ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ГЕОЛОГИИ И МИНЕРАЛОГИИ ИМ. В.С. СОБОЛЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

ГАВРЮШКИНА Ольга Александровна

ПЕТРОГЕНЕЗИС ПЕРМО-ТРИАСОВЫХ ГРАНИТОИДОВ АЛТАЯ

специальность 25.00.04. – петрология, вулканология

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель доктор геолого-минералогических наук член-корреспондент Крук Николай Николаевич

Оглавление

ВВЕДЕНИЕ	5
ГЛАВА 1. КРАТКИЙ ГЕОЛОГИЧЕСКИЙ ОЧЕРК	12
1.1. Геологическая изученность Алтая	12
1.2. Краткая геологическая история Алтая	13
1.3. Основные тектонические структуры Алтая	
ГЛАВА 2. ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ, ВНУТРЕННЕЕ СТРОЕНИЕ И ВОЗРАСТ	
ИНТРУЗИЙ	18
2.1. Формационное расчленение пермо-триасовых магматических ассоциаций Алтая	18
2.2. Геологическая позиция и внутреннее строение интрузий	
2.2.1. Айский сиенит-граносиенит-лейкогранитовый комплекс	
2.2.2. Теранджикский габбро-монцодиорит-граносиенит-гранитовый комплекс	23
2.2.3. Тархатинский граносиенит-монцодиоритовый комплекс	
2.2.4. Атуркольский граносиенит-гранитовый комплекс	
2.2.5. Синюшенский гранодиорит-гранит-лейкогранитовый комплекс	
2.2.6. Белокурихинский гранит-лейкогранитовый комплекс	
2.3. Возраст гранитоидов	
2.3.1. Методика геохронологических исследований	
2.3.2. Результаты геохронологических исследований	
2.4. Обсуждение результатов	37
ГЛАВА З. СТРУКТУРНО-ТЕКСТУРНЫЕ ОСОБЕННОСТИ И МИНЕРАЛЬНЫЙ	
СОСТАВ ПОРОД	
3.1. Петрографическая характеристика интрузивов	
3.1.1. Айский массив	
3.1.2. Теранджикский массив	
3.1.3. Тархатинский массив	
3.1.4. Саввушинский массив	
3.1.5. Атуркольский массив	
3.1.6. Синюшенский массив	
3.1.7. Белокурихинский массив	
3.2. Обсуждение результатов	
ГЛАВА 4. ГЕОХИМИЧЕСКИЕ И ИЗОТОПНЫЕ ХАРАКТЕРИСТИКИ	
4.1. Методика петрохимических и изотопных исследований	
2 1	67
4.2.1. Айский массив	
4.2.2. Теранджикский массив	
4.2.4. Саввушинский массив	
4.2.5. Атуркольский массив	
4.2.6. Синюшенский массив	
4.2.7. Белокурихинский массив	
4.3. Обсуждение результатов	
ГЛАВА 5. МИНЕРАЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ИНТРУЗИЙ	90
5.1. Методика минералогических исследований	
5.2. Породообразующие минералы	
5.2.2. Слюды	
5.3. Акцессорные минералы	
5.3.1. Айский массив	
5.3.2. Теранджикский массив	
5.3.3. Тархатинский массив	
5.3.4. Саввушинский массив	
 	

5.3.5. Атуркольский массив	121
5.3.6. Синюшенский массив	123
5.3.7. Белокурихинский массив	126
5.4. Обсуждение результатов	129
5.4.1. Айский массив	
5.4.2. Теранджикский массив	130
5.4.3. Тархатинский массив	132
5.4.4. Саввушинский массив	133
5.4.5. Атуркольский массив	134
5.4.6. Синюшенский массив	134
5.4.7. Белокурихинский массив	
5.5. Заключение к главе 5	
ГЛАВА 6. ПЕТРОГЕНЕЗИС	139
6.1. Петрогенезис габбро-гранитных серий	
6.2. Петрогенезис граносиенит-гранитных серий	145
6.3. Петрогенезис гранит-лейкогранитных ассоциаций	
6.3.1. Петрогенезис лейкогранитов	156
6.4. Петрогенетическая модель формирования пермо-триасовых интрузивных ассоциа	аций
Алтая	163
ЗАКЛЮЧЕНИЕ	166
Список используемой литературы	168
Приложение 1	
Таблица 4.1	196
Таблица 4.2	215
Таблица 4.3	217
Приложение 2	218
Таблица 5.3	218
Таблица 5.4	236
Таблица 5.5	274
Таблица 5.6	278
Таблица 5.7	289
Таблица 5.8.	312

Принятые сокращения и аббревиатуры

Атр – амфибол

Ар – апатит

Bt – биотит

Cord – кордиерит

Еих – эвксенит

Fl – флюорит

Ilm – ильменит

KFs – калиевый полевой шпат

Mag – магнетит

Mn-Ilm – манганильменит

Mnz – монацит

Ми – мусковит

Ol – оливин

Ort – ортит

P1 – плагиоклаз

Рх – пироксен

Qz – кварц

Rt – рутил

Sill – силлимонит

Ttn – титанит

Zrn – циркон

2Міса – двуслюдяной

HFSE – высокозарядные элементы

LILE – крупноионные литофильные элементы

REE – редкоземельные элементы

HREE – тяжёлые редкоземельные элементы

LREE – лёгкие редкоземельные элементы

f – железистость минералов FeO/(FeO+MgO)

l – глинозёмистость минералов $Al_2O_3/(SiO_2+Al_2O_3+FeO+MgO)$

мас. % - массовые проценты

н.п.о. – ниже предела обнаружения

н.о. – не определялось

мкм – микрометр

мм - миллиметр

см - сантиметр

ВВЕДЕНИЕ

Актуальность исследований

Образование внутриплитных (анорогенных) гранитоидов — один из важнейших вопросов современной магматической петрологии. Формирование этих пород оторвано во времени на десятки и сотни миллионов лет от коллизионных событий и не связано с процессами взаимодействия литосферных плит. Поэтому источники энергии, обусловившие их генерацию, природа и механизмы образования их расплавов — предмет постоянной дискуссии.

На древних платформах анорогенные гранитоиды представлены породами А-типа. Они обогащены щелочами, HFSE и REE. Образование этих пород обычно связывают с дифференциацией мантийных магм [Loiselle, Wones, 1979; Bonin, 2007] или смешением мантийных расплавов с коровыми выплавками [Creaser et al., 1991]. Ряд авторов объясняет формирование А-гранитов плавлением пород среднего состава в нижнекоровых условиях под действием мантийных флюидов [Collins et al., 1982; Clemens et al., 1986; Whalen et al., 1987; Sylvester, 1989].

В складчатых поясах внутриплитные гранитоиды часто имеют другой состав. Типичные А-граниты здесь редки. Часто преобладают гранитоиды, близкие к породам I- и S- типов, сходные с гранитоидами активных окраин и зон коллизии континентов. Встречаются также редкометалльные разности, часто продуктивные на Sn, W, Mo, Li и Ве. Изотопные характеристики гранитоидов указывают на их преимущественно коровую природу. Породы базитового состава присутствуют в подчиненных количествах, а признаки прямого участия мантийных магм в формировании гранитоидов фиксируются редко. Таким образом, есть все основания полагать, что в источнике внутриплитных гранитоидов складчатых областей важную роль играют породы континентальной коры. В этой связи новую информацию о процессах внутриплитного магматизма может дать изучение габбро-гранитных серий, включающих породы как заведомо мантийного, так и условно корового генезиса. Данная работа посвящена изучению пермо-триасовых габбро-гранитных серий Российского Алтая.

За последние годы получен значительный объём геологических, геохимических и изотопных данных, позволивших выявить специфику отдельных магматических ассоциаций и предположить важную роль корово-мантийного взаимодействия при формировании гранитоидов [Владимиров и др., 1997, 2001, 2008; Kruk et al., 2002; Добрецов и др., 2005; Семенов и др., 2010]. Однако, вопервых, никем и никогда не проводилось систематическое изучение специфики породообразующих и акцессорных минералов этих ассоциаций, а во-вторых, до настоящего момента остались неясными некоторые важные вопросы (последовательность формирования гранитоидов разных геохимических типов, связь состава и изотопных характеристик гранитоидных магм с природой и составом вмещающих блоков и т.д.). Решение этих проблем позволит существенно расширить сведения о процессах формирования гранитоидов крупных изверженных провинций и построить согласованные петрологические модели магматизма для этого геодинамического режима.

Объектами исследования являются пермо-триасовые гранитоидные массивы Алтая — габбро-гранитные Айский, Теранджикский, Тархатинский и Саввушинский интрузивы, существенно граносиенит-гранитный Атуркольский массив, а также гранит-лейкогранитные Синюшенский и Белокурихинский массивы.

Цели и задачи исследования

Целью работы является реконструкция источников и механизмов петрогенезиса пермо-триасовых гранитоидов Российского Алтая на основе минералогических, геохронологических и изотопно-геохимических данных.

Для достижения поставленной цели решались следующие задачи:

- 1. Изучение геологической позиции, внутреннего строения и взаимоотношений пермо-триасовых гранитоидных серий Горного и Рудного Алтая.
- 2. Изучение петрографического и химического составов, типизация исследуемых гранитоидов на основе петрохимического, редкоэлементного и изотопного составов.

- 3. Исследование минерального состава пород, определение физико-химических условий формирования пород рассматриваемых массивов.
- 4. Проведение ⁴⁰Ar/³⁹Ar изотопных исследований для определения временных границ и общей хронологии формирования гранитоидных комплексов.
- 5. Построение общей петрогенетической модели формирования гранитоидов на основе полученных минералогических, геохронологических и изотопно-геохимических данных.

Фактический материал и методы исследования

Основу рабочей коллекции составляют образцы, отобранные в ходе экспедиционных работ 2014-2017 гг. с участием автора, и в 2009, 2011, 2013 гг. Н.Н. Круком. Во время проведения полевых работ определён спектр пород и масштабы их распространения в пределах массивов, отобраны коллекции образцов для минералогических, геохронологических, геохимических и изотопных исследований.

Определение возраста пород ⁴⁰Ar/³⁹Ar методом проводилось в ЦКП МИИ СО РАН (г. Новосибирск, Россия) по методике, детально описанной в работе [Травин и др., 2009].

образцов гранитоидов были подготовлены шлифы, пластинки, отполированные с двух сторон, и протолочки. Для исследования минералогопетрографических особенностей проведено исследование 119 шлифов и 46 полированных пластинок образцов пород рассматриваемых массивов методами оптической и электронной микроскопии. При изучении шлифов и пластинок отдельные фрагменты пластинок отобраны для проведения исследований с помощью электронной микроскопии анализа состава И минералов микроаналитическими методами. Кроме пластинок для определения состава монофракции породообразующих минералов, использовались отобранные вручную под бинокулярным микроскопом. Состав породообразующих и акцессорных минералов определен в ЦКП МИИ СО РАН (г. Новосибирск) методом ренгеноспектрального микроанализа (ЕМРА) на приборе САМЕСА Camebax Micro (обработано более 1800 анализов). Диагностика акцессорных минералов проводилась с помощью сканирующей электронной микроскопии на приборе Tescan Mira 3LMU (обработано более 1700 анализов).

Содержания петрогенных компонентов в породах (55 проб) определялись в ЦКП МИИ CO PAH (г. Новосибирск, Россия) методом рентгенофлюоресцентного анализа на рентгеновском спектрометре ARL-9900-XP фирмы ARL (Applied Research Laboratories) по стандартной методике. Содержания редких элементов (47 проб) определялись методом индуктивно-связанной плазмы масс-спектрометрическим окончанием (ICP-MS) на приборе ELEMENT FINIGAN по методике [Николаева и др., 2012] (ЦКП МИИ СО РАН, г. Новосибирск, Россия). Концентрации F и Li были определены (47 проб) в Аналитическом центре ИГХ СО РАН (г. Иркутск, Россия) атомно-эмиссионным методом и методом пламенной атомно-эмиссионной спектрометрии (по методике [Зак и др., 2017]) соответственно. Определения содержаний и изотопных составов Sm и Nd (13 проб) пород выполнены в Институте геологии и геохимии докембрия (г. Санкт-Петербург, Россия) и в Геологическом институте Кольского научного центра (г. Апатиты, Россия) на многоколлекторном масс-спектрометре TRITON ТІ (г. Санкт-Петербург) и Finnigan MAT 261 (г. Апатиты). Rb-Sr изотопные исследования (13 проб) проведены по валовым пробам в ЦКП МИИ СО РАН (г. Новосибирск, Россия) на масс-спектрометре МИ 1201АТ.

Защищаемые положения

- 1. Пермо-триасовый интрузивный магматизм Алтая имеет анорогенную природу и представлен тремя главными типами ассоциаций: габбро (монцодиорит)-гранитными, граносиенит-гранитными и гранитлейкогранитными. Формирование основного объёма пород произошло в течение короткого временного интервала (254-247 млн лет) и было синхронно с формированием Сибирской крупной изверженной провинции.
- 2. Пермо-триасовые магматические ассоциации Алтая характеризуются широким разнообразием вещественного состава слагающих их пород. По геохимическим характеристикам большинство пермо-триасовых гранитоидов

близки к породам I- и S-типов, однако имеют более высокую общую и калиевую щелочность, повышенные содержания несовместимых элементов и F в сравнении со среднепалеозойскими корово-анатектическими гранитоидами Алтая.

