в августе 2004 г. после 10 дневного затопления поймы Енисея паводковыми водами (растения погибшие) (рис. 5.1), и 2) в июле 2005 г. (растения, не подвергавшиеся затоплению и прошедшие полный цикл развития) (рис. 5.2).

Рис. 5.1. Схема отбора проб осоки, подвергшейся затоплению в ходе паводка (2004 г.)

Рис. 5.2. Схема отбора проб осоки, не подвергавшейся затоплению и подстилающей почвы (2005 г.)

Пробы ММС 1, E01-05-01 и E01-05-02 были отобраны в голове косы Атамановской, пробы ММС 2-1, ММС 2-2, ММС 3, E02-05-01 и E02-05-02 – в центральной её части. Пробы ММС 5-1, ММС 5-2 и E04-05-01 были взяты в головной части острова Атамановского. Радиационный фон в местах опробования составлял (по данным измерения полевым поисковым радиометром СРП-68): на косе Атамановской – 100 – 150 мкР/час, на острове Атамановском – 70 – 90 мкР/час. Образцы ММС 1, ММС 2-1 и ММС 5-1 при отборе представляли собой

сухие, укорененные стебли, пробы E01-05-01, E01-05-02, E02-05-01, E02-05-02 и E04-05-01 – живые зеленые растения, образцы MMC 2-2, MMC 3, MMC 5-2, E01-05-03 и E02-05-03 – подгнившие растительные остатки, покрывающие поверхность земли. В 2005 г. также осуществлялся отбор проб вмещающей почвы – на косе Атамановской пробы E01-05-05 и E02-05-04 (в голове и центральной части соответственно) и проба E04-05-02 на острове Атамановском.

Из материала 2004 г. для анализа были взяты стебли и крупные листья осоки. Пробы, отобранные в 2005 г., были разделены на 4 части: 1) стебли, 2) молодые (зеленые) листья, 3) старые (подсохшие) листья и 4) колосья (в тех пробах, где они были).

На рис. 5.3 показано наиболее характерное распределение ТРН в загрязненных почвах, типичных для ближней зоны влияния ГХК (коса и остров Атамановские) [Сухоруков и др., 2004]. В таблицах 5.1 и 5.2 приведены данные о содержании ТРН во вмещающей почве, отобранной в точках отбора проб осоки в 2005 г. (соответственно на косе Атамановской и в голове острова Атамановского). Исходный объем пробы в каждом случае разбивался на ряд навесок, которые анализировались отдельно.

92

б)

Рис. 5.3. Вертикальное распределение техногенных радионуклидов в почвах островов реки Енисей, расположенных в ближней зоне влияния Красноярского ГХК (а – коса Атамановская, б – остров Атамановский) [по Сухорукову и др., 2004].

Из приведенных данных видно, что уровень загрязнения почв существенно уменьшается по мере удаления от комбината (коса Атамановская находится в 8 км от места сброса радиоактивных отходов, остров Атамановский – в 10 км). Кроме того, из табличных данных видно, что, как было установлено ранее [Сухоруков и др., 2004], меняется и характер загрязнения – уменьшается вклад изотопов европия в общий уровень радиоактивности. Большой разброс значений (особенно по ¹³⁷Cs в почве с косы Атамановской) обусловлен широким распространением на изучаемой территории «горячих» частиц различных типов [Гритченко и др., 2001; Сухоруков и др., 2004].

Результаты измерений проб осоки, отобранных в 2004 г., приведены в табл. 5.3.

Как видно из представленных данных, во всех пробах зафиксировано наличие ¹⁵²Eu, ¹³⁷Cs и ⁶⁰Co. Среднее содержание ¹⁵²Eu в стеблях и крупные листьях составляет 430 Бк/кг (в золе). Разброс значений от 95 (остров Атамановский) до 1444 Бк/кг (коса Атамановская). Содержание радиоцезия составляет, в среднем, 190 Бк/кг (от 138 до 270 Бк/кг).

Таблица 5.1. Содержание техногенных радионуклидов в пробах почвы, отобранной на косе Атамановской

Проба	Удельная активность, Бк/кг						
	¹⁵² Eu	¹⁵⁴ Eu	¹³⁷ Cs	⁶⁰ Co			
E01-05-05-1	952	232	390	293			
E01-05-05-2	1364	252	494	325			
E01-05-05-3	946	227	540	275			
E01-05-05-4	1370	326	385	224			
E01-05-05-5	1298	306	418	300			
E01-05-05-6	1090	225	421	350			
E01-05-05-7	1010	270	2030	260			
E01-05-05-8	1202	235	405	267			
Среднее							
значение	1155	260	635	285			
E02-05-04-1	1553	350	263	344			
E02-05-04-2	1406	352	365	202			
E02-05-04-3	2377	517	283	236			
E02-05-04-4	1714	360	282	164			
E02-05-04-5	1543	382	286	248			
E02-05-04-6	2254	620	300	165			
E02-05-04-7	2050	476	1414	405			
E02-05-04-8	1660	408	313	259			
E02-05-04-9	1662	402	2423	289			

Среднее				
значение	1800	430	660	257

Таблица 5.2. Содержание техногенных радионуклидов в почве, отобранной в головной части острова Атамановского

Проба	Удельная активность, Бк/кг					
	¹⁵² Eu	¹⁵⁴ Eu	¹³⁷ Cs	⁶⁰ Co		
E04-05-02-1	293	135	203	81		
E04-05-02-2	358	96	194	105		
E04-05-02-3	295	94	263	102		
E04-05-02-4	268	65	273	131		
Среднее						
значение	305	97	233	105		

Таблица 5.3. Содержание техногенных радионуклидов в осоке, собранной на территории, подвергшейся воздействию паводка

	Удельная активность, Бк/кг;				Удельная активность, Бк/кг,			
Проба	зола				сухой	і вес		
	¹⁵² Eu	¹³⁷ Cs	⁶⁵ Zn	⁶⁰ Co	¹⁵² Eu	¹³⁷ Cs	⁶⁵ Zn	⁶⁰ Co
ММС1 (стебли)	310	140	330	620	25	12	28	52
ММС2-1 (стебли)	230	270		300	55	65		70
ММС2-2 (опад)	170	195	75	290	45	55	20	80
ММСЗ (опад)	1450	790		1010	230	125		160
ММС5-1 (стебли)	95	160		215	33	55		76
ММС5-2 (опад)	515	207		580	153	62		170

Средняя концентрация ⁶⁰Со – 485 Бк/кг. Значения изменяются от 217 до 1006 Бк/кг. В пробах ММС1 и ММС 2-2 установлено наличие короткоживущего изотопа ⁶⁵Zn (период полураспада 244,1 дня) в количестве 329 Бк/кг и 74 Бк/кг соответственно. Отсутствие его в остальных пробах обусловлено, по всей видимости, тем, что они были проанализированы несколько позднее – за это время содержавшийся в них ⁶⁵Zn, распался.

Результаты измерений проб осоки, отобранных в 2005 г., приведены в таблице 5.4. Из всех характерных для ближней зоны влияния ГХК ТРН в них в достоверных количествах присутствует только ¹³⁷Cs (в некоторых пробах зафиксировано также наличие следов ⁶⁰Co, однако определение его концентраций требует дополнительных исследований). Практически во всех случаях концентрация ¹³⁷Cs (в расчете на сухую массу) возрастает в ряду старые листья– стебли–молодые листья–колосья. Исключение составляет лишь проба E04-05, где содержание ¹³⁷Cs в старых листьях больше, чем стеблях. Удельная активность цезия в золе существенно превышает его активность в пробах 2004 г.

Ранее, осенью 2003 г., на островах ближней зоны влияния ГХК нами также были отобраны образцы осоки, выросшей в период с апреля по сентябрь. Пробоотбор осуществлялся на участках, не подвергавшихся в тот год затоплению, и растения прошли полный цикл развития. Произведенные впоследствии измерения также показали, что в золе в достоверных количествах содержится только ¹³⁷Cs. Среднее значение его активности составило 3700 Бк/кг в золе, что более чем на порядок выше таковых в растениях, отобранных в 2004 г.

Таблица 5.4. Содержание техногенных радионуклидов в осоке, собранной на территории, не подвергшейся воздействию паводка

Проба	Удельная активность ¹³⁷ Cs, Бк/кг, зола.	Удельная активность ¹³⁷ Cs, Бк/кг, сухая масса
Е01-05-01 (стебли)	3740	140

95

Е04-05-01 (колосья)	2780	272
E04-05-01 (старые листья)	797	66
E04-05-01 (молодые листья)	1040	104
Е04-05-01 (стебли)	1343	58
Е02-05-03 (опад)	193	51
листья)	1613	127
E02-05-02 (стеоли)	1468	68
Е02-05-01 (колосья)	2680	88
листья)	274	32
Е02-05-01 (старые	274	20
листья)	438	46
Е02-05-01 (молодые		-
Е02-05-01 (стебли)	895	40
Е01-05-03 (опад)	750	75
E01-05-02 (молодые листья)	802	270
Е01-05-02 (стебли)	1290	130
листья)	1335	110
Е01-05-01 (старые		
листья)	3010	270
Е01-05-01 (молодые		

Обнаружение в пробах растений, отобранных в 2004 г. на территории, подвергавшейся затоплению во-время 10-дневного паводка, короткоживущего изотопа ⁶⁵Zn, говорит о продолжавшемся на время пробоотбора сбросе радиоактивных отходов в экосистему реки Енисей Кроме того, проведенный

анализ этого материала показал присутствие в золе растений, практически всех изотопов (за исключением ¹⁵⁴Eu и ¹⁵⁵Eu – очевидно, по причине малого объема материала), характерных для ближней зоны влияния, в соотношении, типичном для вмещающих почв. По всей видимости, это загрязнение связано с тонкодисперсной взвесью, принесенной паводковыми водами и осажденной на поверхности растений.