- 3. Резкое изменение составов слюд (включая содержания F^- и OH^-) и последовательная смена раннего ильменита титанитом магнетитом образованием манган-ильменита указывают на повышение фугитивности кислорода роль флюида заключительных И возрастающую на формирования интрузий.
- 4. Пермо-триасовые гранитоиды Алтая имеют преимущественно коровую природу. Основным механизмом их генерации являлось плавление пород континентальной коры под воздействием тепла и флюидов, отделяющихся от мантийных очагов. Вариации состава гранитоидов обусловлены латеральной неоднородностью континентальной коры региона, участием нескольких типов мантийных магм, а также различной степенью мантийно-корового взаимодействия.

Научная новизна

- 1. Обобщены имеющиеся и приведены новые данные по геологической позиции, минералого-петрографическим особенностям, геохимическим, изотопным характеристикам и возрасту пермо-триасовых гранитоидных комплексов Российского Алтая.
- 2. На основании ⁴⁰Ar/³⁹Ar геохронологических данных показано, что основной объём пермо-триасовых гранитоидов Алтайского сегмента Сибирской LIP сформирован в течение короткого интервала 254-247 млн лет синхронно с главным пиком базитового магматизма. Зависимость между геохимическим типом гранитоидных серий и их возрастом отсутствует, а разнообразие гранитоидов определяется спецификой состава сосуществующих базитов.
- 3. Доказано, что наблюдаемое разнообразие пород пермо-триасовых гранитоидных серий Российского Алтая объясняется тремя факторами: 1) плавлением неоднородной по составу литосферной мантии; 2) природой нижней и

средней коры вмещающих геоблоков (основной источник гранит-лейкогранитных расплавов), 3) механизмами и степенью мантийно-корового взаимодействия (смешение магм, флюидный синтексис и др.). В целом же формирование пермотриасовых внутриплитных гранитоидов Алтая происходило за счёт плавления пород нижней коры под воздействием тепла и флюидов, отделяющихся от мантийных очагов.

Научная (теоретическая) значимость

Существенный объём новой информации, полученный при систематическом исследовании пород пермо-триасовых гранитоидных серий Российского Алтая, вносит заметный вклад в понимание генезиса гранитоидов крупных изверженных провинций. Синтез новых минералогических данных, геохимической, геохронологисчекой и изотопной информации позволяет получить более достоверную картину формирования и эволюции гранитоидов крупных изверженных провинций и построить согласованные петрологические модели магматизма для этого геодинамического режима.

Практическая значимость

Представленные в диссертационной работе результаты могут быть использованы для уточнения легенд Госгеолкары — 200, 1000 Алтая, при проведении палеогеодинамических реконструкций складчатого обрамления Сибирского кратона, а также учитываться при постановке прогнозно-поисковых работ.

Соответствие результатов работы научным специальностям

Результаты работы соответствуют пункту 1 (магматическая геология) и 2 (магматическая петрология) паспорта специальности 25.00.04.

Апробация работы и публикации

По теме диссертации опубликованы 14 работ, в том числе 4 статьи в рецензируемых журналах из списка ВАК. Результаты исследований были представлены в виде устных и стендовых докладов на 9 российских и международных конференциях в Новосибирске (2016, 2017, 2020 гг.), Томске

(2018 г.), Екатеринбурге (2015, 2017 гг.), Иркутске (2014, 2020 гг.), Сыктывкаре (2014 г.).

Структура и объём работы

Диссертация состоит из введения, 6 глав и заключения, изложена на 315 страницах, содержит 57 рисунков и 13 таблиц, 2 приложения. Список литературы включает 257 наименований.

Благодарности

Выражаю глубокую благодарность своему научному руководителю доктору геолого-минералогических наук, члену-корреспонденту Николаю Николаевичу Круку, без постоянной поддержки, настойчивости и помощи которого на всех этапах исследований эта работа не была бы выполнена.

Глубокую признательность за доброжелательное отношение, ценные рекомендации и обсуждения автор выражает докторам геолого-минералогических наук Смирнову С.З., Изоху А.Э., Владимирову А.Г., Рудневу С.Н., Травину А.В., Туркиной О.М., Хромыху С.В., Сафоновой И.Ю., которые кроме того во многом повлияли на меня. Благодарю кандидатов геолого-минералогических наук И.Ю. Анникову, В.Г. Владимирова, И.В. Кармышеву, П.Д. Котлера, М.Л. Куйбиду, Е.И. Михеева, сотрудников ИГМ СО РАН Крук Е.А., Куйбида Я.В. Неоценимую помощь в аналитических исследованиях оказали Е.Н. Нигматулина, Н.С. Карманов, М.В. Хлестов, Н.М. Глухова, Н.Г. Карманова, А.И. Таряник, И.В. Николаева, С.В. Палесский, С.А. Серов, В.Ю. Киселева.

Искренне благодарю за всестороннюю поддержку, помощь и постоянную мотивацию родных и близких – Гаврюшкина П.Н., Хохрякову И.П., Хохрякова А.Ф. и Колесниченко М.В.

ГЛАВА 1. КРАТКИЙ ГЕОЛОГИЧЕСКИЙ ОЧЕРК

1.1. Геологическая изученность Алтая

Геологическое изучение Алтая началось в XVIII веке при открытии богатых месторождений меди и серебра. Тогда исследовались лишь рудные районы и ближайшие их окрестности. Позже, в середине XIX века началось планомерное изучение региона, экспедиции Г.П. Гельмерсона и П.А. Чихачева дали представление об особенностях геологического строения Алтая, были созданы первые геологические карты. В начале XX века В.А. Обручев исследовал рельеф Алтайского региона, он установил, что современный вид Алтайских гор обусловлен розломообразованием, а более молодые палеозойские складчатые структуры были полностью разрушены эрозией. Однако, он полагал, что эти разломы образовались как результат вертикальных движений [Обручев, 1915] и только в 90х гг XX века А.М.Д. Шенгёр, Б.А. Натальин [Şengör, Natal'in, 1996] и М.Б. Ален с соавторами [Allen et al., 1995] показали, что многие из этих разломов имеют сдвиговую природу, а сбросы маркируют присдвиговые зоны растяжения.

Систематическое изучение Алтая началось в начале XX столетия, а в 50х гг была издана геологическая карта Алтая масштаба 1:500 000 под редакцией В.П. Нехорошева. Также большой вклад в изучение геологии Алтая на данном этапе внесли В.А. Кузнецов, Г.Д. Афанасьев, Н.Л. Бубличенко, Н.К. Винкман, Н.Н. Горностаев, С.Ф. Дубинскин, А.С. Егоров, А.П. Лебедев, А.С. Мухин, А.К. Никонов, М.А. Усов, В.А. Хахлов и ряд других исследователей [Нехорошев, 1925а, б, 1926, 1932, 1933, 1958; Кузнецов, 1934, 1938, 1939, 1952, 1954; Лебедев, 1937, 1938; Никонов, 1937; Афанасьев, 1938; Мухин, 1938; Горностаев, 1938; Винкман, 1948].

Вместе с созданием горно-геологических научно-исследовательских институтов в Западно-Сибирском филиале АН СССР (горно-геологический институт в 1944 г., позже, с 1957 г. – Институт геологии и геофизики СО АН СССР, а также Сибирский научно-исследовательский институт геологии, геофизики и минерального сырья в 1957 г.) изучение геологических структур

Алтая вышло на новый виток развития. Ю.А. и В.А. Кузнецовы, Н.Л. Добрецов, Н.А. Берзин, П.М. Бондаренко, М.М. Буслов, А.Г. и В.Г. Владимировы, В.В. Волков, А.С. Гибшер, Л.В. Кунгурцев, Л.А. Смирнова, К. Теннисен, Б.М. Чиков занимались исследованием общей геологии и тектоники региона. Особенности изучались вулканизма И интрузивного магматизма A.A. Амшинским, И.Ю.Анниковой, А.Ф. Белоусовым, В.И. Богнибовым, А.Г. Владимировым, В.В. Врублевским, В.А. Говердовским, В.Б. Дергачевым, Н.Л. Добрецовым, В.Н. Довгалем, С.В. Есиным, Э.П. и А.Э. Изохами, В.А. Ильиным, М.С. Козловым, А.Н. Кононовым, А.П. Кривенко, Н.М. Кужельным, А.Н. Леонтьевым, И.В. Лучицким, Л.А. Михалевой, Б.Ф. Налетовым, И.А. Нечаевой, Р.В. Оболенской, Г.В. Санусом, Г.В. Поляковым, А.П. Пономаревой, Л.С. Ратановым, С.Н. Рудневым, И.Ю. Сафоновой, В.А. Симоновым, В.А. Скуридиным, С.И. Ступаковым, Ю.В. Тикуновым, А.В. Титовым, Г.С. Федосеевым и многими другими. Вопросы формирования и размещения рудных месторождений стали предметом исследований А.А. Оболенского, А.С. Борисенко, А.А. Боровикова, Ю.А. Кузнецова, Г.Г. Павловой, Ф.Н. Шахова.

Специалисты производственных геологических организаций («ЗапСибГеология», «ВостКазГеология», «Южсибгеолком», «Запсибгеолсъемка», «Горно-Алтайская ПСЭ», «Рудно-Алтайская экспедиция») Г.А. Бабин, Н.П. Бедарев, В.А. Бутенко, А.И. и Н.И. Гусевы, В.С. Зыбин, Е.А. Киселев, А.В. и В.А. Кривчиковы, В.И. Крупчатников, С.А. Кузнецов, В.С.Куртигешев, О.В. Мурзин, Ю.С. Носков, Ю.А. Пономарев, В.И. Тимкин, Ю.А. Туркин, С.И. Федак, С.П. Шокальский внесли огромный вклад в изучение Алтая, именно ими был получен огромный объём геологической информации при проведении геокартировочных, поисковых и оценочных работ.

1.2. Краткая геологическая история Алтая

Территория Горного Алтая является составной частью Центрально-Азиатского складчатого пояса и представляет собой крайнее западное окончание протяженной дуги каледонид, обрамляющей Сибирский кратон с юга и югозапада. Особенности строения и геологической истории региона подробно изложены в [Берзин и др., 1994; Шокальский и др., 2000; Добрецов, 2003; Крук и др., 2010; Kruk et al., 2011; Буслов и др., 2013; Моссаковский и др., 1993; Şengör et al., 1993; Берзин, Кунгурцев, 1996; Добрецов и др., 1994; Buslov et al., 2001; Владимиров и др., 2003, 2005, 2008].

Тектоническая история Алтая непосредственно связана с эволюцией Палеоазиатского океана и включает в себя несколько стадий.

Первый этап (рифей-ранний кембрий) характеризуется образованием океанических бассейнов, океанических поднятий и островных дуг с пред- и задуговыми бассейнами, а также многочисленных симаунтов, перекрытых карбонатными отложениями.

Второй этап развития Алтая, позднекембрийский — раннеордовикский, был временем активного роста земной коры Алтая, когда окраинноморские и островодужные системы, а также Гондвана, аккретировали к Сибирскому континенту [Берзин и др., 1994; Buslov et al., 2001; Добрецов, 2003]. Аккреционно-коллизионные события сопровождались деформацией осадочных бассейнов и образованием глаукофановых поясов [Берзин, Кунгурцев, 1996; Добрецов, 1999; Волкова и др., 2005; Волкова, Скляров, 2007], базитовым и гранитоидным магматизмом [Шокальский и др., 2000; Владимиров и др., 2001; Руднев и др., 2004]. Интенсивная эрозия молодых орогенных структур привела к образованию крупных турбидитовых бассейнов, которые образовались на океанической коре и наполнились мощными отложениями с высокими содержаниями алюминия, низкой степени метаморфизации [Берзин и др., 1994; Сенников и др., 2003; Kruk et al., 2010].

Со среднего ордовика до раннего девона российский Горный Алтай переживал тектономагматическое затишье и характеризовался терригенно-карбонатным осадконакоплением. Традиционно этот этап развития Алтая связывается с обстановкой пассивной континентальной окраины [Берзин и др., 1994]. При этом ряд исследователей [Berzin, 2001; Крук и др., 2004; Крук и др.,

2013] предполагают, что континентальная окраина в этот период времени имела трансформный характер.

Девон-каменноугольный этап характеризуется зарождением и эволюцией активной континентальной окраины. В раннем девоне литосфера Обь-Зайсанского океанического бассейна была субдуцирована под край Сибирского континента и, соответственно, здесь возникла активная континентальная окраина андского типа. Начало активной границы совпало с событием внутриплитного магматизма в Алтае-Саянской области [Шокальский и др., 2000; Лавренчук и др., 2004; Бабин и др., 2004]. В результате субдукции возникла система вулканических поясов, в том числе Рудно-Алтайская полеоостровная дуга [Ротараш и др., 1982; Берзин и др., 1994; Владимиров и др., 2001; Крук и др., 2008]. В позднем девоне вулканическая активность сменилась магматизмом с образованием крупных гранитных батолитов, что свидетельствует о росте континентальной коры на территории Алтая.