Анализ материалов 2003 и 2005 гг. показывает, что при стабильном состоянии окружающей среды, происходит избирательное накопление ¹³⁷Сs осокой. При нарушении же нормального цикла развития растения и его отмирании во время паводковых затоплений происходит вынос накопленного ¹³⁷Сѕ из их структуры. Такой вынос, по-видимому, происходит и при стоке дождевых и талых вод. Об этом говорят пониженные уровни концентрации ¹³⁷Сs в прошлогоднем опаде, а также в засохших листьях развивающихся растений, по сравнению с таковыми в молодых зеленых частях последних. Это говорит о возможности повторного вовлечения ¹³⁷Cs в миграционные процессы из аллювиальных почв за счет жизнедеятельности растений на загрязненных территориях. Возможно, именно этим отчасти обусловлена одна из основных особенностей распределения техногенных радионуклидов, как, в целом, для всего района влияния ГХК, так и для ближней его зоны, которая заключается в увеличении вклада ¹³⁷Cs в общий уровень загрязнения по мере удаления от комбината. В то время как изотопы европия и ⁶⁰Со сравнительно прочно фиксируются в аллювиальных отложениях и слабо переходят в растительный материал, ¹³⁷Сs подвергается постоянному перераспределению.

После установления возможности вовлечения ¹³⁷Cs во вторичную миграцию была проведена попытка количественной оценки этого процесса (в пределах косы Атамановской). Для этого в августе 2007 г. в голове косы, на не подвергавшейся воздействию летнего паводка территории, были выбраны два поросших свежей осокой участка, площадью 2,25 м² (т. E283) и 3,75 м² (т. E286). Параллельно был опробован участок на фоновой территории (т. E282) (рис. 5.4)

97

Рис. 5.4. Схема отбора проб осоки и подстилающей почвы при количественной оценке выноса ¹³⁷Cs растениями береговой зоны (2007 г.)

Наземная часть растений полностью срезалась. Материал, отобранный на косе Атамановской, разделялся на стебли, зеленые и подсохшие листья и колосья, фоновая проба анализировалась целиком. На всех трех участках также были отобраны вертикальные почвенные профили. Результаты измерения почвенных проб приведены в табл. 5.5.

Таблица 5.5. Содержание техногенных радионуклидов в пробах подстилающей почвы

Проба	Удельная активность, Бк/кг					
	¹⁵² Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹³⁷ Cs	⁶⁰ Co	
E282/1				6		
E282/2				17		
E282/3				8		
E282/4				1		
E283/1	125			486	1046	
E283/2	51	13		203	90	
E283/3	332	54		335	136	
E283/4	658	84		295	199	
E283/5	273	72		293	350	
E283/6	1032	151		292	87	

98

E283/7	1559	423	117	340	631
E283/8	7284	1880	328	360	891
E283/9	2061	449	93	344	243
E283/10	4938	951		944	204
E283/11	2547	601		427	118
E286/1	556	98		193	531
E286/2	96	20		510	3793
E286/3	1534	229		644	161
E286/4	847	178		461	404
E282/5	372	74		262	166
E286/6	1494	430		455	270
E286/7	2625	774		285	169
E286/8	3003	678		444	75
E286/9	358	67		206	120
E286/10	1664	357		1839	245
E286/11	2142	701		234	217
E286/12	1388	211		2024	212
E286/13	3585	998		282	332
E286/14	800	99		556	79

В табл. 5.6 приведены результаты измерения растительных проб. Как и в предыдущих случаях для не затоплявшихся участков, установлено наличие лишь ¹³⁷Cs. Данные по его концентрациям сопоставимы с ранее полученными, и для точки E286 лежат в пределах 65 - 286 Бк/кг (для разных частей растений). Для общей пробы E-283 значение удельной активности существенно выше (более, чем в 4,5 раза) и составляет 682 Бк/кг. Содержание ¹³⁷Cs в фоновой пробе не превышает 12 Бк/кг. Здесь же показаны оценочный объем вырастающей на косе осоки (за сезон) и количество накапливающегося ¹³⁷Cs. Площадь косы принималась равной 14300 м². Затоплению (во время весенне-летнего паводка) подвергается вся эта территория.

Проба	Уд. активность ¹³⁷ Cs, Бк/кг,	Масса на м ² , кг	Масса по всей косе, кг	Активность по косе в сезон, Бк
Е-282 (общая)	12			
Е-283 (общая)	682	0,192	2746	1,87*10 ⁶
Е-286 (стебли)	65	0,16	2288	1,5*10 ⁵
Е-286 (молодые листья)	286	0,045	644	1,84*10 ⁵
E-286 (старые листья)	142	0,016	229	3,25*10 ⁴
Е286 (колосья)	124	0,0073	104	1,3*10 ⁴
Е-286 (общее)	154	0,229	3275	$4,75*10^5$

Таблица 5.6. Содержание техногенных радионуклидов в растительных пробах

По причине различия удельных активностей, разнятся и оценки для количеств накапливаемого ¹³⁷Cs. При пересчете на точку E286 она составляет – 390 тыс. Бк. При расчете по данным для точки E283 – достигает 1,87 млн. Бк.

С целью оценки скорости выноса накопленного растениями 137 Cs, был проведен лабораторный эксперимент, в ходе которого 19 неозоленных навесок пробы E286 на различные сроки помещались в дистиллированную воду. Минимальный срок составил 0,5 часа, максимальный – 19 суток. По окончании эксперимента вода сливалась. Полученные растворы фильтровались, упаривались и анализировались на содержание 137 Cs. Концентрации 137 Cs определялись также в высушенных остатках растений. Результаты эксперимента приведены на рис. 5.5.

Уже после получасовой выдержки в раствор переходит около 30 % ¹³⁷Cs, судя по всему, связанного на поверхности растительности в легкомигрирующих формах.

Рис. 5.5. Динамика перехода ¹³⁷Сs в водный раствор. Результаты лабораторного эксперимента.

В течение первых суток эти значения достигают 60 – 70 % и далее сохраняются на этом уровне на протяжении следующих нескольких суток эксперимента. В данный период времени происходит вымывание изотопа из внутренних клеточных структур растения. И лишь в случае последней пробы (выдержка 19 суток) выход изотопа возрастает до 80 %, что может быть вызвано началом деградации целлюлозы в составе клеточных стенок и высвобождением прочно связанного с ней изотопа.

Выводы:

Присутствие в пробах осоки, подвергавшихся затоплению во время паводка, всех изотопов, характерных для ближней зоны влияния ГХК, в соотношении, типичном для вмещающих почв, говорит о связи этого загрязнения с тонкодисперсной взвесью, принесенной паводковыми водами и осажденной на поверхности растений. На это же указывает повышенная зольность этих образцов. Обнаружение в них короткоживущего изотопа ⁶⁵Zn говорит о сбросе радиоактивных отходов в экосистему реки Енисей в 2004 г. Осока накапливает в значимых количествах только ¹³⁷Cs. При нарушении нормального цикла развития растений и их отмирании, во время паводковых затоплений происходит вынос накопленного ими ¹³⁷Cs. Такой же вынос, по-видимому, происходит и при стоке дождевых и талых вод. Это говорит о возможности повторного вовлечения ¹³⁷Cs в

миграционные процессы из аллювиальных почв за счет жизнедеятельности растений, произрастающих на загрязненных территориях.

Для изученного модельного участка рассчитано минимальное количество 137 Cs, вовлекаемого наземными растениями в повторную миграцию только за счет паводковых явлений. Ежегодно эта величина составляет от 3,8×10⁵ до 1,87×10⁶ Бк.

Заключение

В результате гамма-спектрометрических исследований были выделены два типа «горячих частиц»; 1) моноизотопные (60 Co и 137 Cs); 2) полиизотопные (60 Co, 134 Cs, 154 Eu, 155 Eu, 241 Am, 239 Np). Моно 60 Co частицы обнаружены в ближней зоне влияния комбината впервые. Для частиц обоих типов характерным является отсутствие активационного изотопа 152 Eu, наиболее распространенного в аллювиальных отложениях ближней зоны влияния Красноярского ГХК. Методами сканирующей электронной микроскопии определено наличие в составе некоторых ГЧ соединений урана (UO₂), что свидетельствует об их реакторном происхождении.

Массовое появление ГЧ в верхних горизонтах почв после сильных паводков 2006-2007 гг., обнаружение частиц в местах, где их не находили ранее, свидетельствует о продолжающемся их поступлении в экосистему реки Енисей..