Эволюция континентальной окраины закончилась коллизией Сибирского и Казахстанского палеоконтинентов и закрытием Обь-Зайсанского бассейна на границе раннего и позднего каменноугольного периода. [Берзин и др., 1994; Владимиров и др., 2003]. Завершение коллизионных процессов совпало с пиком активности Таримского плюма на рубеже карбона-перми [Борисенко и др., 2006; Владимиров и др., 2008; Хромых и др., 2013; Кhromykh et al., 2017]. Начиная с этого этапа, территория Российского Алтая развивалась во внутриплитном режиме. Наиболее значимые тектоно-магматические события в регионе произошли на границе перми и триаса и были обусловлены активностью Сибирского суперплюма.

1.3. Основные тектонические структуры Алтая

Современная геологическая структура Алтая сформировалась в результате многоэтапной тектонической эволюции, где аккреционные и коллизионные процессы сменялись эпизодами интенсивных сдвиговых перемещений блоков по глубинным разломам и вспышками внутриплитного магматизма. Этим

объясняется ее сложный характер, присутствие блоков различной природы и возраста. Здесь выделяются области каледонской (Горный Алтай) и герцинской (Рудный Алтай) консолидации. По данным [Берзин, Кунгурцев, 1996; Nocleberg et al., 2004; Крук, 2015] в Горном Алтае присутствуют две группы блоков (террейнов), которые отличаются друг от друга по возрасту наиболее древних пород, времени проявления первой складчатости и составу первичной коры.

В восточной части Горного Алтая локализованы раннекаледонские блоки, сложенные комплексами с возрастом от позднего рифея. Они представлены образованиями внутриокеанических поднятий (Баратальский и Бийско-Катунский блоки), примитивных островных дуг (Уймено-Лебедской и Балхашский, Садринский блоки) и аккреционных клиньев (Теректинский террейн). Остальная территория Горного Алтая занята позднекаледонскими блоками, главным образом – фрагментами турбидитовых бассейнов (Ануйско-Чуйский, Чарышско-Талицкий, Холзунско-Чуйский блоки). Возраст наиболее древних толщ здесь среднепозднекембрийский, а первой складчатости – раннеордовикский. Известные на территории Алтая блоки высокометаморфизованных пород (Курайский, Южно-Чуйский, Белокурихинский, Телецкий и др.), ранее трактовавшиеся рядом авторов как выступы раннедокембрийского фундамента, представляют собой продукты метаморфизма каледонских комплексов [Плотников и др., 1999, 2001; Крук и др., 2013; Куйбида и др., 2014].

По данным [Крук и др., 2010] ранне- и позднекаледонские блоки отличаются по механизму формирования, составу и изотопным характеристикам слагающих их пород. Раннекаледонская кора имела ювенильную природу, базитовый состав, низкие содержания несовместимых компонентов, в то время как позднекаледонская кора содержала в своём составе заметную долю рециклированного материала, соответствовала по составу андезиту и была относительно обогащена LILE, HFSE и РЗЭ. В результате многократных тектонотермальных событий, сопровождавшихся внутрикоровой дифференциацией и формированием гранитоидов, к концу среднего палеозоя на всей территории Алтая была сформирована кора континентального типа [Крук, 2015]. При этом

первичные различия в её вещественном составе были, в значительной степени, нивелированы. В то же время сохранилась значимая разница в изотопном составе неодима: для раннекаледонских блоков характерны модельные Nd возрасты < 0,85 млрд лет, для позднекаледонских террейнов центральной, западной и южной частей Горного Алтая – 0,9-1,0, 1,1-1,3 и 1,4-1,6 млрд лет, соответственно.

В Рудном Алтае наиболее древними образованиями, доступными для непосредственного наблюдения, являются позднесилурийские-раннедевонские турбидиты. Состав более глубинных областей коры достоверно не известен, однако малая мощность гранитно-метаморфического слоя (судя по геофизическим данным) и преобладание низкокалиевых гранитоидов [Куйбида и др., 2009, 2013] указывают на существенно базитовый состав кристаллического основания этого блока. Модельный возраст среднепалеозойских гранитоидов Рудного Алтая не превышает 0,9 млрд лет.

ГЛАВА 2. ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ, ВНУТРЕННЕЕ СТРОЕНИЕ И ВОЗРАСТ ИНТРУЗИЙ

2.1. Формационное расчленение пермо-триасовых магматических ассоциаций Алтая

История изучения интрузивных комплексов Алтая насчитывает более полувека. Методические основы картирования и расчленения гранитоидных и вулканических комплексов при региональных геолого-съёмочных работах были заложены А.Ф. Белоусовым и Э.П. Изохом. В 70х гг прошлого века были созданы первые базы данных по петрохимии, разработаны и реализованы принципы использования и графического представления на специализированных картах вещественных характеристик магматитов [Белоусов, 1976; Белоусов и др., 1972, 1974, 1982; Изох, 1978; Изох и др., 1975; Налетов, 1976; Белоусов, Кривенко, 1983; Оболенская, 1983]. Однако в конце XX столетия – начале XXI был получен большой объём новых геологических, геохронологических, геохимических и изотопных данных касающихся интрузивных комплексов [Владимиров и др., 1994, 1997, 2001; Рублев, 1994, 1995; Kruk et al., 2002; Врублевский и др., 2004; Добрецов и др., 2005; Борисенко и др., 2010]. Всё это спровоцировало необходимость обновления легенд к картам Алтая, что включает в себя не только корреляцию магматических комплексов, но и решение проблемы их выделения, выявление последовательности формирования внутри каждого комплекса и в целом региона.

Начиная с работ Елисеева большинство порфировидных гранитоидов Алтая относили к калбинскому типу. Подразумевалось, что они являются возрастными аналогами пород Калба-нарымского батолита в Восточном Казахстане, возраст которых считался пермским. Результаты первых систематических геохронологических исследований гранитоидов [Владимиров и др., 1997, 2001] показали, что в действительности «гранитоиды калбинского типа» относятся к трём возрастным рубежам. Ряд интрузий оказались девонскими. Для нескольких

массивов на юге Горного Алтая получены раннеюрские возрасты. Остальные изученные массивы оказались пермо-триасовыми.

Вопросы систематизации и формационного расчленения пермо-триасовых гранитоидов Алтая также являлись предметом длительной дискуссии. При подготовке Легенды Алтае-Саянской серии листов Госгеолкарты-200 II поколения С.П. Шокальским с соавторами [Шокальский, 1999; Шокальский и др., 2000] был обобщен весь объём накопленной к тому времени геологической, геохронологической и геохимической информации по позднепалеозойскому раннемезозойскому магматизму Алтая. В результате в Серийной легенде для Алтайского сектора Центрально-Азиатского складчатого пояса был выделен ряд (айский, атуркольский, белокурихинский, интрузивных комплексов теранджикский), синюшенский, тархатинский, большинство представлены одним или нескольким массивами (рис. 1). Основанием для такого разделения являлись набор и количественные взаимоотношения пород в составе различных интрузий, минеральный состав и структурно-текстурные особенности гранитоидов, а также (в меньшей степени) их геохимические характеристики и Необходимо рудоносность. потенциальная отметить, наряду перечисленными комплексами, содержащими В тех или иных гранитоиды, в Легенде Алтае-Саянской серии листов Госгеолкарты – 200/ІІ среди пермо-триасовых магматических образований Алтая выделены два дайковых исключительно базитами (терехтинский базальткомплекса, сложенных долеритовый и чуйский лампрофировый).

Альтернативная точка зрения высказывалась В.Л. Хомичевым и А.И. Гусевым. Эти исследователи относили весь пермо-триасовый гранитоидный магматизм Алтая к одному комплексу (белокурихинскому). При этом полагалось [Гусев, Кривчиков, 2005], что все магматические породы произошли из одной родоначальной базитовой магмы, а наблюдаемое разнообразие как базитов, так и гранитоидов, связано с разными путями их дифференциации и различной степенью контаминации коровым материалом.

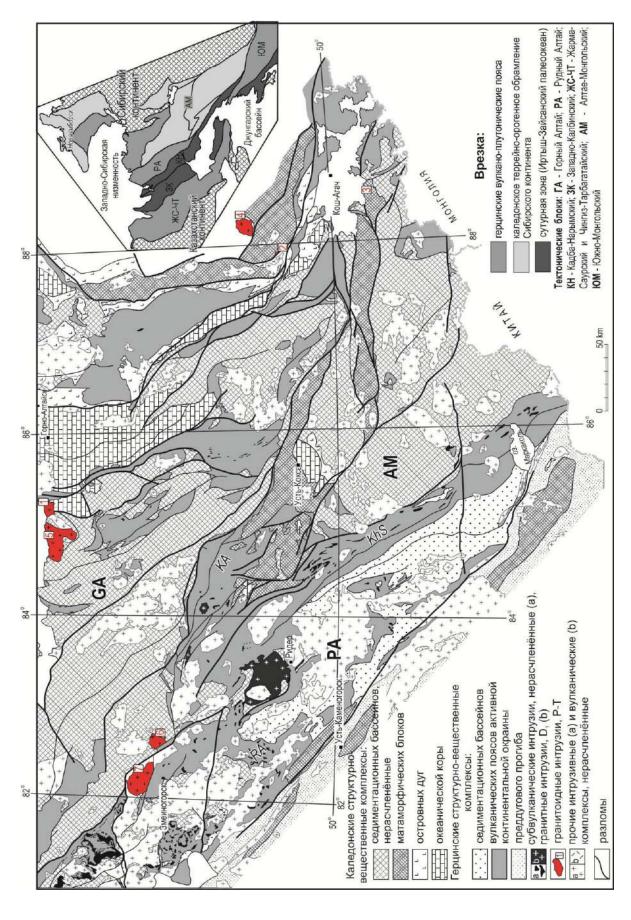


Рис. 1. Схема расположения пермо-триасовых интрузий в геологических структурах Российского Алтая (использована геологическая основа по [Куйбида, 2019] с дополнениями). Цифрами обозначены массивы: 1 – Айский, 2 – Атуркольский, 3 – Тархатинский, 4 Теранджикский, 5 – Белокурихинский, 6 – Синюшенский, 7 – Саввушинский.

В данном исследовании автор принимает точку зрения, отраженную в Легенде Алтае-Саянской серии листов Госгеолкарты-200/II и рассматривает пермо-триасовый магматизм Алтая в составе нескольких комплексов (айский, атуркольский, белокурихинский, синюшенский, тархатинский, теранджикский), отличающихся друг от друга по целому ряду параметров. Основной упор в работе сделан на описание петротипических массивов.

2.2. Геологическая позиция и внутреннее строение интрузий

2.2.1. Айский сиенит-граносиенит-лейкогранитовый комплекс

Айский комплекс расположен в северной части Горного Алтая, в составе которого выделен единственный одноимённый массив и его мелкие сателлиты. В пределах комплекса выделяются три фазы внедрения: монцогаббро, монцодиориты и меланосиениты первой фазы, сиениты, кварцевые сиениты, граносиениты и субщелочные меланограниты второй фазы и наиболее поздние биотитовые мусковитсодержащие субщелочные лейкограниты третьей фазы. Жильные образования представлены редкими телами микрогранитов и гранитпорфиров.

Айский массив расположен в левобережье реки Катунь, в бассейне её левого притока р. Ая. Интрузив площадью ~70 км² имеет линзовидную в плане форму и прорывает вулканические раннепалеозойские породы Каимского аллохтона, метаморфизуя ИХ cобразованием кордиерит-биотитовых гнейсовидных роговиков (ореолы ороговикования 0,1-1 км), иногда отмечаются единичные мелкие тела актинолит-гранатовых скарнов. Центральная часть, а северный массива перекрыты кайнозойскими также контакт рыхлыми отложениями. В западной части породы Айского интрузива интрудируют микропегматитовые граниты Бирюксинского массива. Отмечается образование вторичного гранобластового агрегата биотит-кварц-полевошпатового состава при ороговиковании и перекристаллизации в экзоконтактах.

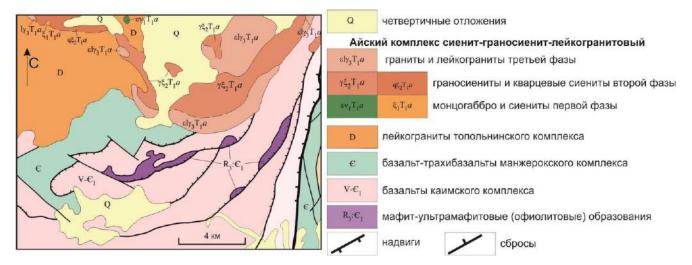


Рис. 2. Геологическая схема Айского массива (по [Государственная..., 2004] с изменениями).

В пределах массива выделяется три магматических ареала, различающихся по набору пород и их структурно-текстурным особенностям [Крук и др., 1998] (рис. 2).