В результате лабораторного и натурного экспериментов установлено, что находясь в естественных условиях залегания в затопляемых почвах пойменной части р. Енисей, ГЧ подвергаются постепенному растворению, и входящий в их состав 137 Cs (составляющий, за исключением моно- 60 Co частиц 95-100% их активности) вовлекается во вторичную миграцию. Скорость растворения зависит как от типа ГЧ (полиизотопные частицы растворяются значительно быстрее моноизотопных), так и от гидродинамического режима, в котором они находятся.

Содержание подвижных форм ¹³⁷Cs в материале, загрязненном в ходе растворения ГЧ значительно превышает их содержание в загрязненных аллювиальных отложениях ближней зоны влияния ГХК – 40–50 и 15–20% соответственно.

Проведенные исследования показали, что осока в ходе роста накапливает в значимых количествах только 137 Cs. При нарушении нормального цикла развития растений и их отмирании, во время паводковых затоплений, происходит вынос накопленного ими 137 Cs. Такой же вынос, по-видимому, происходит по истечении

вегетационного периода растений при стоке дождевых и талых вод. Это говорит о возможности повторного вовлечения ¹³⁷Cs в миграционные процессы из аллювиальных почв за счет жизнедеятельности растений, произрастающих на загрязненных территориях.

В ходе лабораторного установлено, что до 60–70% накопленного ¹³⁷Cs выносится из отмерших растений в течение первых суток.

Для модельного участка поймы ближней зоны влияния ГХК рассчитано минимальное количество ¹³⁷Cs, вовлекаемого наземными растениями в повторную миграцию только за счет паводковых явлений. Ежегодно эта величина составляет от 3.8×10^5 до 1.87×10^6 Бк.

Список сокращений и условных обозначений

- ГЧ «горячая» частица,
- ГХК горно-химический комбинат
- ДО донные отложения,
- ЖРО жидкие радиоактивные отходы,
- ПО производственное объединение,
- ОЯТ отработанное ядерное топливо,
- ОСГИ образцовый спектрометрический гамма-источник,
- ППД полупроводниковый детектор,
- РАО радиоактивные отходы,
- РХЗ радиохимический завод,
- СОП стандартный образец предприятия,
- СХК Сибирский химический комбинат,
- СЭМ сканирующая электронная микроскопия,
- ТРН техногенные радионуклиды,
- ТРО твердые радиоактивные отходы,
- ЧАЭС Чернобыльская атомная электростанция,
- ЯТЦ ядерно-топливный цикл,

Список литературы

1. Бобовникова Ц.И., Вирченко Е.П., Коноплев А.В., Сиверина А.А., Шкуратова И.Г. Химические формы нахождения долгоживущих радионуклидов и их трансформация в почвах зоны аварии на ЧАЭС // Почвоведение. 1990. № 10. С. 20–25.

2. Болсуновский А.Я., Горяченкова Т.А., Черкезян В.О., Мясоедов Б.Ф. Горячие частицы в Красноярском крае // Радиохимия. 1998. Т. 40. № 3. С. 271–274.

3. Болсуновский А.Я., Черкезян В.О., Барсукова К.В., Мясоедов Б.Ф. Исследование высокоактивных проб почв и горячих частиц поймы реки Енисей // Радиохимия. 2000. Т. 42. № 6. С .560–564.

4. Болсуновский А.Я.. Атурова В.П., Марио Бургер и др. Радиоактивное загрязнение территории населенных пунктов Красноярского края в регионе размещения Горно-химического комбината // Радиохимия. 1999. Т. 41. Вып. 6. С. 563–568.

5. Болсуновский А.Я., Муратова Е.Н., Суковатый А.Г., Пименов А.В., Санжараева Е.А., Зотина Т.А., Седельникова Т.С., Паньков Е.В., Корнилова М.Г. Радиоэкологический мониторинг реки Енисей и цитогенетические характеристики водного растения Elodea canadensis // Радиационная биология. Радиоэкология. 2007. Т. 47. № 1. С. 63–73.

6. Бондарева Л.Г., Болсуновский А.Я., Сухоруков Ф.В., Казбанов В.И., Макарова И.В., Леглер Е.В. Оценка миграционной способности трансурановых радионуклидов (²⁴¹Am, изотопов плутония) и ¹⁵²Eu в донных отложениях реки Енисей // Радиохимия. 2005. Т. 47. № 4. С. 289–294.

7. Булгаков А., Коноплев А., Войцехович О., Канивец В., Лаптев Г., Попов В., Смит Дж. Оценка и прогноз скорости растворения топливных частиц в донных отложениях водоема-охладителя Чернобыльской АЭС // Радиоактивность после ядерных взрывов и аварий. Труды Междунар. конф., Москва, 5-6 декабря 2005 г. – СПб: Гидрометеоиздат, 2006. Т. 2. С. 24–30.

8. Булгаков А.А, Коноплев А.В., Попов В.Е., Бобовникова Ц.И., Сиверина А.А., Шкуратова И.Г. Механизмы вертикальной миграции долгоживущих радионуклидов в почвах 30-километровой зоны ЧАЭС // Почвоведение. 1990. № 10. С. 14–19.

9. Быховский А.В., Зараев О.М. Горячие аэрозольные частицы при техническом использовании атомной энергии. – Москва: Атомиздат, 1974. 254 с.

10. Вакуловский С.М., Крышев А.И., Тертышкик Э.Г. и др. Накопление ³²Рв рыбе Енисея и реконструкция дозы облучения населения // Атомная энергия. 2004. Т.97. Вып. 1. С. 61–67.

11. Вакуловский С.М., Тертышник Э.Г., Кабанов А.И. Перенос радионуклидов в р. Енисей // Атомная энергия. 2008. Т. 105. № 5. С. 285–291.

 Воробьева Л.А. Химический анализ почв: Учебник. — М.: Изд-во МГУ, 1998. 272 с.

13. Гритченко З.Г., Кузнецов Ю.В., Легин В.К., Струков В.Н., Мясоедов Б.Ф., Новиков А.П., Шишлов А.Е., Савицкий Ю.В. «Горячие» частицы 2-го рода в пойменных почвах реки Енисей // Радиохимия. 2001. Т. 43. № 6. С. 563–565.

14. Зотина Т.А. Распределение техногенных радионуклидов в биомассе макрофитов реки Енисей // Радиационая биология. Радиоэкология. 2009. Т. 49. № 6. С. 729–737.

15. Зотина Т.А., Трофимова Е.А., Карпов А.Д., Болсуновский А.Я. Накопление радионуклидов в трофических цепях р. Енисей после остановки реакторного

производства на горно-химическом комбинате // Радиационная биология. Радиоэкология. 2014. Т. 54. № 4. С. 405–414.

16. Караваева Е.Н., Молчанова И.В. Поведение радионуклидов в переувлажненных почвах зон воздействия ядерного предприятия на Урале // Экология. 1997. № 3. С. 191–194.

17. Карякин А.В., Грибовская И.Ф. Эмиссионный спектральный анализ объектов биосферы. – М.: Наука, 1979. 208 с.

18. Кашпаров В.А., Иванов Ю.И., Зварич С.И., Процак В.П., Хомутинин Ю.В., Пазухин Э.М. Определение скорости растворения чернобыльских топливных частиц в естественных условиях // Радиохимия. 1997. Т. 39. Вып. 1. С. 71–76.

19. Кашпаров В.А., Йощенко В.И., Зварич С.И., Процак В.П., Пазухин Э.М. Оценка класса растворимости чернобыльских радиоактивных аэрозолей при ингаляции // Радиохимия. 1997. Т. 39. Вып. 1. С. 77–79.

20. Кашпаров В.А., Процак В.П., Перес Ж.-М., Ахамдаш Н., Йощенко В.И., Зварич С.И., Пазухин Э.М. Кинетика растворения чернобыльских топливных частиц. І. Растворение топливных частиц разного генезиса в модельных экспериментах // Радиохимия. 2000. Т. 42. № 6. С. 533–541.

21. Крупные радиационные аварии: последствия и защитные меры / Под редакцией Л.А. Ильина и В.ВА. Губанова. – Москва: ИзДАТ, 2001. 752 с.

22. Кузнецов Ю.В., Ревенко Ю.А., Легин В.К., Раков Н.А., Жидков В.В., Савицкий Ю.В., Тишков В.П., Поспелов Ю.Н., Егоров Ю.М. К оценке вклада реки Енисей в общую радиоактивную загрязненность Карского моря // Радиохимия. 1994. Т. 36. Вып. 6. С. 546–559.

23. Кузнецов Ю.В., Легин В.К., Шишлов А.Е. и др. Трансурановые элементы в пойменных отложениях реки Енисей // Радиохимия. 2000. Т. 42. Вып. 5. С. 470–477.
24. Леонова Г.А., Бобров В.А., Торопов А.В., Ковалев С.И., Аношин Г.Н. Мониторинг техногенных радионуклидов и тяжелых металлов в ближней зоне влияния Сибирского химического комбината // Вестник ТГУ. Сер. «Науки о Земле». Приложение: материалы научной конференции «Проблемы геологии и географии Сибири». № 3 (V). – Томск, 2003. С. 159–161.

25. Леонова Г.А., Торопов А.В., Бобров В.А., Бадмаева Ж.О., Ильина В.Н., Сухоруков Ф.В. Техногенные радионуклиды и тяжелые металлы в воде и биообъектах реки Ромашка (ближняя зона влияния СХК) // Современные достижения в исследованиях окружающей среды и экологии. Сборник научных статей, посвященных памяти академика РАН В.Е. Зуева. – Томск: STT, 2004а. С. 72–75.

26. Леонова Г.А., Торопов А.В., Бобров В.А., Мельгунов М.С., Макарова И.В., Сухоруков Ф.В. Загрязнение рыбы реки Томь техногенными радионуклидами в зоне влияния Сибирского химического комбината // Пищевые ресурсы дикой природы и экологическая безопасность населения: материалы междун. конф. – Киров: Изд-во Института проблем эволюции им. А.Н.Северцова РАН, 2004б. С. 140–142.

27. Леонова Г.А., Бобров В.А., Торопов А.В., Маликов Ю.И., Мельгунов М.С., Сухоруков Ф.В. Загрязнение компонентов экосистемы нижней Томи техногенными радионуклидами // Экология промышленного производства. 2005. № 3. С. 15–22.

28. Леонова Г.А., Торопов А.В., Бобров В.А., Маликов Ю.И., Мельгунов М.С., Сухоруков Ф.В. Радиоактивное загрязнение биогеоценоза реки Томь в зоне влияния предприятий ядерно-топливного цикла // Геоэкология, инженерная геология, гидрогеология, геокриология. 2006. № 2. С.145–155.

29. Линник В.Г. Техногенные радионуклиды в поймах р. Теча и среднего течения р. Енисей // Вестник Московского университета. Сер. 5. География 2011. № 4. 24–30.

 Линник В.Г. Ландшафтная дифференциация техногенных радионуклидов. – Москва, 2018. 372 с.

31. Лощилов Н.А., Кашпаров В.А., Поляков В.Д., Юдин Е.Б., Процак В.П., Журба М.А., Паршаков А.Е. Ядерно-физические характеристики горячих частиц, образовавшихся в результате аварии на ЧАЭС // Радиохимия. 1992. № 4. С. 113–125.

32. Мартынова А.М., Шабанов А.В. Сравнительный анализ влияния предприятий по производству плутония на речные системы // Утилизация плутония: проблемы и решения: материалы IV Междунар. радиоэкологической конф. – Красноярск: Издание Оргкомитета конференции и Гражданского центра ядерного нераспространения, 2000. С.87.

33. Матишов Г.Г., Матишов Д.Г., Риссанен Х. Уровень накопления стронция 90в донных отложениях и биоте Баренцева и Карского морей // ДАН, 1997. Т. 353.
№ 5. С. 700–702.

34. Матишов Д.Г., Матишов Г.Г. Радиационная экологическая океанология. – Апатиты: Изд-во Кольского научного центра РАН, 2001. 417 с.

35. Мокров Ю.Г. Реконструкция радиоактивного стока основных радионуклидов с водами р. Теча в период 1949-1954 гг. // Бюллетень Сибиркой медицины. 2005. № 2. С. 110–116.

36. Мокров Ю.Г., Шагин Д.М. Изучение закономерностей переноса загрязненных радионуклидами взвешенных частиц с водным потоком р. Теча в период 1949–1951 гг. // Вопросы радационной безопасности. 2001. № 1. С. 18–31.

37. Носов А.В., Ашанин М.В., Иванов А.Б., Мартынова А.М. Радиоактивное загрязнение р. Енисей, обусловленное сбросами Красноярского горнохимического комбината // Атомная энергия. 1993. Т. 74. Вып. 2. С. 144–150. 38. Носов А.В., Мартынова А.М. Анализ радиационной обстановки на р. Енисее после снятия с эксплуатации прямоточных реакторов Красноярского ГХК // Атомная энергия. 1996. Т. 81. Вып. 3. С. 226–232.

39. Носов А.В. Исследование механизмов миграции радиоактивных веществ в пойме Енисея // Метеорология и гидрология. 1997. №12. С. 84–91.

40. Павлоцкая Ф.И., Горяченкова Т.А., Мясоедов Б.Ф. Формы нахождения техногенного плутония в аэрозолях, горячих частицах и почвах // Радиохимия. 1997. Т. 39. № 5. С. 464–470.

41. Позолотина В.Н. Современное состояние экосистемы Восточно-Уральского радиоактивного следа: уровни загрязнения, биологические эффекты. – Екатеринбург, 2008. 204 с.

42. Радиоактивность окружающей среды. Теория и практика / Ю.А. Сапожников, Р.А. Алиев, С. Н. Калмыков. – М.: БИНОМ. Лаборатория знаний, 2006. 286 с.

43. Радиоактивные частицы в атмосфере: Коллоквиум в г. Бад-Швальбах, ФРГ.
1959. – М.: Госатомиздат, 1963.

44. Рихванов Л.П. Состояние окружающей среды и здоровье населения в зоне влияния Сибирского химического комбината: аналитический обзор. – Томск: Издво Томского политехнического университета, 1994. 226 с.

45. Рихванов Л.П. Общие и региональные проблемы радиоэкологии. – Томск: Изд-во ТПУ, 1997. 384 с.

46. Рихванов Л.П., Архангельская Т.А., Замятина Ю.Л. Дендрорадиография как метод ретроспективной оценки радиоэкологической ситуации. – Томск: Дельтаплан, 2015. 148 с.

47. Рябов И.Н., Полякова Н.И., Пельгунова Л.А. и др. Радиоэкологический мониторинг рыб видов-индикаторов Обь-Иртышского Бассейна // Урал атомный,

48. Урал промышленный: труды XI Межд. симпозиума. – Екатеринбург, 2005.С. 212–216.

49. Соломатина В.Д., Малиновская и др. Особенности метаболизма рыб в условиях радиоактивного загрязнения // Гидробиологический журнал. 2000. Т. 36. № 2. С. 51–56.

50. Сухоруков Ф.В., Мельгунов М.С., Ковалев С.И. Основные черты распределения техногенных радионуклидов в аллювиальных почвах и донных осадках реки Енисей // Сибирский экологический журнал. 2000. № 1. С.39–50.

51. Сухоруков Ф.В. Дегерменджи Ф.В. Белолипецкий В.М. Болсуновский А.Я. Ковалев С.И. Косолапова Л.Г. Мельгунов М.С. Рапута В.Ф. Закономерности распределения и миграции радионуклидов в долине реки Енисей. – Новосибирск: Изд-во СО РАН. Филиал "Гео", 2004а. 286 с.

52. Сухоруков Ф.В., Мельгунов М.С., Ковалев С.И., Болсуновский А.Я. «Горячие» частицы в аллювиальных отложениях реки Енисей в ближней зоне влияния Красноярского ГХК (новые данные) // Радиоактивность и радиоактивные элементы в среде обитания человека: материалы II Междунар. конф. – Томск: издво «Тандем-Арт», 2004б. С. 601–605.

53. Тимофеев В.А. Техногенное радиоактивное загрязнение аллювиальных отложений Енисея // Сборник докладов II Междунар. радиоэкологической конф. – Красноярск. 1995. С. 165–171.

54. Трапезников А.В., Позолотина В.Н., Чеботина М.Я., Чуканов В.Н., Трапезникова В.Н., Куликов Н.В., Нильсен С.П., Ааркрог А. Радиационное загрязнение реки Течи на Урале // Экология. 1993. № 5. С.72–77.

55. Трапезников А.В. Итоги многолетних радиоэкологических исследований р. Теча // Вопросы радиационной безопасности. 2007. № 3. С.26–49. 56. Торопов А.В. Накопление техногенных радионуклидов компонентами экосистемы Нижней Томи: Автореф.: дис. ...канд. биол. наук. – Новосибирск, 2006. 22 с.

57. Торопов А.В. Последствия гонки ядерных вооружений для реки Томи: без ширмы секретности и спекуляций: Научное издание. – Томск: Дельтоплан, 2010. 168 с.

58. Торопов А.В., Зубков Ю.Г. Радиоактивное загрязнение рек Томь и Ромашка // Экология пойм сибирских рек и Арктики: труды II совещания. – Томск: Изд-во «STT», 2000. С.143–147.

59. Торопов А.В., Зубков Ю.Г., Леонова Г.А., Бобров В.А., Сухоруков Ф.В. Особенности радиоэкологической ситуации в биогидроценозе нижней Томи // Радиоактивность и радиоактивные элементы в среде обитания человека: материалы II межд. конф. – Томск: Изд-во «Тандем-Арт», 2004. С.630–634.

60. Торопов А.В., Сухоруков Ф.В., Ковалев С.И., Зубков Ю.Г. Техногенные радионуклиды в воде и донных отложениях нижней Томи // Вестник ТГУ. Сер. «Науки о Земле». Приложение: материалы научной конференции «Проблемы геологии и географии Сибири». № 3 (V). Томск, 2003. С. 220–222.

61. Унифицированные методы анализа силикатных горных пород. ГОСТ 23581.13–79, Госстандарт России, 01.01.1979.