Первый ареал расположен в западной части массива (в районе г. Блинова), представляет собой вытянутое в субширотном направлении тело (1,5-2 км), сложенное средне- равномернозернистыми амфиболовыми (с биотитом и клинопироксеном) сиенитами и кварцевыми сиенитами. Вмещающими породами в этой части массива являются ороговикованные микропегматитовые граниты Бирюксинского массива.

Второй ареал представляет собой дугообразное тело, вытянутое в субширотном направлении в южной части массива (от г. Березовой до пос. Верх-Ая), вмещающими породами являются раннепалеозойские базальт-трахибазальты Манжерокского комплекса и базальты Каимского комплекса. В составе массива амфибол-биотитовые граносиениты, преобладают a также присутствуют амфиболовые кварцевые сиениты, биотитовые и двуслюдяные граниты и аплиты. Все породы этого ареала имеют порфировидный облик. В кварцевых сиенитах отмечаются крупные ксенолиты перекристаллизованных пироксен-амфиболовых субщелочных габброидов меланократовых сиенитов И ранней амфиболовых роговиков, кордиеритовых И полосчатых полевошпатовых амфиболитов, а также перекристаллизованных девонских гранитов и риолитпорфиров. Для данного ареала характерны небольшие размеры интрузивных тел и крайне сложное их строение: в [Крук и др., 1998] отмечается, что на нескольких квадратных метрах обнажения может наблюдаться до 10 разновидностей пород, имеющих четкие интрузивные взаимоотношения при общей гомодромной последовательности внедрения. Для второго ареала обычны секущие дайки амфибол-биотитовых субщелочных гранитграносиенит-порфиров, И мелкозернистых субщелочных биотитовых лейкогранитов, аплитов; отмечаются единичные гнезда мусковитсодержащих пегматитов И мусковит-кварцтурмалиновых грейзенов. Также на южном склоне горы Березовой нами была описана постгранитная дайка сложенная микрогаббро.

Третий ареал занимает восточную и юго-восточную части массива (г. Мохнатая, г. Типешка) и сложен амфибол-биотитовыми граносиенитами, биотитовыми и двуслюдяными гранитами. Вмещающими породами для этого ареала являются раннепалеозойские вулканические породы Каимского комплекса.

2.2.2. Теранджикский габбро-монцодиорит-граносиенит-гранитовый комплекс

Теранджикский комплекс включает в себя единственный мелкий одноимённый массив и небольшое количество даек, приуроченных к зоне динамометаморфизма Кубадринского разлома и локализован в юго-западной части Курайского метаморфического блока метаморфических пород раннесреднепалеозойского возраста в пределах Курайского террейна. В тектоническом плане он приурочен к глубинной Телецко-Курайской системе сдвигов и локализуется на границе Курайского террейна Горного Алтая и Западно-Саянского турбидитового палеобассейна.

Теранджикский интрузив располагается в верховьях р. Правая Кубадру, в трех километрах выше устья реки Куркурек, в осевой части Тонгулакского хребта. Теранджикский массив имеет изометричную в плане форму и занимает площадь около 4 км². Вмещающими породами являются метаморфические образования Курайского полиметаморфического комплекса ранне-

среднепалеозойского возраста, кристаллические сланцы и гнейсы ильдугемской свиты, а также гнейсограниты и амфиболиты тонгулакской свиты и вулканогенно-кремнистые толщи раннего кембрия. Его позиция по отношению к вмещающим толщам резко дискордантна, что выражается в наличии секущих интрузивных контактов с гнейсами и гнейсогранитами, развитии ареалов высокотемпературных роговиков по бластомилонитам и милонитам. Контактовый ореол шириной 350-400 м. определяется появлением кордиерит-силлиманит-шпинелевых симплектитов [Кузнецова и др., 1994]. Юго-западная часть массива «срезана» системой разломов северо-западного простирания, в которых отмечены признаки хрупко-пластичного течения вещества с левосдвиговой кинематикой (рис. 3).

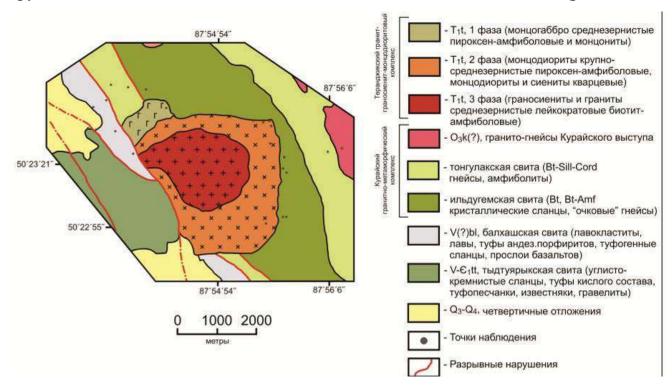


Рис. 3. Геологическая схема Теранджикского массива [Семенов, 2011].

В составе массива выделяется пять интрузивных фаз, контакты между которыми имеют резкий фазовый характер. Монцогаббро первой фазы и монцониты второй фазы образуют изолированное поле в северо-западной части массива. Крупно-среднезернистые светло-серые монцодиориты отвечают главной фазе и слагают грубо-кольцевую структуру. Светло-серые среднезернистые граносиениты четвертой фазы занимают центральную часть массива — собственно вершину г. Теранджик, но проявлены лишь в виде крупных глыбовых развалов и

не имеют коренных выходов из-за плоского рельефа вершины. Завершающая пятая фаза представлена мелко-среднезернистыми гранитами, которые проявляются в виде редких даек и мелких интрузивных тел.

2.2.3. Тархатинский граносиенит-монцодиоритовый комплекс

Тархатинский комплекс, расположенный в юго-восточной части Алтая, включает в себя Тархатинский и Жанедынгуйский интрузивные массивы, приуроченные к Жасатерскому второстепенному разлому. По данным С.П. Шокальского [Шокальский и др., 2000] в составе комплекса выделяется две фазы внедрения: биотит-амфиболовые кварцевые монцониты и монцодиориты первой фазы и микропегматитовые граносиениты и кварцевые сиениты второй фазы.



Рис. 4. Геологическая схема Тархатинского массива [Крупчатников, 2010].

Более крупный петротипический **Тархатинский массив** (около 3 км²) расположенный в бассейне реки Тархата, приурочен к зоне Саржематинского В северо-западном разлома, несколько вытянут направлении согласно Интрузив расположен среди метаосадочных простиранию разлома. Холзунско-Чуйского турбидитового террейна. Прорывает и метаморфизует до кварц-биотит-кордиеритовых роговиков (в кровле массива также отмечаются гиперстен-кордиеритовые роговики со следами анатексиса) песчано-сланцевые отложения кембро-ордовикской горноалтайской серии, ширина контактового

ореола варьирует в пределах 400 м. Северо-восточная граница массива тектоническая. Несмотря на то, что в значительной части выходы данного интрузивного штока перекрыты четвертичными отложениями, отмечается его ассиметрично-зональное строение – периферические части, за исключением юго-западного фрагмента, сложены мелкозернистым порфировидными биотитовыми (± амфибол, ± пироксен) монцодиоритами и сиенитами, центральные – мелкосреднезернистыми слабопорфировидными биотитовыми граносиенитами и монцогранитами (рис. 4). Согласно литературным данным [Васюкова и др., 2011; Крупчатников и др., 2015] переходы между разновидностями постепенные, что свидетельствует об однофазном строении массива, однако при полевых исследованиях нами были зафиксированы секущие жилы монцогранитов.

В обрамлении массива известны дайки лампрофиров и лампроитов чуйского комплекса, субсинхронные с гранитоидами [Васюкова и др., 2011; Крупчатников и др., 2015].

2.2.4. Атуркольский граносиенит-гранитовый комплекс

Атуркольский граносиенит-гранитовый комплекс представлен одноимённым массивом, находится в зоне сочленения структур Горного Алтая и Западного Саяна, в пределах Курайского блока. С.П. Шокальским с соавторами к атуркольскому комплексу отнесен также Чульчинский гранитовый массив в северной части одноименного блока [Шокальский и др., 2000].

Атуркольский интрузив располагается в правобережье р. Башкаус, в приустьевой части ее правого притока р. Атуркол. Массив представляет собой крупное (около 110 км²) изометричное тело с крутыми интрузивными контактами. Вмещающими для массива являются стратифицированные толщи позднего рифея (?), раннего и среднего палеозоя. В южной части массива гранитоиды прорывают зеленосланцевые отложения башкаусского метаморфического комплекса. В западной и восточной областях массива отмечены интрузивные контакты гранитоидов с вулканогенно-осадочными толщами среднего девона. В северной части интрузив прорывает океанические базальты саратанской свиты позднего

рифея (?) — раннего кембрия. Контакты гранитоидов с породами рамы во всех случаях резкие, интрузивные, вмещающие породы интенсивно изменены до кордиерит-биотитовых и биотитовых роговиков в ореоле до трёх километров.

Внутреннее строение массива достаточно простое: он почти нацело сложен грубозернистыми порфировидными биотитовыми меланократовыми монцогранитами и граносиенитами (рис. 5). Интрузивных контактов между этими пород зафиксировано не было. Данные предшествующих разностями исследований [Шокальский и др., 2000] также указывают на фациальный характер взаимоотношений гранитоидов, слагающих главную фазу интрузива. Из других пород можно отметить лишь немногочисленные разноориентированные дайки мелкозернистых лейкогранитов, аплитовидных гранитов и аплитов, прорывающие породы главной фазы.

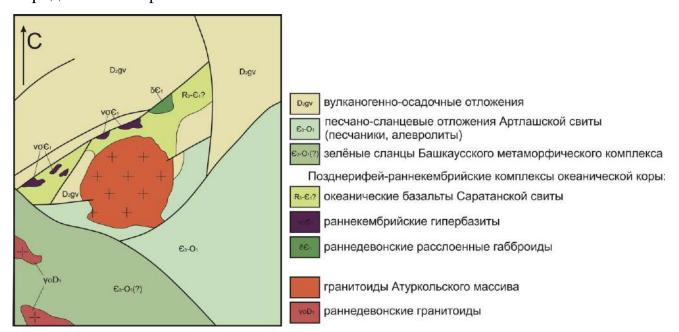


Рис. 5. Геологическая схема Атуркольского массива (по [Государственная..., 1958]).

2.2.5. Синюшенский гранодиорит-гранит-лейкогранитовый комплекс

Гранитоиды синюшенского комплекса в северо-западной части Горного Алтая слагают серию интрузий, локализованных преимущественно в раннепалеозойских толщах или среди более древних герцинских гранитоидов, и тяготеющих к Северо-Восточной зоне смятия. Массивы гранитоидов приурочены к долгоживущим разрывным нарушениям северо-западного простирания и

автономное секущее занимают положение ПО отношению ареалам предшествующего Наиболее магматизма. крупными являются массивы Тигирекский (около 600 км²), расположенный в труднодоступной горной местности, и петротипический Синюшенский (102 км²), также к Синюшинскому комплексу относят Саввушинский, Угловой, Волчьи Убино-ШКИЛИ Белореченский массивы.

Синюшенский массив находится южнее пос. Колывань, локализуется в Чарышско-Инском тектоническом блоке. Он представляет собой близкое к изометричному плане куполообразное тело В c крутыми контактами, прорывающее в северной части позднедевонские гранитоиды усть-беловского и боровлянского комплексов, а в западной, южной и восточной – терригенные и терригенно-карбонатные толщи раннего-среднего палеозоя. В тектоническом плане массив локализован в Рудно-Алтайском тектоническом блоке. Массив практически нацело сложен порфировидными биотитовыми лейкократовыми (рис. 6), крупнозернистыми В северной части среднезернистыми – в центральной и западной его частях. Взаимоотношения средне- и крупнозернистых разностей по данным геолого-съемочных работ определены как фациальные, однако В ходе полевых исследований в крупнозернистых гранитах северной части массива наблюдаются секущие дайкообразные тела (мощностью до 1 м.), сложенные среднезернистыми разностями.

Крайне редко в гранитах главной фазы встречаются ксенолиты более меланократовых пород (среднезернистых биотит-роговообманковых равномернозернистых или порфировидных кварцевых монцодиоритов гранодиоритов). Постгранитная дайковая серия проявлена незначительно и представлена жилами аплитовидных гранитов и аплитов, крайне редко – аплитопегматититов, мощностью от 1 до 15 см. Для средне-крупнозернистых пород комплекса характерна крупноглыбовая матрацевидная отдельность, а для мелкосреднезернистых – тонкоплитчатая. Направление падения пластовых трещин всегда совпадает с направлением поверхностей контактов массивов,

свидетельствует о неглубоком уровне эрозионного среза. С гранитоидами Синюшенского массива сопряжены небольшие проявления вольфрамовой и вольфрам-молибденовой минерализации.

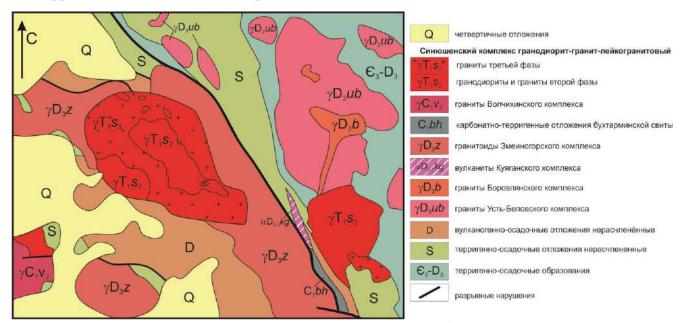
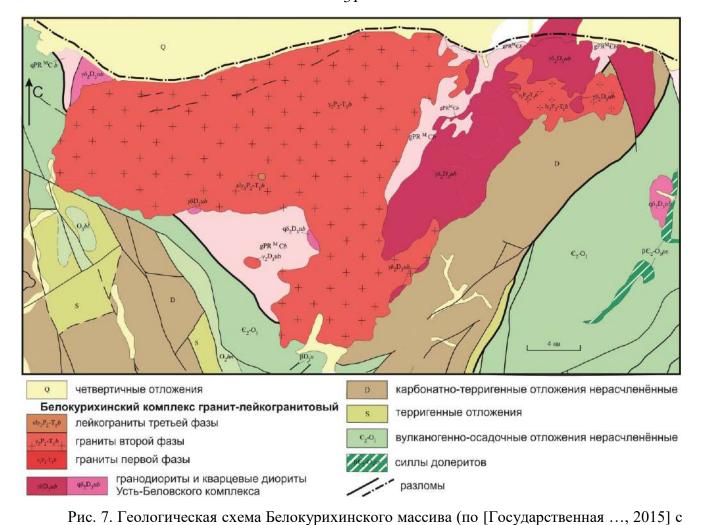


Рис. 6. Геологическая схема Синюшенского комплекса (по [Государственная ..., 2015] с изменениями).

Саввушинский массив расположен в северо-восточной части Рудного Интрузив традиционно относится к синюшенскому комплексу и приурочен к Северо-Восточной зоне смятия, разделяющей структуры Горного и Рудного Алтая. Саввушинский массив располагается в окрестностях озера Γ. Змеиногорск, Рудно-Алтайского Колыванское севернее В пределах тектонического блока и представляет собой интрузивное тело каплевидной в плане формы, вытянутое в северо-западном направлении, площадью около 200 км². Породы массива прорывают терригенные и вулканогенно-терригенные отложения Каменевского комплекса (девон-каменноугольный структурный этаж), Ревневско-Амелихинского змеиногорского гранитоиды массива a также комплекса. Контакты массива с вмещающими породами крутые, с широкими ореолами роговиков в терригенных породах, скарноидов в карбонатах, и зонами перекристаллизации в гранитоидах.


По мнению Н.М. Кужельного [Кужельный, 1962] становление Саввушинского массива произошло в пять фаз: 1 — лейкократовые биотитовые, преимущественно равномернозернистые граниты; 2 — аплитовидные граниты; 3 —

биотитовые и роговообманково-биотитовые граниты; 4 – гранодиориты; 5 – аплитовидные граниты, однако позднее была принята иная последовательность фаз внедрения [Государственная..., 2015]. В строении массива выделяются три интрузивные фазы (рис. 6). К наиболее ранней фазе относятся мелкосреднезернистые равномернозернистые или слабопорфировидные биотитроговообманковые монцодиориты и кварцевые монцодиорты, образующие многочисленные ксенолиты и небольшие останцы среди более поздних гранитоидов. Вторая фаза представлена порфировидными биотитовыми и биотитгранитами, роговообманковыми гранодиоритами И меланократовыми порфировидные лейкократовые биотитовые граниты относятся к третьей, последней, фазе. Породы второй и третьей фазы внедрения слагают основной объем массива, причем гранодиориты второй фазы развиты преимущественно в его центральной части, а лейкограниты третьей фазы – в периферической. Между всеми разностями фиксируются интрузивные контакты. Постгранитная дайковая серия представлена мелкозернистыми гранитами, аплитами и пегматитами, в том числе ортитоносными. По данным [Государственная..., 2015] встречаются единичные дайки диорит-порфиритов.

2.2.6. Белокурихинский гранит-лейкогранитовый комплекс

Белокурихинский комплекс находится в северной части Горного Алтая, в его состав входят крупный одноимённый массив, Осокинский и Точильненский штоки, а также Верхнещебетинский массив, которые группируются в пределах двух ареалов — Белокурихинском и Верхнее-Талицком. В составе комплекса выделяются три фазы внедрения. Мелкие тела монцонитов и граносиенитов слагают первую фазу, порфировидные биотитовые граниты — вторую, а к третьей наиболее поздней фазе относят двуслюдяные и мусковитовые лейкограниты. Жильные породы представлены аплитовидными гранитами, аплитами, пегматитами и редкими дайками гранит-порфиров.

Белокурихинский массив в структурно-тектоническом плане приурочен к одноименному Белокурихинскому тектоническому блоку, сложенному

изменениями). метаморфическими протерозоя одновременно породами И прорывает тектонически сопряженные с ними вулканогенно-осадочные отложения кемброордовика и карбонатно-терригенные нижнего девона. Он представляет собой κM^2) (~400 вытянутое субширотном крупное В направлении тело лакколитообразной формы, мощность которого по геофизическим данным составляет 2-3 км. В восточной и юго-восточной части породы массива прорывают девонские осадочные породы барагашской свиты и вулканиты куяганской свиты, в западной – кембро-ордовикские турбидиты. Вмещающими породами в юго-западной части являются позднедевонские гранитоиды, в то время как северный контакт массива перекрыт четвертичными отложениями. В зонах наблюдается интенсивное ороговикование кемброэкзоконтактовых ордовикских отложений с образованием кордиерит-биотит-плагиоклазовых, биотит-кварцевых кварц-эпидот-актинолитовых роговиков, И

метасоматические изменения в гранитоидах усть-беловского комплекса проявлены слабо.

Основной объём порфировидными массива сложен среднекрупнозернистыми биотитовыми гранитами второй фазы (рис. 7). В виде включений в них присутствуют блоки среднезернистых порфировидных меланогранитов и гранодиоритов. Третья фаза в пределах Белокурихинского массива представлена мелко-среднезернистыми порфировидными биотитовыми и двуслюдяными лейкогранитами, аплитами и пегматитами. Эти породы образуют секущие тела среди гранитоидов Белокурихинского массива (ареал р. Черновой), а также слагают два изолированных штока (Осокинский и Точильненский, 25 и 15 км², соответственно) в его обрамлении. в Осиновском рудном узле (Курановское месторождение) проявлены W-Ве пегматитовые тела, также следует отметить литиевые и урановые точки в Осокинском штоке и пегматиты Точильненского штока.

2.3. Возраст гранитоидов

Результаты первых систематических геохронологических исследований гранитоидов [Владимиров и др., 1997, 2001, 2002ф] показали, что большинство гранитоидов «калбинского типа» на Алтае имеет пермо-триасовый возраст (табл. 1). U-Pb датировки, выполненные по крупным навескам циркона в ГИН АН республики Казахстан В.А. Халиловым показали широкий разброс возрастов (251–232 млн лет). Результаты Rb-Sr изотопных исследований, выполненные в ГЕОХИ РАН Ю.А. Костицыным [Владимиров и др., 1997] показали, что в изотопные характеристики большинства пермо-триасовых гранитоидов Алтая в рамках применения метода параллельных изохрон позволяют предполагать их одновременное (245,5±4,5 млн лет) образование за счёт источников с разными изотопными характеристиками. Позже были опубликованы результаты U-Pb датирования ряда пермо-триасовых гранитоидных интрузий по единичным применением ионного микроанализатора цирконов SHRIMP-II (ВСЕГЕИ, Санкт-Петербург) [Гусев, 2015]. Диапазон возрастов, полученных для

разных массивов, составил 251-232 млн лет. К сожалению, отсутствие в указанной работе первичных табличных данных исключает возможность проверки корректности опубликованных дат.

Учитывая имеющиеся неопределенности, для уточнения возрастного интервала формирования пермо-триасовых гранитоидов Алтая и определения характера их временной эволюции было выполнено ⁴⁰Ar/³⁹Ar датирование К-содержащих минералов (слюды, амфиболы) из пород рассматриваемых в работе интрузий.

Табл. 1. Результаты геохронологических исследований пермо-триасовых интрузивных серий Алтая [Владимиров и др., 1997, 2001, 2002ф: Борисенко и др., 2010; Гусев, 2015].

Массив	Порода	Владимиров и др., 1997, 2001; Крук и др., 2017		Борисенко и др., 2010	Гусев, 2015
		U-Pb	Rb-Sr	U-Pb	U-Pb
Айский	сиенит	248,9±5,7			
	гранит		243,5±2,1		
Тархатинский	монцогранодиорит			247,0±5,2	
Атуркольский	монцограносиенит	237,7±4,4			
Саввушинский	гранодиорит	251±5	241±4,5		249±1
	лейкогранит				
Синюшинский	гранит	251,1±4,6	243,5±2,1		251,1±4,6
	гранит 2 фазы				243,5±2,9
Белокурихинский	гранит	232±4,7	243,5±2,1		232±4,7
Осокинский	лейкогранит				245±8

2.3.1. Методика геохронологических исследований

Геохронологические исследования были проведены для пород, наиболее распространенных в рассматриваемых массивах: монцодиорит в Теранджикском массиве, монцогранодиорит в Тархатинском, меланогранит в Атуркольском, граниты в Айском, Саввушинском и Белокурихинском массивах и лейкогранит в Синюшенском массиве. Пробы отбирались за пределами эндоконтактовых зон, на удалении более 200 м от секущих даек и поздних интрузий. Отсутствие постмагматических изменений пород контролировалось визуально (в обнажениях) и в полированных шлифах.

Монофракции породообразующих минералов (слюды, амфиболы) отбирались с использованием методов электромагнитной сепарации и «откатки». Финальная очистка мономинеральных фракций проводилась вручную под бинокуляром. Степень изменения породообразующих минералов контролировалась результатами микрозондового анализа — пробы содержащие слюды с низкими общими суммами или пониженным содержанием калия не использовались для геохронологических исследований.

Определение возраста пород ⁴⁰Ar/³⁹Ar методом проводилось в ИГМ СО РАН по методике, детально описанной в работе [Травин и др., 2009]. Навески мономинеральных фракций совместно с навесками монитора (биотит МСА-11 ОСО № 129-88) помещались в кварцевую ампулу и после откачки из нее воздуха запаивались. Биотит MCA-11 (ВИМС) был аттестован в качестве ⁴⁰Ar/³⁹Ar монитора с помощью международных стандартных образцов мусковита Bern 4m, биотита LP-6 [Baksi et al., 1996]. Кварцевые ампулы с пробами облучались в кадмированном канале научного реактора ВВР-К типа при НИИ ядерной физики (г. Томск). Градиент нейтронного потока не превышал 0,5 % в размере образца. Эксперименты по ступенчатому прогреву проводились в кварцевом реакторе с печью внешнего прогрева. Для коррекции на мешающие изотопы аргона, образовавшиеся во время облучения на Са, К, использовались следующие коэффициенты: $(^{39}\text{Ar}/^{37}\text{Ar})_{\text{Ca}} = 0,000891 \pm 0,000003$, $(^{36}\text{Ar}/^{37}\text{Ar})_{\text{Ca}} = 0,000446 \pm$ $0,000004, (^{40}\text{Ar}/^{39}\text{Ar})_{\text{K}} = 0,089 \pm 0,001,$ определенные по облученным навескам чистых солей. Очистка аргона производилась с помощью ZrAl SAES-геттеров. Изотопный состав аргона измерялся на масс-спектрометрах Noble gas 5400 фирмы Микромасс и многоколлекторном Argus фирмы GV-Instruments. Ошибки измерений соответствуют интервалу $\pm 1\sigma$.

2.3.2. Результаты геохронологических исследований

Результаты исследований приведены в таблице 2 и на рис. 8. В спектрах всех изученных минеральных фракций выделяются надежные плато, позволяющие четко зафиксировать возраст закрытия изотопной системы.

Учитывая, что по геологическим данным формирование изученных гранитоидных массивов происходило в мезоабиссальных условиях на небольшой глубине, полученные датировки, в первую очередь по амфиболу (температура закрытия ~ 550 °C), должны быть близки к возрасту формирования массивов. Для слюд, в зависимости от скорости остывания и эксгумации массивов, закрытие изотопной К/Ar системы может запаздывать на несколько миллионов лет [Travin et al., 2014].

Табл. 2. Результаты 40 Ar/ 39 Ar исследований пермо-триасовых гранитоидов Алтая.