62. Цибульчик В.М., Степин А.С. Естественные радионуклиды и ¹³⁷Сs в природных компонентах Кемеровской области // Радиоактивность и радиоактивные элементы в среде обитания человека: материалы Межд. конф., посвящ. 100-летию со дня открытия радиоактивности и 100-летию Томск. политех. ун-та. – Томск, 1996. С. 247–250.

63. Цибульчик В.М., Маликов Ю.И., Аношин Г.Н. ¹³⁷Сs и тяжелые металлы в донных отложениях р. Оби // Экология пойм сибирских рек и Арктики: труды II совещания. – Томск: Изд-во «STT», 2000. С.131–136.

64. Цибульчик В.М., Аношин Г.Н., Маликов Ю.И. и др. Техногенные радионуклиды в донных отложениях Обского бассейна // Экологический риск: материалы Второй всерос. конф. – Иркутск: Изд-во Института географии СО РАН, 2001. С. 195–198.

65. Чиркист Д.Э., Чалиян К.Н., Чалиян А.Г. Дезактивация почвогрунтов, загрязненных радионуклидами цезия в результате аварии на ЧАЭС // Радиохимия. 1994. Т. 36. Вып. 5. С. 462–463.

66. Чугуевский В.А., Мельгунов М.С., Макарова И.В. Роль «горячих» частиц реки Енисей во вторичном распределении техногенных радионуклидов // Экология промышленного производства. 2018. № 4. С. 7–12.

67. Чугуевский А.В., Мельгунов М.С., Макарова И.В., Кропачева М.Ю. К вопросу о роли растительности в перераспределении техногенных радионуклидов в аллювиальных отложениях островов реки Енисей (ближняя зона влияния Красноярского ГХК) // Вестник Забайкальского государственного университета. 2019. Т. 25. № 2. С. 54–62.

68. Bolsunovsky A.Ya., Tcherkezian V.O. Hot particles of the Yenisei River flood plain, Russia // Journal of Environmental Radioactivity. 2001. N. 57. P. 167–174.

69. Bolsunovsky A. Radionuclide speciation in sediments of the Yenisei River // Radioprotection. 2011. V.46. N. 6. P.195–198.

70. Bolsunovsky A., Melgunov M. Study of sediments and radioactive particles of the Yenisei River using a variety of analytical methods // Journal of Geoscience and Environment Protection. 2014. N. 2. P. 153–158.

71. Bolsunovsky A., Melgunov M., Chuguevskii A., Lind O.C., Salbu B. Unique diversity of radioactive particles found in the Yenisei river floodplain // Scientific Reports. 2017. V. 7. N 1. P. 111–132.

72. Bondareva L.G., Bolsunovskii A.Ya. Speciation of artificial radionuclides ⁶⁰Co, ¹³⁷Cs, 152Eu, and ²⁴¹Am in bottom sediments of the Yenisei river // Radiochemistry. 2008. V. 50. N 5. P. 475–480.

73. Bondareva L., Artamonova S. The relationship of mineral and geochemical composition to artificial radionuclide partitioning in Yenisei river sediments downstream from mining-and-chemical combine Rosatom // Natural Science. 2011. V. 3. N. 7. P.517–529.

74. Bondareva L. The relationship of mineral and geochemical composition to artificial radionuclide partitioning in Yenisei river sediments downstream from Krasnoyarsk // Environmental Monitoring and Assessment. 2012. V. 184. N. 6. P. 3831–3847.

75. Brown J.E., Dowdall M., Korobova E.M., Linnik V.G., Volosov A.G., Standring W.J.F. Vertical distribution of anthropogenic radionuclides in cores from contaminated floodplains of the Yenisey River // Journal of Environmental Radioactivity. 2009. N 100. P. 1109–1120.

76. Chuguevskii A.V., Sukhorukov F.V., Melgunov M.S., Makarova I.V., Titov A.T. "Hot" particles of the Yenisei River: radioisotope composition, structure, and behavior in natural conditions // Doklady Earth Sciences. 2010. N. 430. P. 51–53.

77. Degteva M.O., Kozheurov V.P., VorobyovaM.I. General Approach to Dose Reconstruction in the Population Exposed as a Result of the RadioactiveWastes into the Techa River // The Science of the Total Environment. 1994. V. 142.P. 149–161.

Devell L., Tovedal H., Bergstrom U., Appelgren A., Chyssler J., Andersson L.
 Initial observations of fallout from the reactor accident at Chernobyl // Nature. 1986. V.
 321. P.192–193.

79. Freiling E.C. Fractionation, III. Estimation for nuclear debris. Report USNRDL-TR-680, US Naval Radiological Defense Laboratory, 12 Sept. 1963 // Science. 1963. V. 139. P. 1058. 80. Korobova E.M., Linnik V.G., Chizhikova N.P., Alekseeva T.N., Shkinev V.M., Browne J., Dinua M.I. Granulometric and mineralogic investigation for explanation of radionuclide accumulation in different size fractions of the Yenisey floodplain soils // Journal of Geochemical Exploration. 2014. N. 142. P. 49–59.

81. Korobova E.M., Linnik V.G., Brown J. Distribution of artificial radioisotopes in granulometric and organic fractions of alluvial soils downstream from the Krasnoyarsk Mining and Chemical Combine (KMCC), Russia // Journal of Soils and Sediments. 2016. V. 16. N 4. P. 1279–1287.

82. Kropatcheva M., Chuguevskii A., Melgunov M. Distribution of 152Eu and 154Eu in the alluvial soil-rhizosphere-plant roots system // Journal of Environmental Radioactivity. 2012. N. 106.P. 58–64.

83. Lind O.C., Salbu B., Skipperud L., Janssens K., Jaroszewicz J. Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait // Journal of Environmental Radioactivity. 2009. N. 100. P. 301–307.

84. Pavlotskaya F.I., Goryachenkova T.A., Kazinskaya I.E., Novikov A.P., Myasoedov B.F., Kuznetsov Yu.V., Legin V.K., Shishkunova L.V. Speciation and Migration Behavior of Pu and Am in Floodplain Soils and Bottom Sediments of the Yenisei River // Radiochemistry. 2003. V. 45. N 5. P. 524–531.

85. Salbu B. Hot particles – a challenge with radioecology // Journal of Environmental Radioactivity. 2001. N. 53. P. 267–268.

 Salbu B., Janssens K., Lind O.C., Proost K., Danesi P.R. Oxidation states of uranium in DU particles from Kosovo // Journal of Environmental Radioactivity. 2003. N 64. P. 167–173.

87. Salbu B., Lind O.C., Skipperud L. Radionuclide speciation and its relevance in environmental impact assessments // Journal of Environmental Radioactivity. 2004. N.
74. P. 233–242.

 Salbu B. Speciation of radionuclides – analytical challenges within environmental impact risk assessments // Journal of Environmental Radioactivity. 2007. N. 96. P. 47– 53.

89. Semizhon T., Rollin S., Spasova Y., Klemt E. Transport and distribution of artificial gamma-emitting radionuclides in the River Yenisei and its sediment // Journal of Environmental Radioactivity. 2010. N 101. P. 385–402.

90. Strand P., Brown J.E., Drozhko E., SalbuB., Oughton D., Christen sen G.C., Amundsen I. Biogeochemical behavior of 137Csand 90Sr in the artificalreservoirsof MayakPA. Russia // The Science of the Total Environment. 1999. V. 241. P. 107–116.

91. Sukhorukov F.V., Melgunov M.S., Chuguevsky A.V. Hot and active particles in alluvial soils and sediments of the Yenisei river: Radioisotope composition // Radioprotection. 2009. N 44. P. 227–231.

92. Tcherkezian (Cherkezyan) V., Shkinev V., Khitrov L., Kolesov G. Experimental approach to Chernobyl hot particles // Journal of Environmental Radioactivity. 1994. N 22. P. 127–139.

93. Tcherkezian V., Galushkin B., Goryachenkova T., Kashkarov L., Liul A., Roschina A., Rumiantsev O. Forms of contamination of the environment by radionuclides after the Tomsk ac-cident (Russia, 1993) // Journal of Environmental Radioactivity. 1995. V.27. N. 2. P.133–139.

94. Tessier A., Cambell P.G., Bisson M Sequential extraction procedure for the speciation of particulate trace metals //Analytical chemistry. 1979. V. 51. N 7. P. 844–851.

95. Vakulovskii S.M., Tertyshnik E.G., Kabanov A.I. Radionuclide transport in the Yenisei river // Atomic Energy. 2008. V. 105. N 5. P. 367–375.

96. Wagenpheil F., Tschiersch J. Resuspension of coarse fuel hot particles in the Chernobyl area // Journal of Environmental Radioactivity. 2001. N. 52. P. 5–16.

97. <u>https://www.po-mayak.ru/about/history/history_in_dates/?PAGEN_1=2</u>

(официальный сайт ПО «Маяк»).

- 98. <u>http://atomsib.ru/история-схк</u> (официальный сайт СХК).
- 99. <u>https://sibghk.ru/activity/radiochemical-plant.html</u> (официальный сайт ГХК).