Комплекс	Массив	Порода	Минерал	Возраст, млн лет
айский сиенит- граносиенит- лейкогранитовый	Айский	гранит	биотит	250±2.8
теранджикский			амфибол	248±2.1
габбро- монцодиорит- граносиенит- гранитовый	Теранджикский	монцодиорит	биотит	246±1.1
тархатинский			амфибол	254±3.7
граносиенит- монцодиоритовый	Тархатинский	монцогранодиорит	биотит	246±2.5
<i>атуркольский</i> граносиенит- гранитовый	Атуркольский	меланогранит	биотит	245±2.6
белокурихинский	Белокурихинский	гранит	биотит	250±2.7
гранит-	Осокинский шток	лейкогранит	мусковит	250±3.5
лейкогранитовый	Точильненский шток	пегматит	мусковит	247±3.0
синюшенский	Синюшенский	лейкогранит	биотит	248±1.0
гранодиорит-гранит- лейкогранитовый	Саввушинский	гранит	биотит	244±1.1

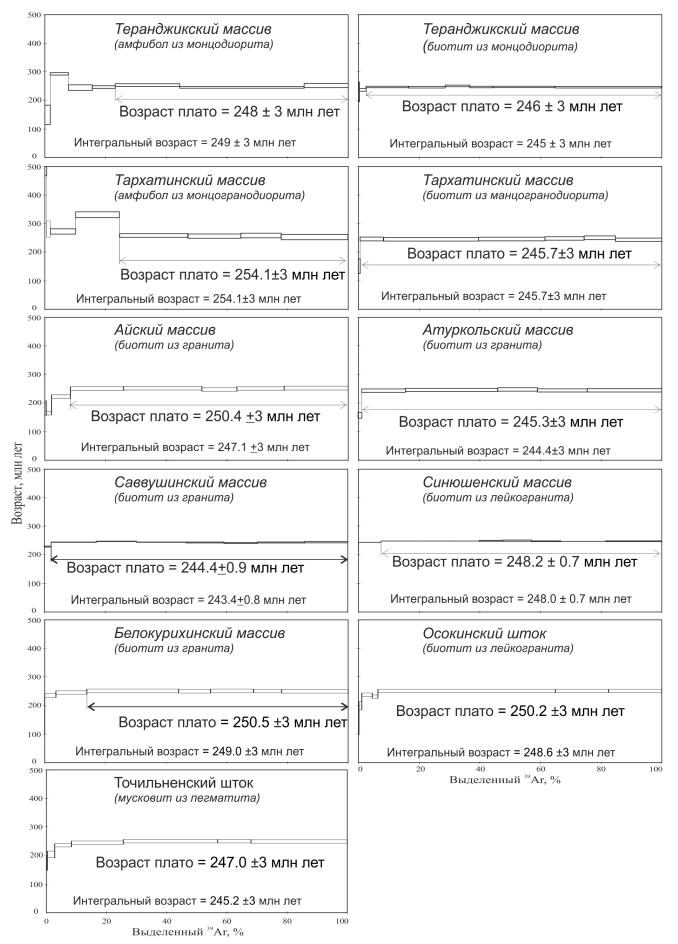


Рис. 8. Результаты 40 Ar/ 39 Ar исследований пермо-триасовых гранитоидов Алтая.

2.4. Обсуждение результатов

Орогенные события на территории Алтая завершились на рубеже карбонаперми, а рассматриваевые интрузивные ассоциации имеют пермо-триасовый возраст. Таким образом, временной отрыв формирования рассматриваемых гранитоидов от последнего этапа орогенеза составил около 50 млн лет, что позволяет считать их анорогенными (внутриплитными).

Анализ геологической позиции пермо-триасовых гранитоидов Алтая позволил выявить ряд общих черт, характерных для всех изученных интрузий. Проявления пермо-триасового магматизма имеют ярко выраженный ареальный характер, причём положение магматических ареалов дискордантно по отношению ко всем более ранним (ранне- и среднепалеозойским) геологическим структурам. массивы пермо-триасовых гранитоидов Алтая, принятые рассмотрение, имеют аллохтонную природу: для них характерны резкие интрузивные контакты с вмещающими толщами, часто сопровождаемые ареолами ороговикования. Также все интрузии приурочены к обрамлению крупных долгоживущих разломных зон, либо узлам их пересечения. При этом пермотриасовые интрузии, как правило, «запечатывают» разломные зоны и не затронуты процессами катаклаза и огнейсования, широко проявленными в более древних породах.

Проявления пермо-триасового обнаруживают магматизма не приуроченности к определенному типу террейнов. Их массивы встречаются в блоках разной природы и возраста. Вмещающие породы также разнообразны. Иногда это метаморфические сланцы и гнейсы (Теранджикский массив), иногда – вулканогенно-осадочные раннепалеозойские терригенные ИЛИ толщи (Атуркольский, Тархатинский, Синюшенский и Белокурихинский массивы), девонские вулканогенно-осадочные гранитоиды иногда толщи или (Саввушинский и Айский массивы).

Таким образом, геологическая позиция проявлений пермо-триасового магматизма однозначно позволяет трактовать их как внутриплитные (анорогенные) образования.

Анализ особенностей внутреннего строения изученных интрузивов и набора слагающих их пород показывает, что массивы, отнесенные в соответствии с Легендой Госгеолкарты-200 к различным комплексам, различаются не только набором пород, но и их количественными соотношениями. В целом можно выделить три типа магматических ассоциаций:

- 1. Габбро (монцодиорит)-гранитные серии (Айский, Теранджикский, Саввушинский и, вероятно, Тархатинский массивы);
- 2. Существенно граносиенитовые интрузии, в которых отсутствуют как основные, так и высококремнистые породы (Атуркольский массив);
- 3. Гранит-лейкогранитные интрузии с полным отсутствием, либо крайне малыми количествами более основных пород (Белокурихинский и Синюшенский массивы).

Здесь необходимо отметить, что пермо-триасовые гранитоиды Рудного Алтая (массивы Саввушинский и Волчьи Шкили), традиционно относимые к синюшенскому комплексу, резко отличаются по набору пород и их количественным соотношениям от петротипа (собственно Синюшенского массива), в связи с чем целесообразно выделение их в самостоятельный комплекс. Более детальное обоснование специфики этих гранитоидов приведено в следующих главах.

Проведенные геохронологические исследования показали, что формирование большинства изученных интрузивов произошло в достаточно узком временном интервале. Для биотитов и амфиболов из гранитоидов Айского, Теранджикского, Тархатинского, Белокурихинского и Синюшенского массивов получены определения 254-247 млн лет. К этим датам в пределах ошибки примыкают определения по биотитам Атуркольского (245 ± 2.6 млн лет) и Саввушинского (244 ± 1.1 млн лет) массивов.

Проведенные исследования показали отсутствие значимой корреляции между типом магматических ассоциаций (габбро-гранитные серии, существенно граносиенитовые или гранит-лейкогранитные ассоциации) с одной стороны и их возрастом с другой. В то же время фиксируется устойчивая временная связь

формирования гранитоидов с внедрением базитовых интрузий и даек. Так, для габбро-гранитных серий айского, теранджикского и тархатинского комплексов генетическая связь гранитоидов с мантийными магмами надежно устанавливается геологическими методами (наличие синплутонических постгранитных базитовых даек, мафических включений). Возраст гранитоидов Белокурихинского и Синюшенского массивов синхронен со временем образования траппов Кузбасса и дайковых поясов долеритов теректинского комплекса в Горном Алтае (250–248) млн лет) [Крук и др., 1999; Буслов и др., 2010]. Несколько более молодая датировка гранитоидов Атуркольского массива (245 ± 2,6 млн лет) хорошо коррелирует со временем внедрения лампроитов и лампрофиров чуйского комплекса (245–242 и 237–235 млн лет) [Васюкова и др., 2011]. Таким образом, для отдельных магматических ареалов фиксируется корреляция гранитоидов и ассоциирующих пород мантийного генезиса.

Соотношение возрастов магматических ассоциаций Сибирской платформы и Алтайского сектора Центрально-Азиатского складчатого пояса (рис. 9) также демонстрирует синхронизацию магматической активности. На Сибирской платформе выделено три этапа развития магматизма: 265-255, 251-248 и 243-230 млн лет [Добрецов и др., 2010 и библиография в ней]. Они соответствуют инициальной (I), главной (II) и регрессивной (IV) стадиям в рамках обобщенной модели развития LIP (рис. 9). Раннему этапу соответствуют дайковые комплексы долеритов, силы и потоки базальтов, а также мелкие дифференцированные базитовые интрузии с Си-Ni оруденением. Второй этап характеризуется масштабным развитием траппов. Одновременно в центральной части проявился щелочно-базитовый и щелочно-ультрабазитовый магматизм. В периферийных частях образовались дайковые комплексы щелочных базитов. Заключительному этапу отвечает магматизм пёстрого состава (кимберлиты, лампрофиры), проявленный в краевых зонах Сибирской платформы.

Главные пики магматической активности Сибирской платформы и Алтая практически синхронны (рис. 9). Однако существует ряд отличий. Во-первых, временной диапазон формирования магматических ассоциаций Алтайского

сегмента ЦАСП существенно меньше продолжительности магматизма на Сибирской платформе. Здесь практически отсутствуют магматизм инициальной и регрессивной стадий. Во-вторых, формирование гранитоидных ассоциаций не ограничивается стадией III. Большинство гранитоидов формируется синхронно с излиянием траппов. В их числе присутствуют гранит-лейкогранитные интрузивы, не содержащие пород базитового состава. Наконец, в-третьих, гранитоидный магматизм (включая редкометалльный) завершается несколько раньше мантийного.

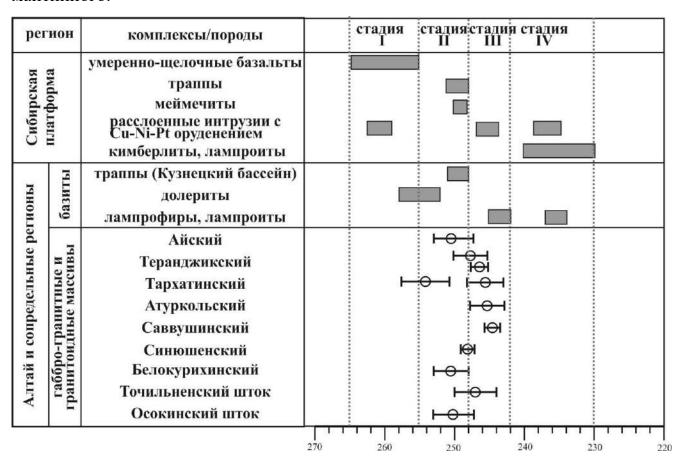


Рис. 9. Соотношение возрастов магматических ассоциаций Сибирской платформы и Алтайского сектора Центрально-Азиатского складчатого пояса. Использованы данные [Добрецов и др., 2010; Борисенко и др., 2010; Буслов и др., 2010; Васюкова и др., 2011; Malitch, Latypov, 2011; Reichow et al., 2009].

Геологическая перечисленных проявлений позишия магматизма свидетельствует об их внутриплитной (анорогенной) природе, а прецизионные оценки возраста указывают на относительно узкий временной интервал (250-240)Это формирования МЛН лет). свидетельствует синхронности проявления рассматриваемых образований c масштабными эндогенными

событиями на Сибирской платформе, которые были обусловлены активностью суперплюма [Добрецов, 1997, Ярмолюк и др., 2000, Kuzmin et al., 2010 и др.] и образованию полей траппов, привели крупных расслоенных базитультрабазитовых массивов с Cu-Ni-ЭПГ оруденением (включая уникальные Норильскую и Талнахскую интрузии) и карбонатитов. Однако необходимо отметить, что пермо-триасовый гранитоидный магматизм Алтая резко отличается от наиболее изученных «гранитоидных» LIP Азии, таких как Ангаро-Витимская или Хангайская. В перечисленных структурах гранитоиды слагают практически сплошные «поля», а породы разных комплексов, входящих в состав гигантских батолитов, сходны между собой по внешнему облику, особенностям минералогии и вещественного состава, что в свое время явилось поводом для горячих дискуссий по вопросу расчленения гранитоидных комплексов [Гордиенко и др., 1978; Литвиновский и др., 1992, 1999; Ярмолюк, 1997]. Кроме того, в гранитоидах крупных батолитов широко проявлены признаки корово-мантийного взаимодействия (синплутонические и минглинг-дайки) [Бурмакина, Цыганков, 2013], а сами батолиты не сопровождаются каким-либо оруденением.

Синтез полученной информации позволяет сделать следующие выводы:

- 1. Пермо-триасовые магматические ассоциации Алтая имеют внутриплитную природу, их образование было синхронно с формированием Сибирской крупной изверженной провинции на Сибирской платформе и Хангайской в Северной Монголии.
- 2. Пермо-триасовые интрузивные образования Алтая представлены тремя главными типами ассоциаций: а) габбро (монцодиорит)-гранитными; б) существенно граносиенитовыми; в) гранит-лейкогранитными. Чёткая зависимость между типами магматических ассоциаций и их возрастом отсутствует, вместе с тем для отдельных магматических ареалов фиксируется корреляция возраста гранитоидов и ассоциирующих пород мантийного генезиса.

ГЛАВА 3. СТРУКТУРНО-ТЕКСТУРНЫЕ ОСОБЕННОСТИ И МИНЕРАЛЬНЫЙ СОСТАВ ПОРОД

Изначально [Нехорошев, 1958] в «калбинский» тип на Алтае объединялись гранитоиды порфировидного облика, преимущественно биотитовые, реже биотитамфиболовые. Детальные исследования пермо-триасовых магматических ассоциаций региона показали, что слагающие их породы значительно более особенностям, разнообразны как ПО структурно-текстурным так минеральному составу. В данной главе приводится описание петрографических особенностей пород изученных массивов.