~ПРИЛОЖЕНИЯ~

Таблица 1. Содержание техногенных радионуклидов в 100-граммовых навесках вмещающих почв, из которых были извлечены «горячие» частицы (2007 г)

			Активно	сть, Бк (для часті	иц), Бк/кг (для	вмещаюн	цей почвы)
место отоора	Номер ГЧ/ пробы вмещающей почвы	¹⁵² Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹³⁴ Cs	¹³⁷ Cs	⁶⁰ Co	²⁴¹ Am	²³⁹ Np
Место отбора Коса Атамановская Коса Атамановская	Gch-1						32300		
	1-1	372				299	22760		
	1-2	271				336	12320		
Коса Атамановская	1-3	1407	310			325	22910		
Коса Лиамановская	1-4	190				310	16650		
	1-5	221				401	17830		
	1-6	201				321	18210		
	1-7	283				295	19540		
	Gch2-1		465	160	27	22170	12	1115	236
	2-1-1	500	93			2204	434		
	2-1-2	256	88			1300	154		
	2-1-3	460	108			3838	500		
Коса Атамановская	2-1-4	1323	297			5694	210		
Roou Hiumunoberasi	2-1-5	717	158			1750	289		
	2-1-6	327	127			1565	384		
	2-1-7	1558	225			1529	222		
	2-1-8	1043	257			1365	269		
	2-1-9	1043	248			2726	152		
	Gch2-2					104600		15	
Коса Атамановская	2-2-1	96				267	110		
	2-2-2	93				226	53		

								•	
	2-2-3	107				211	83		
	2-2-4	103				262	1297		
	2-2-5	107				255	365		
	2-2-6	347	93			259	179		
	2-2-7	181				228	77		
	2-2-8	103				513	1706		
	2-2-9	91				397	140		
Коса Атамановская	Gch4/1*					8500000			
	Gch4/2**								
	4-2-1	2751	864			121300	445		
Коса Атамановская	4-2-2	1389	285			84930	315		
	4-2-3	2737	540			94800	450		
	4-2-4	3612	963			106967	433		
Содержание в верхни	их горизонтах почвы (коса Атамановская)	200- 2500	130- 1000			250-400	100-500		
	Gch-5		3080	849	148	102600	88	91	
	5-1	228	80			2292	319		
	5-2	311	85			2108	84		
	5-3	423	103			1827	128		
Балиугорская	5-4	527	137			2141	160		
протока	5-5	500	142			2605	278		
I	5-6	1000	234			2212	162		
	5-7	183	69			2399	90		
	5-8	191	72			2019	427		
	5-9	141	68			2757	103		
	5-10	176	66			1942	95		

	5-11	819	333	15		4278	118		
	Gch-6		170	51	9	14070	10	809	91
	6-1	556	113			1801	279		
Балчуговская	6-2	217				1900	179		
протока	6-3	137	47			2282	372		
	6-4	134				1696	144		
	6-5	200	51			1549	268		
	Gch-7		1402	417	64	45100	50	36	
Formmonoung	7-1	107	28			1591	55		
Балчуговская протока	7-2	160	45			1396	90		
nporonu	7-3	122	41			1933	78		
	7-4	220	56			1609	93		
	Gch-8		65			49930	7		
	8-1	162				7647	104		
Балчуговская	8-2	137				8215	193		
протока	8-3	155				8831	321		
	8-4	194				8148	66		
	8-5	426				8054	258		
Содержание в вер	хних горизонтах почвы (Балчуговская протока)	300- 1200	60- 250			500-1800	100-300		
<u>Олгана Ганалагай</u>	Gch-9					217000			
Остров Березовыи	9-1	335				20895	62		
Среднее содерж	ание в верхних горизонтах почвы (о. Березовый)	70- 300	40- 200			300-1200	50-200		
Устье р. Большая	Gch-10		137		40	59640	5		

1	2	3
_	~	-

Тель	10-1	618	157			4132	576		
	10-2	432	95			3753	683		
	10-3	586	173			3632	1492		
	10-4	450	93			3394	441		
	10-5	552	133			5008	731		
	10-6	571	186			3634	1074		
	10-7	402	86			4268	501		
Содержание в верх	них горизонтах почвы (устье р. Большая Тель)	20- 500	40- 120			100-500	10-200		
	Gch-11		319			425900	104	1571	
	11-1	496	124			4380	128		
	11-2	843	316			7286	229		
	11-3	435	143			5711	140		
Остров	11-4	621	187			4357	190		
Атамановский	11-5	1120	222			5777	261		
	11-6	401	137			5235	137		
	11-7	607	138			4067	224		
	11-8	738	184			2668	264		
	11-9	704	153		3	4382	218		
	11-10	349	141			1735	181		
	Gch-12		2040	588	110	79130	51		
	12-1	532	75			2361	530		
Остров	12-2	610	68			2013	349		
Атамановский	12-3	450	73			2233	217		
	12-4	813	446			22210	256		
	12-5	782	103			2927	267		

	12-6	704	82			2175	350		
	12-7	633	53			2285	127		
	12-8	511	55			2093	341		
	Gch-13/1***		272	81	16	11440	13	5	
	Gch-13/2		383	100	27	16410	17	11	
	Gch-13/3		860	230	50	36180	33	21	
Остров	13-1	312	270			10770	276		
Атамановскии	13-2	255	127			5063	283		
	13-3	410	200			9409	1373		
	13-4	311	154			10138	332		
	13-5	213	116			5189	342		
	Gch-14		232	125		29210	11	2650	190
Oaman	14-1	84				999	344		
Атамановский	14-2	436	91			503	247		
	14-3	32				403	571		
	14-4	68				348	294		
Содержание в верхни	х горизонтах почвы (о. Атамановский)	200- 1000	60- 500			300-1200	50-200		
Примечания:					•		•	<u> </u>	

* Частица Gch4-1 выделена в полевых условиях, вмещающая почва не отбиралась и не анализировалась.

** В полевых условиях, при обнаружении, проба Gch4-2 идентифицировалась, как содержащая «горячую» частицу. При проведении лабораторных измерений навесок отобранной пробы было установлено, что материал имеет относительно равномерный изотопный состав – «горячая» частица, как таковая, в них отсутствует.

*** При локализации частица Gch-13 разделилась на три фрагмента, каждый из которых был проанализирован отдельно.

Таблица 2. Содержание ⁶⁰Со в малых (10 г и 1 г) навесках вмещающей почвы, из которой была извлечена «горячая» частица Gch1 (2007 г.)

	Macca,	
Проба	гр	⁶⁰ Со, Бк/кг
1-3-1	10	12010
1-3-2	10	17250
1-3-3	10	28610
1-3-4	10	16220
1-3-5	10	64190
1-3-6	10	18190
1-3-7	10	7480
1-3-8	10	28870
1-3-9	10	16820
1-3-10	10	17390

	Macca,	⁶⁰ Co,
Проба	гр	Бк/кг
1-3-5-1	1	8500
1-3-5-2	1	23300
1-3-5-3	1	4100
1-3-5-4	1	451500
1-3-5-5	1	18000
1-3-5-6	1	8600
1-3-5-7	1	34600
1-3-5-8	1	17300
1-3-5-9	1	6300
1-3-5-10	1	9200

Таблица 3. Содержание техногенных радионуклидов в 100-граммовых навесках вмещающих почв, из которых были извлечены «горячие» частицы (2008 г.)

			Активно	сть, Бк (,	для част	иц), Бк/кг (для	вмещаюн	цей почвы	()
место отоора	Номер ГЧ/ пробы вмещающей почвы	¹⁵² Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹³⁴ Cs	¹³⁷ Cs	⁶⁰ Co	²⁴¹ Am	²³⁹ Np
	Gch08-1					2324000			
Место отбора Коса Атамановская	1-1	322	61			2980	52		
	1-2	1210	233			2750	143		
	1-3	346	73			2640	126		
	1-4	1200	284			2120	175		
	1-5	517	88			2540	56		
	1-6	866	222			2370	172		
Коса Атамановская	1-7	430	84			2620	63		
	1-8	2030	300			2450	97		
	1-9	7880	1230			2100	266		
	1-10	487	86			4780	133		
	1-11	588	133			2360	83		
	1-12	2810	382			2670	111		
	1-13	780	135			1950	80		
	1-14	1479	249			2189	107		
	Gch08-2					242000			
	2-1	610	100			1200	85		
Коса Атамановская	2-2	1490	250			1480	280		
поси тниминовских	2-3	1800	300			1850	240		
	2-4	1460	250			1820	220		
	2-5	2600	380			2000	410		

	2-6	2280	350			1940	250	
	2-7	1497	304			1988	234	
Содержание в верхн	их горизонтах почвы (коса Атамановская)	200- 2500	130- 1000			250-400	100-500	
	Gch08-3					135500		
	3-1	25				2060		
	3-2	19				1670	32	
	3-3	30				1600	20	
Остров	3-4	31				1560		
Атамановский	3-5	28				1600		
	3-6	22				1270	60	
	3-7	40				1620	50	
	3-8	32				1600	30	
	3-9	18				1500		
	3-10	43				1572		
Содержание в верхи	них горизонтах почвы (о. Атамановский)	200- 1000	60- 500			300-1200	50-200	
	Gch08-4		1305	620	37	36880	32	
	4-1	230	140			6680	90	
Башиловская	4-2	190	100			3700	150	
протока	4-3	200	100			2920	110	
nporona	4-4	180	90			3900	150	
	4-5	200	110			4800	140	
	4-6	181	48			2735	108	
Содержание в вер	охних горизонтах почвы (Балчуговская протока)	300- 1200	60- 250			500-1800	100-300	

	Gch08-5				43340		
Остров Березовый	5-1	64			172	20	
	5-2	120			180	36	
	5-3	70			170	21	
Остров Березовый	5-4	65			560	42	
	5-5	70			170	27	
	5-6	80			180	25	
	5-7	710	170		165	67	
	5-8	106			199	26	
	Gch-6					46440	
	6-1	140			286	640	
	6-2	150			284	370	
Остров Березовый	6-3	250			280	650	
	6-4	150			254	440	
	6-5	270	67		300	350	
	6-6	187			399	374	
Среднее содерж	ание в верхних горизонтах почвы (о. Березовый)	70- 300	40- 200		300-1200	50-200	

Таблица 4. Содержание техногенных радионуклидов в 100-граммовых навесках вмещающих почв, из которых были извлечены «горячие» частицы (2009 г.)