3.1. Петрографическая характеристика интрузивов

3.1.1. Айский массив

Габбро представляют собой мелкозернистые породы, сложенные в основном удлинёнными кристаллами амфибола (60-70 %, магнезиальная роговая обманка, f = 37-59 % (здесь и далее используется классификация амфиболов согласно [Hawthorne, Oberti, 2012])), зональным плагиоклазом среднего состава (An₃₁₋₆₂) и редко калиевым полевым шпатом (20-30 % и 5-10 % соответственно) (рис. 10). И амфибол, и плагиоклаз образуют хорошо огранённые кристаллы, однако степень идиоморфности амфибола выше. Также встречаются зёрна клинопироксена (авгит, f = 37 %). Несмотря на то, что пироксен не является породообразующим минералом в этих породах, мы называем их габбро на основании их химического состава.

Акцессорная минерализация представлена идиоморфными кристаллами фторапатита, циркона и пирита, а также ксеноморфными зернами титанита, в которых наблюдаются выделения ильменита неправильной формы.

Сиениты и кварцевые сиениты, преобладающие в западной части массива (в районе г. Блинова), представляют собой средне- и равномернозернистые амфиболовые породы гипидиоморфной структуры (рис. 10). В сиенитах преобладает калиевый полевой шпат (45-80 %) и амфибол (5-15 %,

магнезиальный гастингсит, f = 69-75 %). В меньшем количестве присутствуют биотит (5-10 %, железистый флогопит, f = 64-66 %) и кислый плагиоклаз (5-10 %, An₁₋₃₁), изредка наблюдаются зерна клинопироксенов (диопсид, f = 33 %). Калишпат и кислый плагиоклаз образуют таблитчатые суб- и идиоморфные кристаллы, часто сдвойникованные. Темноцветные минералы встречаются в виде субидиоморфных и идиоморфных кристаллов буро-зеленоватого (биотит) и зеленовато-коричневого цвета (амфибол).

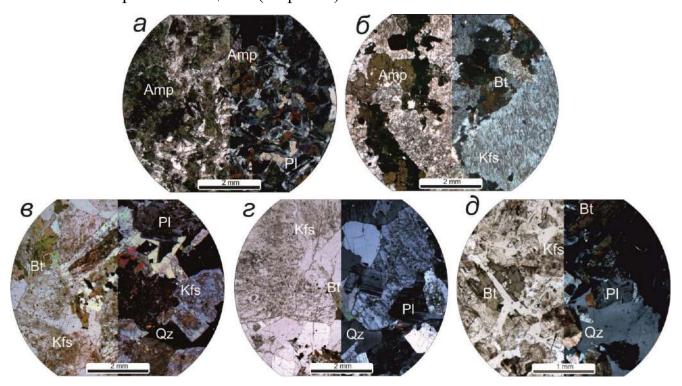


Рис. 10. Породы Айского массива. На каждом фото слева николи параллельны, справа – скрещены. а – габбро, б – сиенит, в – граносиенит, г – гранит, д – лейкогранит.

В кварцевых сиенитах также присутствует кварц, количество плагиоклаза увеличивается, а зональность последнего становится более выраженной.

В сиенитах и кварцевых сиенитах отмечается большое количество акцессорных минералов – циркона, фторапатита, магнетита и титанита, которые являются включениями в породообразующих минералах. Морфология титанита в сиенитах и кварцевых сиенитах неодинакова. В обеих разновидностях пород встречаются субидиоморфные кристаллы титанита с пятнистой зональностью. В кварцевых сиенитах также наблюдаются каймы титанита различной мощности вокруг кристаллов ильменита. Ильменит встречается только в кварцевых

сиенитах. Морфология его зерен такая же, как в габбро – реликты неправильной формы внутри титанита.

Зерна темноцветных минералов часто изменены — амфибол замещен биотитом, который в свою очередь замещается хлоритом. Зёрна калиевого полевого шпата нередко альбитизированы.

В пределах Айского массива сиениты проявлены также в его южной части — в окрестностях г. Березовой. Минеральный состав и текстурно-структурные особенности пород указанных двух ареалов схожи. Отличием является более мелкозернистая структура сиенитов г. Березовой, причём размерность акцессорных минералов, напротив, увеличивается. Породы этого ареала содержат большее количество темноцветных минералов (амфибол до 30 %, биотит 15-20 %), а также в плагиоклазах ярко выражена зональность.

Граносиениты Айского массива -ЭТО крупнозернистые среднепорфировидные породы, состоящие из полевых шпатов (30-40 % калиевого полевого шпата, 30-50 % плагиоклаза), биотита (5-10 %), амфибола (1-3 %) и кварца (10-20 %) (рис. 10). Калиевый полевой шпат образует порфировые вкрапленники, нередко альбитизированные во всем объёме зерна, а также ксеноморфные зерна сдвойникованные по карлсбадскому закону в основной массе породы, а кислый плагиоклаз (An_{1-14}) – слабозональные идиоморфные таблитчатые кристаллы. Идиоморфные чешуйки биотита (железистый флогопит, *f* = 53-65 %) плеохроируют от светлого к тёмному буро-зеленому цвету. Редкие зёрна зелёного амфибола (эденит, f = 52-57 %), как правило, замещены слюдами. Кварц располагается в интерстициях между другими породообразующими минералами, образуя ксеноморфные зерна, нередко с облачным погасанием.

Среди акцессорных минералов в граносиенитах наиболее широко распространены магнетит, фторапатит и циркон. Они образуют идиоморфные кристаллы-включения в породообразующих минералах. Магнетит в граносиенитах, как и в других разновидностях пород Айского массива, образует идиоморфные и близко идиоморфные кристаллы размером в поперечнике от первых десятков микрон до 1 мм, при этом самые мелкие кристаллы встречаются

в сиенитах, в то время как в гранитах — более крупные. Титанит отсутствует, однако, наблюдаются полные псевдоморфозы (с сохранением морфологии кристаллов титанита), сложенные мелкокристаллическим агрегатом ильменита, флюорита и иногда монацита.

Граниты проявлены в южной (район г. Березовой) и в восточной части Айского массива (ареал г. Мохнатая и г. Типешка) (рис. 10). Они представляют собой средне- крупнозернистые породы с порфировидной структурой, в составе которых присутствуют полевые шпаты, кварц, а среди темноцветных минералов амфибол и биотит, количественные отношения которых сильно варьируют. Порфировые образованы вкрапленники идиоморфными таблитчатыми кристаллами калиевого полевого шпата, нередко сдвойникованными карлсбадскому закону. Следует отметить, что в пределах Айского массива встречаются как чисто биотитовые граниты, так и биотит-амфиболовые разности.

Основная масса породы сложена калиевым полевым шпатом (30-45 %), кислым плагиоклазом (15-30 %), кварцем (20-35 %) и темноцветными минералами (5-7 %) – биотитом и иногда амфиболом. Калиевый полевой шпат здесь представлен ксеноморфными зернами, в то время как плагиоклаз (Ап₁₋₈) – напротив, ограненными досчатыми кристаллами хорошо тонкими полисинтетическими двойниками. Амфибол (магнезиальный гастингсит, f = 54-61 %), плеохроирующий от зелёной до бурой окраски, представляет собой хорошо ограненные удлиненные кристаллы, иногда замещающиеся биотитом. Биотит (железистый флогопит, f = 55-61 %) образует мелкие идиоморфные чешуйки зелёно-бурого цвета, которые нередко замещены хлоритом либо мусковитом. Ксеноморфные зёрна кварца занимают интерстициональное положение среди других породообразующих минералов.

Акцессорные фазы — фторапатит, циркон, магнетит и Мп-ильменит, как правило, являются включениями в темноцветных минералах. Также как и в граносиенитах, в гранитах присутствуют псевдоморфозы по титаниту. Найдены также мелкие идиоморфные кристаллы титанита со слабопроявленной пятнистой зональностью. Отличительной особенностью гранитов является наличие

идиоморфных кристаллов ортита. Следует отметить, что ильменит встречен только в гранитах Айского массива (отсутствует в сиенитах), размер субидиоморфных кристаллов достигает 1 мм. В ильмените часто наблюдается мелкая вкрапленность, предположительно, магнетита (из-за крайне небольшого размера не представляется возможным провести диагностику), которая напоминает структуры распада.

Также в ареале горы Березовой встречаются жильные тела гранитов — это средне-мелкозернистые породы слабопорфировидного облика, что определяется наличием крупных зёрен кварца и плагиоклаза. Среди темноцветных минералов присутствует лишь биотит оливково-зеленого цвета. Набор акцессорных минералов идентичен вышеописанным гранитам.

Лейкограниты — это средне-крупнозернистые порфировидные породы, по структуре и минеральному составу близкие к вышеописанным гранитам (рис. 10). Главное отличие — присутствие акцессорного флюорита, который образует ксеноморфные зерна в интерстициях между другими акцессорными минералами. Кроме того, для лейкогранитов характерно наличие секущих жил и небольших гнёзд аплитовидной структуры, сложенных кварцем и полевым шпатом. Акцессорные фазы — циркон, апатит и флюорит.

3.1.2. Теранджикский массив

Монцогаббро первой фазы представляют собой темно-серые массивные среднезернистые породы с офитовой или габброофитовой структурой, слагающие отдельные небольшие ксеноблоки среди более кремнекислых пород (рис. 11). Для монцогаббро характерно наличие двух минеральных парагенезисов. Минеральные индивиды, слагающие эти парагенезисы, не существенно отличаются по размеру зерен, но резко различны по степени идиоморфизма.

Ранний минеральный парагенезис составляет до 45 % объема пород. Он представлен идиоморфными зернами оливина (<5 %), гиперстена (1-2 %, f = 30-46), авгита (20-25 %, f = 19-36), а также широкими слабозональными лейстами плагиоклаза среднего состава, составом ядер отвечающего лабрадору-андезину

(10-15 %, An_{47-56}). Поздний парагенезис (до 65 % объема пород) сложен более кислым плагиоклазом (40-50 %, An_{25-40}), амфиболом (до 5 %, магнезиальная роговая обманка, f = 23-41), калиевым полевым шпатом (5-7 %), а также биотитом (до 5 %, f = 29-47). Поздний плагиоклаз, как правило, слагает удлиненные узкие лейсты с четкой полисинтетической штриховкой и характеризуется более низкой степенью идиоморфизма, по сравнению с минералами раннего парагенезиса. Буро-зелёный амфибол, как правило, реакционно замещает клино- и ортопироксен, изредка образуя небольшие идиоморфные зерна. Калиевый полевой шпат и биотит занимают интерстициальное положение, не имея собственных кристаллографических очертаний.

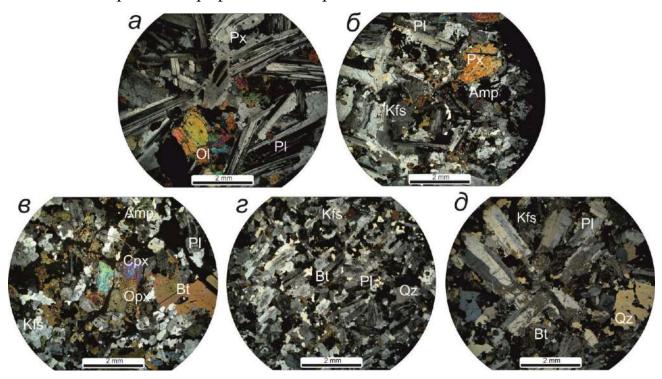


Рис. 11. Породы Теранджикского массива. На каждом фото николи скрещены. а – монцогаббро, б – монцонит, в – монцодиорит, г – граносииенит, д –гранит.

Акцессорные минералы в монцогаббро представлены цирконом, апатитом, магнетитом, ильменитом, встречаются кристаллы монацита и тонкая вкрапленность рутила в магнетите. Также в породе встречаются единичные мелкие зёрна кварца.

Вторая фаза внедрения сложена серыми массивными среднезернистыми монцонитами, макроскопически почти неотличимыми от габбро первой фазы. В шлифах наблюдается монцонитовая структура с выраженным идиоморфизмом

плагиоклаза по отношению к калиевому полевому шпату (рис. 11). Подобно описанным выше габброидам, монцониты второй фазы характеризуются наличием двух минеральных парагенезисов. Ранний парагенезис (до 30 % объема плагиоклазом (5-10 %), представлен ортопироксеном пород) клинопироксеном (15-20 %). Набор минералов и типоморфные особенности минеральных индивидов раннего парагенезиса идентичны таковым в габброидах первой фазы (за исключением отсутствия оливина). Плагиоклаз, как и в габброидах, слагает широкие слабо удлиненные лейсты со слабой видимой зональностью, либо не имеющие двойниковой структуры, либо с широкими простыми двойниками. Составы плагиоклазов не отличаются от ранних плагиоклазов габброидов и отвечают лабрадорам - основным андезинам (Ап₄₀₋₆₀). Края зерен плагиоклаза часто неровные, очевидно вследствие их частичного растворения на поздней стадии кристаллизации породы. Энстатит (f = 26-44) и авгит (f = 24-36) образуют изометричные или удлиненные идиоморфные зерна с частичной или полной кристаллографической огранкой, зачастую замещенные по краям амфиболом. Поздний парагенезис (до 80 % объема породы) по набору минералов и морфологическим особенностям их индивидов аналогичен таковому В монцогаббро, однако отличается количественными соотношениями минеральных фаз (плагиоклаз -35-40 %, амфибол -5-10 %, биотит (f=31-49) -5-10%, калишпат – 10-15%, кварц – 5-7%). Удлиненные лейсты плагиоклаза характеризуются отсутствием видимой зональности и четко выраженной тонкой полисинтетической двойниковой штриховкой. По составу плагиоклазы несколько более кислые (Ап₂₂₋₃₇), нежели поздние плагиоклазы габброидов. Амфибол (магнезиогастингсит, f = 27-43 %) проявлен не только как продукт замещения более ранних минералов, и в виде самостоятельных индивидов, идиоморфных по отношению к зернам биотита и полевых шпатов позднего парагенезиса. Биотит и калишпат в монцонитах уже не интерстициальные, но также образуются и на средней стадии кристаллизации, временами слагая идиоморфные зерна. Кварц представлен ксеноморфными выделениями неправильной формы, выполняющими промежутки между зернами других минералов.