			Активно	сть, Бк (д	ля части	ц), Бк/кг (для е	мещаю	цей почвы	()
Место отбора	Номер ГЧ/ пробы вмещающей почвы	¹⁵² Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹³⁴ Cs	¹³⁷ Cs	⁶⁰ Co	²⁴¹ Am	²³⁹ Np
	Gch09-1					218900			
	1-1	220				3530	970		
	1-2	220				4300	95		
	1-3	240				4450	72		
Устье р. Большая	1-4	250				6000	35		
Тель	1-5	260				3000	50		
	1-6	240				3700	84		
	1-7	250				2430	74		
	1-8	230				3030	140		
	1-9	256				2756	62		
	Gch09-2		1424	283	37	52790	36	65	
	2-1	302	92			1010	256		
	2-2	568	120			1350	87		
Устье р. Большая	2-3	603	170			2600	84		
Тель	2-4	279	80			1400	223		
	2-5	331	148			1500	154		
	2-6	350	120			2090	160		
	2-7	547	128	314		22558	314		
Содержание в верхних горизонтах почвы (устье р. Большая Тель)		20-500	40-120			100-500	10- 200		
Остров Березовый	Gch09-3					479300			

	3-1	320	63			5204	160		
	3-2	225	47			5016	530		
	3-3	200	38			2102	290		
	3-4	214	52			2570	550		
	3-5	250	54			2500	280		
	3-6	232	50			2350	350		
	3-7	350	63			4575	300		
	3-8	195	42			2866	732		
	Gch09-4		1537	406	36	49390	33	55	
	4-1	400	82			270	130		
	4-2	170	34			420	130		
	4-3	224				450	88		
	4-4	330	84			330	170		
	4-5	960	200			480	210		
	4-6	240				190	220		
Остров Березовый	4-7	110				290	150		
	4-8	130				410	210		
	4-9	150				250	240		
	4-10	140				200	220		
	4-11	130				260	104		
	4-12	140				275	170		
	4-13	100				300	190		
	4-14	207				253	161		
Среднее содерж	70-300	40-200			300-1200	50- 200			
Коса Атамановская					1592000				

	5-1	339	160	75		255	21		
	5-2	97	50			331	7		
	5-3	117	56			773	11		
	5-4	79	33			647	41		
	5-5	91	41			589	14		
	5-6	76	57			948	21		
	5-7	358	154	85		768	26		
	5-8	77	20			1133	24		
	5-9	105	58			735	34		
	5-10	92	56			965	49		
	5-11	81	47			706	20		
	5-12	97	62			868	44		
	5-13	90	25			1177	38		
	5-14	72	32			820	41		
	5-15	94	41			882	11		
	Gch09-6		4071	2463	28	235100	186	11800	3130
	6-1	60				1150	50		
	6-2	70				1310	20		
	6-3	240	51			730	50		
Коса Атамановская	6-4	274	72			692	10		
	6-5	64				1475	16		
	6-6	62				943	10		
	6-7	50				1305	11		
	6-8	282	77			1881	46		
Koca Aramanoporag	Gch09-7					78190			
	7-1	70				258	15		

	7-2	75				220	8		
	7-3	88	17			226	13		
	7-4	72				253	11		
	7-5	162	33			250	13		
	7-6	125				220	19		
	7-7	88	23			214	15		
	7-8	115				263	50		
	7-9					271	24		
	7-10		49			289	16		
	Gch09-8					36000			
Коса Атамановская	8-1	112				195	24		
	8-2	96				225	32		
	8-3	87				200	32		
	8-4	93				232	24		
	8-5	110				203	32		
	8-6	110				426	20		
	8-7	94				333	22		
	Gch09-9		538	145	28	49360	14	1163	152
	9-1	94	67			712	12		
-	9-2	232	52			627	26		
	9-3	106	45			940	18		
Коса Атамановская	9-4	84	43			900	17		
	9-5	146	57			840	34		
	9-6	144	65			754	17		
	9-7	179	71			1033	21		
	9-8	119	56			1132	30		

	9-9	173	45		1446	27	
	Gch09-10				70140		
	10-1	110			250	32	
	10-2	100			220	77	
Коса Атамановская	10-3	1650	310		220	63	
Коса Атамановская	10-4	100			200	22	
	10-5	120			230	18	
	10-6	213			213	30	
	10-7	458	87		205	58	
Солержание в верун	A FORMOUTAN HOURT (KOOD ATAMAHOROKAR)	200-	130-		250 400	100-	
Содержание в верхни	их горизонтах почвы (коса Атамановская)	2500	1000		250-400	500	

Таблица 5. Содержание техногенных радионуклидов в 100-граммовых навесках вмещающих почв, из которых были извлечены «горячие» частицы (2010 г.)

Место отбора			Активно	сть, Бк (д	ля части	ц), Бк/кг (д	іля в	мещаю	щей почвы	
	Номер ГЧ/ пробы вмещающей почвы	¹⁵² Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹³⁴ Cs	¹³⁷ Cs		⁶⁰ Co	²⁴¹ Am	²³⁹ Np
	Gch10-1	23				8	250		9	
	1-1	56				5	225	70		
	1-2	64				6	510	77		
Остров Березовый	1-3	44				4	514	108		
	1-4	68				3	207	36		
	1-5	33				5	660	68		
	1-6	297	20			5	460	172		
	1-7	39				10	126	177		

	Gch10-2				60452			
	2-1	115	42		332	102		
	2-2	73	25		305	68		
Остров Березовый	2-3	105			277	164		
o erpos sepesossin	2-4	113	31		278	194		
	2-5	66			274	109		
	2-6	61			285	164		
	2-7	61	23		329	99		
	Gch10-3				123113			
Остров Березовый	3-1	160			246	84		
	3-2	154	36		432	236		
	3-3	327	63		254	38		
	3-4	134			387	87		
	3-5	196			30735	131		
	Gch10-4/1*				769764			
	Gch10-4/2				16494			
	Gch10-4/3				90803		66	
	Gch10-4/4				55739			
Остров Березовый	Gch10-4/5				10863			
	4-1	260			135870	13		
	4-2	210	38		3100	14		
	4-3	220			3010	13		
	4-4	245	0		2870	22		
	4-5	293	48		4013	21		

Среднее содержа	ание в верхних горизонтах почвы (о. Березовый)	70-300	40-200			300-1200	50- 200		
	Gch10-5					45778		265	
ĺ	5-1	117				2510	281		
	5-2	105				2812	413		
	5-3	123				2513	272		
Балчуговская	5-4	95	24			2313	281		
протока	5-5	127				2616	299		
	5-6	100				2675	507		
	5-7	210				2508	237		
	5-8	220	39			2570	257		
	5-9	113				2370	309		
	Gch10-6		393	110	51	32610	2	258	127
протока	6-1	47				1244	75		
	6-2	94				1339	31		
	Gch10-7		2307	476	16	30080	70	65	
[7-1	50	55			1498	27		
Балчуговская	7-2	57	48			1423	51		
протока	7-3	58	52			1319	46		
	7-4	63	51			1154	33		
	7-5	68	21			111	9		
Содержание в верхних горизонтах почвы (Балчуговская протока)		300- 1200	60-250			500-1800	100- 300		
	Gch10-8**								
Коса Атамановская	8-1	192	54			7695	252		
	8-2	211				8207	151		

	8-3	414				7763	107		
	8-4	283				6891	90		
	8-5	192				7315	82		
	8-6	192				7806	141		
	8-7	268				7884	72		
	8-8	195				7315	83		
	8-9	413	128			8322	147		
	Gch10-9		410	78	7	36420	18	3479	82
	9-1	381	94			2330	92		
	9-2	318	90			2087	66		
Коса Атамановская	9-3	397	102			2565	99		
	9-4	728	151			2316	112		
	9-5	318	71			1904	56		
	9-6	301	68			1872	93		
	9-7	437	111			4658	75		
	9-8	334	79			2364	25		
	9-9	600	160			2188	226		
	Gch10-10					96314			
	10-1	112	30			537	12		
	10-2	116	37			350	17		
	10-3	150	49			184	368		
Коса Атамановская	10-4	129	30			174	177		
	10-5	88	28			151	26		
	10-6	191	45			130	18		
-	10-7	50	55			1378	49		
	10-8	49	34			1102	72		

	10-9	48	49		1597	224	
	10-10	42	47		1170	34	
	10-11	52	46		1162	77	
	10-12	51	45		1205	26	
	10-13	62	46		1118	39	
	Gch10-11**						
	11-1	69			988	10	
	11-2	119			990	8	
	11-3	112			1020	7	
Коса Атамановская	11-4	48			1101	9	
	11-5	49			951	8	
	11-6	52			927	3	
	11-7	68			905	10	
	11-8	46			835	21	
Содержание в верхни	их горизонтах почвы (коса Атамановская)	200- 2500	130- 1000		250-400	100- 500	
	Gch10-12				1351330		
	12-1	22	0		153	37	
	12-2	12	0		156	54	
Octrop	12-3	10	0		158	41	
Атамановский	12-4	17	0		150	38	
	12-5	12	0		184	61	
	12-6	15	0		169	22	
	12-7	25	0		197	27	
	12-8	55	36		157	41	

Содержание в верхн	их горизонтах почвы (о. Атамановский)	200- 1000	60-500			300-1200	50- 200		
	Gch10-13		2733	611	43	100100	56	88	
	13-1	72	45			951	107		
Устье р. Большая 13-2		95	33			1026	53		
Тель 13-3		101	29			774	101		
	13-4	128	62			697	117		
	13-5	111	38			642	87		
Verser Forstword	Gch10-14				6	78610			
устье р. большая Тель	Устье р. Большая 14-1					1177	75		
	14-2	95				1635	119		
Содержание в верхних горизонтах почвы (устье р. Большая Тель)		20-500	40-120			100-500	10- 200		

Примечания:

* При квартовании пробы Gch10-4 были выделены пять «горячих» частиц, каждая из которых была проанализирована отдельно.

** В полевых условиях, при обнаружении, пробы Gch10-8 и Gch10-11 идентифицировались, как содержаие «горячие» частицы. При проведении лабораторных измерений навесок отобранных проб было установлено, что материал имеет относительно равномерный изотопный состав – «горячие» частицы, как таковые, в них отсутствуют.

Результаты сканирующей электронной микроскопии

Рис. 1. Внешний вид горячей частицы Gch2-2(а), образ, полученный в режиме обратно-рассеянных электронов и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (б).

Точка	С	Mg	Al	Si	K	Ca	Fe	Total
1	100							100
2	78.28		7.32	14.40				100
3	57.47	1.65	11.80	20.47	3.08	1.35	4.19	100
4	37.57	2.17	18.58	25.10		1.34	15.23	100

Таблица 6. Элементный состав (в %) материала «горячей» частицы Gch2-2 в выбранных точках по данным микрозондового анализа.

Рис. 2. Внешний вид горячей частицы Gch5(а), образ, полученный в режиме обратно-рассеянных электронов и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (б).

Табли	ца 7.	Элемен	нтный	і соста	ав (в	%) м	атериа	ла «го	рячеі	і» час	гицы	Gch5	В
выбра	выбранных точках по данным микрозондового анализа.												
Точка	С	Mg	Al	Si	Р	Ca	Cr	Fe	Ni	Pb	U	Total	

Точка	С	Mg	Al	Si	Р	Ca	Cr	Fe	Ni	Pb	U	Total
1	26.08	0.66	1.88	1.68	0.69	1.40	0.83	1.70			65.06	100
2	47.61	18.53	0.71	25.14		0.58		7.43				100
3	42.68	1.48	5.15	5.78	5.94	5.83	13.40	16.37	1.05			100
4	30.80	3.20	4.14	8.53		4.44	16.50	25.78	2.15			100
5	54.7	0.68	8.22	27.57		0.99		2.12		36.29		100

Рис. 3. Внешний вид горячей частицы Gch7(a), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области «горячей» частицы Gch7, полученный в режиме обратно-рассеянных электронов (б) и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).

Таблица 8.	Элементный	состав	(B %)	материала	«горячей»	частицы	Gch7	В
выбранных	к точках по дан	ным ми	крозо	ндового ана	ллиза.			

Точка	С	0	Mg	Al	Si	S	Ca	Cr	Fe	Ni	U	Total
1	10.54	8.77	0.27	0.94	1.94	0.36	1.92	6.56	14.48	1.19	53.04	100
2	31.42	49.75	0.32	1.37	13.32	0.16	0.38	1.02	.1.88	0.23		100
3	55.38	29.61	0.27	0.78	2.27	0.13	0.75	2.82	5.06	0.57		100
4	40.37	31.82	1.70	2.67	5.24	0.57	1.89	5.09	8.99	0.60	1.05	100

Рис. 4. Внешний вид горячей частицы Gch8(а), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области «горячей» частицы Gch8, полученный в режиме обратно-рассеянных электронов (б) и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).

Таблица 9. Элементный состав (в %) материала «горячей» частицы Gch8 в выбранных точках по данным микрозондового анализа.

Точка	C	0	F	Al	Si	Cl	Κ	Ca	Fe	Au	Pb	Total
1	52.47	9.62	3.17	4.69		6.00					24.04	100
2	32.61	5.98		9.50		1.74				50.17		100

3	49.83	9.76	6.21		0.64				33.55	100
4	38.34	5.91	4.74						11.08	100
5	63.03	14.62	15.37	3.02	1.04	0.91	0.79	2.83		100

Рис. 5. Внешний вид горячей частицы Gch9(a), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области «горячей» частицы Gch9, полученный в режиме обратно-рассеянных электронов (б) и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).
Таблица 10. Элементный состав (в %) материала «горячей» частицы Gch9 в выбранных точках по данным микрозондового анализа.

Точка	C	0	Mg	Al	Si	S	Ca	Cr	Fe	Cu	U	Total
1	26.73	31.90	0.78	1.78	3.12	1.61			0.95	2.72	30.41	100
2	19.61	21.57		0.84	0.81	0.56				1.99	54.62	100
3	26.47	50.55		0.68	22.31							100
4	37.03	42.42	2.42	2.80	8.88	0.96	1.80		3.71			100
5	53.71	22.53		1.34	0.95	4.03		4.23		10.08	3.15	100
6	87.07	12.93										

20 mkm

Рис. 6. Внешний вид горячей частицы Gch12(а), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области «горячей» частицы Gch12, полученный в режиме обратно-рассеянных электронов (б) и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).

Таблица 11. Элементный состав (в %) материала «горячей» частицы Gch12 в выбранных точках по данным микрозондового анализа.

Точка	C	0	Mg	Al	Si	Р	S	Cl	Ca	Cr	Fe	U	Total
1	36.77	42.09	0.61	0.88	6.41	0.40	0.72	0.42	1.33	4.65	5.70		100
2	35.27	24.46	1.15	1.44	3.59		1.30	0.66	1.93	10.2	17.08	2.86	100
3	40.60	28.38	1.14	0.91	2.60	0.43	1.44	0.57	1.48	8.31	14.14		100
4	40.48	38.65	1.35	1.64	3.55	0.44	1.21	0.37	1.44	4.42	6.46	16.9	100
5	44.45	36.85	0.76	0.80	1.24	1.48	1.34		2.06	4.71	6.33		100
6	37.03	31.01	0.86	1.17	1.79		0.68		1.25	3.77	5.51		

Рис. 7. Внешний вид горячей частицы Gch13-1(а), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области

«горячей» частицы Gch13-1, полученный в режиме обратно-рассеянных электронов (б) и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).

Таблица 12. Элементный состав (в %) материала «горячей» частицы Gch13-1 в выбранных точках по данным микрозондового анализа.

Точка	C	0	Al	Si	Cl	Ca	Cu	Br	Pb	Total
1	26.63	13.09							60.28	100
2	40.44	15.69		0.91	1.18	0.70	66.18	1.62	33.29	100
3	74.69	23.86	1.45							100

90 mkm

Рис. 8. Внешний вид горячей частицы Gch14(а), образ, полученный в режиме обратно-рассеянных электронов; образ выделенной области «горячей» частицы Gch14, полученный в режиме обратно-рассеянных электронов (б) и энерго-дисперсионные спектры, характеризующие элементный состав материала частицы в выбранных точках (в).

Таблица 13. Элементный состав (в %) материала «горячей» частицы Gch14 в выбранных точках по данным микрозондового анализа.

Точка	C	0	Na	Mg	Al	Si	S	K	Ca	Fe	U	Total
1	8.72	25.29			0.65					1.36	63.98	100
2	6.87	17.83			1.12						74.1	100
3	12.35	25.83			2.24	0.50				0.68	58.40	100
4	32.80	42.67	0.37	0.78	3.00	16.21	0.24	0.38	1.00	2.54		100
5	44.63	36.96		0.19	8.94	2.68	0.56	0.34	0.55	3.86	0.79	100