Акцессорные минералы представлены цирконом, апатитом, местами образующим изометричные зерна до 2 мм, а также магнетитом и ильменитом.

Монцодиориты третьей фазы слагают основной объем массива. Они характеризуются крупно-, среднезернистой массивной текстурой и монцонитовой структурой, в редких случаях достигающей гипидиоморфнозернистой (рис. 11). В монцодиоритах, как и в породах предшествующих фаз, присутствуют два минеральных парагенезиса с аналогичными минеральными фазами, однако объём раннего парагенезиса не превышает 25%. Ранний плагиоклаз образует небольшие, преимущественно изометричные крупнозональные лейсты и по составу отвечает кислому андезину (5-10 %, An_{31-41}). Изометричные кристаллы пироксенов – энстатита (1-2 %, f = 29-37) и авгита (10-20 %, f = 19-28) – идиоморфны по отношению ко всем другим минералам. В монцодиоритах пироксены частично или полностью замещаются амфиболом. В позднем парагенезисе, слагающем до 80% пород, плагиоклаз-олигоклаз (25-35 %, An_{20-27}) представлен идиоморфными вытянутыми кристаллами с четкой двойниковой штриховкой. Остальные минералы второго парагенезиса — амфибол (5-7 %, f = 21-34), биотит (5-10 %, f = 21-34) 28-35), и калиевый полевой шпат (10-15 %) – образуют идиоморфные зерна до 2-3 Кварц (5-10%) занимает интерсициональное пространство, образуя MM. кристаллы неправильной формы.

Акцессорные минералы – магнетит, ильменит, циркон, а также мелкие удлиненные кристаллы апатита.

В граносиенитах четвертой фазы также присутствует ранний парагенезис (до 15 %), хотя встречается он заметно реже, чем в монцодиоритах. Породы этой фазы характеризуются массивной среднезернистой текстурой и гипидиоморфнозернистой структурой основной массы, сложены идиоморфными плагиоклазом (20-30 %, An_{20-27}), амфиболом (< 5 %, магнезиогастингсит, f = 26-38 %), биотитом (5-8 %, f = 34-42 %) и калиевым полевом шпатом (20-25 %) позднего парагенезиса (до 90 % объема пород) (рис. 11). Составы и формы выделения плагиоклазов схожи с минералами монцодиоритов. Количество раннего плагиоклаза в породе составляет около 5-10%, позднего — 20-30%.

Энстатит (<1 %) и авгит (7-10%) встречаются редко и, как правило, интенсивно замещены. Кварц (15-20%) занимает подчиненное положение. Акцессорные минералы представлены идиоморфными кристаллами магнетита, циркона, апатита и титанита. Ильменит образует как самостоятельные субидиоморфные кристаллы, включения в биотите, так и пятна, а также вкрапленность в магнетите. Также в ильмените нередко обнаруживаются тонкие вростки рутила.

Массивные мелко-среднезернистые *граниты* завершающей пятой фазы внедрения характеризуется гипидиоморфнозернистой структурой и отсутствием раннего пироксен-плагиоклазового парагенезиса (рис. 11). Плагиоклаз андезинолигоклазового состава (An_{25-32} , 30-35%) образует вытянутые лейсты с четкой полисинтетической штриховкой. Биотит (5-10 %, f=37-41%) слагает мелкие удлиненные чешуйки до 1 мм по удлинению. В поляризонанном свете зерна биотита плеохроируют от красновато-коричневого до почти черного. Калиевый полевой шпат (30-35%) также часто слагает крупные идиоморфные зерна. Кварц (25-30%) нередко образует изометричные, соразмерные с калишпатом зерна. Для зерен кварца (особенно в породах краевых частей массива) характерно наличие «входящих» углов, что фиксирует процессы дробления и перекристаллизации при поздних хрупких тектонических деформациях. Акцессорные минералы — магнетит, циркон, апатит и титанит, причём титанит образует хорошо ограненные кристаллы со множеством включений других акцессорных минералов.

3.1.3. Тархатинский массив

Монцодиоримы Тархатинского массива представляют собой мелкозернистые порфировидные породы, сложенные двумя полевыми шпатами – калиевым полевым шпатом (35-40 %) и средним плагиоклазом (10-30 %), а также биотитом (5-10 %), пироксеном (5-10 %), амфиболом (1-5 %) и кварцем (7-10 %) (рис. 12). Порфировидная структура обусловлена наличием субидиоморфных удлиненных вкрапленников калиевого полевого шпата (размером 0,2-0,5 см по удлинению), практически всегда сдвойникованных по карлсбадскому закону. Структура основной массы породы — гипидиоморфная. Калишпат здесь образует

ксеноморфные зерна, а редкие зерна плагиоклаза (Ап₂₆₋₃₇) – субидиоморфные. Среди темноцветных минералов преобладают биотит и амфибол, отдельные зёрна которых достигают 1 мм по длинной оси. Идиоморфные чешуйки биотита (железистый флогопит, f = 30-32 %) плеохроируют от светло-коричневого до тёмно-бурого цвета, в них часто наблюдается большое количество включений акцессорных минералов. Пироксен (диопсид-авгит, f = 17-25 %) представлен хорошо ограненными кристаллами болотно-зеленого цвета размером 0,1-1 мм в замещён биотитом. сечении, часто изменён И Зёрна кварца мелкие, ксеноморфные, часто с зазубренными краями.

Среди акцессорных минералов широко распространены апатит, циркон, ильменит и магнетит. Магнетит образует кубические либо кубооктаэдрические кристаллы, а также «червеобразные» вростки в пироксене. В зернах магнетита обычно наблюдаются полосы ильменита, сходные со структурами распада твердых растворов.

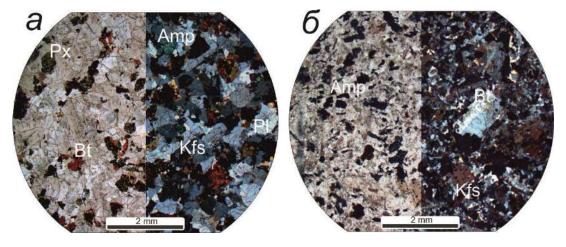


Рис. 12. Породы Тархатинского массива. На каждом фото слева николи параллельны, справа – скрещены. а – монцодиорит, б – сиенит.

Сиениты периферических частей массива — это мелкозернистые порфировидные породы, в составе которых преобладают калиевый полевой шпат (50-65 %), плагиоклаз (10-20 %), биотит (5-10 %) и амфибол (5-10 %) (рис. 12). Встречаются отдельные зерна пироксена (авгит, f = 20-22 %). Минеральный состав сиенитов очень близок к таковому монцодиоритов, основным отличием являются процентные соотношения минералов. Порфировые вкрапленники образованы субидиоморфными удлинёнными сдвойникованными кристаллами

калиевого полевого шпата. Зёрна калиевого полевого шпата по удлинению достигают 2-5 мм и часто изменены. Отдельные зерна плагиоклаза ($\mathrm{An}_{1\text{-}17}$) в основной массе идиоморфны по отношению к калишпату и ксеноморфны – к темноцветным минералам. Буро-коричневый биотит (железистый флогопит, f=41-46%) и амфибол (актинолит, f=12-38%) образуют хорошо ограненные кристаллы в основной массе породы, размером 0,1-1 мм. Амфибол часто замещается биотитом.

В сиенитах отмечается большое количество акцессорных минералов, таких как апатит, циркон и магнетит, проявления которых чаще всего приурочены к темноцветным минералам.

Граносиениты и монцограниты собой представляют мелко-ДО среднезернистых порфировидные породы. Минеральный состав и текстурноструктурные особенности их одинаковы, основным отличием являются количественные соотношения минералов. Доля темноцветных минералов уменьшается с 20-25 % в граносиенитах до 10 % в монцогранитах, количество кварца и плагиоклаза, напротив, возрастает до 20-25 % и 25-30 %, соответственно. Порфировые вкрапленники, как и в более основных разностях, представлены идиоморфными кристаллами калиевого полевого шпата (50-55)%, граносиенитах и 35-40 % в монцогранитах). Структура основной массы гипидиоморфнозернистая. Кислый плагиоклаз (25-30 %, An₂₋₃₂) и биотит (5-7 %, железистый флогопит, f = 36-47 %) образуют мелкие идиоморфные кристаллы. В граносиенитах среди темноцветных минералов, наряду с биотитом, изредка встречаются также идиоморфные кристаллы амфибола (актинолит, f = 18-45 %). Акцессорная минерализация представлена цирконом, апатитом, монацитом, магнетитом и титанитом.

3.1.4. Саввушинский массив

Монцодиориты и кварцевые монцодиориты первой фазы внедрения представляют собой среднезернистые слабопорфировидные породы, вкрапленники в которых образованы плагиоклазами (рис. 13). Идиоморфные

кристаллы во вкрапленниках зональные - по составу отвечают олигоклазуандезину (40-45 %, Ап₉₋₃₈), как правило, полисинтетически сдвойникованные, а также иногда образуют простые двойники по манебахскому закону. Калиевый полевой шпат (20-25 %) представлен ксеноморфными часто изменёнными зёрнами нередко с микроклиновой решёткой, причём области, где проявлена микроклиновая решётка, оказываются чистыми от продуктов изменения. %, Темноцветные минералы, такие как амфибол (10-15)магнезиальный гастингсит, f = 58-59 %) и биотит (10-15 %, умеренно-железистый биотит, f = 64-66 %) образуют идиоморфные кристаллы, причем амфибол нередко замещен биотитом. Редкие зёрна кварца ксеноморфные, как правило, с облачным погасанием.

В монцодиоритах Саввушинского массива наблюдается большое количество акцессорных минералов, среди которых идиоморфные кристаллы титанита, фторапатита, циркона и магнетита, также встречаются ортит и Мпильменит, которые образуют неоднородные по составу выделения неправильной формы в титаните. Стоит отметить, что титанит образует как крупные (до 0,2 мм) копьевидные кристаллы, так и ксеноморфные зерна внутри и около амфибола. Кроме того, титанит иногда встречается в виде кайм вокруг зерен магнетита.

Биотитовые и биотит-амфиболовые *гранодиориты* второй фазы — среднекрупнозернистые породы с порфировидной структурой, вкрапленники (до 30 %) в которых представлены кислым до среднего плагиоклазом и калиевым полевым шпатом (рис. 13). Идиоморфные таблитчатые кристаллы плагиоклаза (An_{1-37}) зональные, с характерной полисинтетической штриховкой, также иногда встречаются простые двойники. Калиевый полевой шпат образует идиоморфные таблитчатые незональные кристаллы вкрапленников и ксеноморфные зёрна в основной массе породы (5-10 %). Биотит (10-15 %, умеренно-железистый биотит, f = 53-65 %) образует в основной массе породы мелкие сильно плеохроирующие идиоморфные чешуйки бурого цвета. В некоторых случаях отмечается присутствие хорошо ограненных кристаллов амфибола (<10 %, магнезиальный гастингсит, f = 61-65 %) частично или полностью замещенных биотитом.

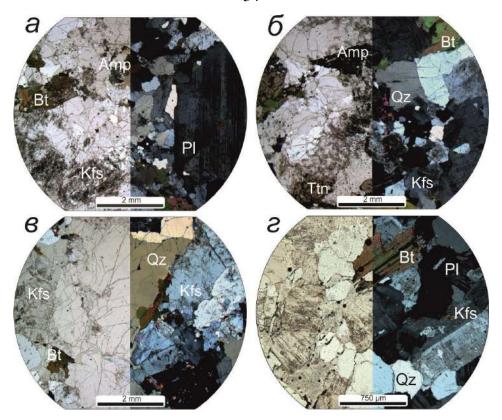


Рис. 13. Породы Саввушинского массива. На каждом фото: слева николи параллельны, справа – скрещены. а – монцодиорит, б – гранодиорит, в – гранит, г – лейкогранит.

Акцессорные минералы, такие как титанит и апатит пространственно сопряжены с проявлением темноцветных минералов — являются включениями в них либо образуют тесные срастания. В целом акцессорная минерализация гранодиоритов аналогична таковой в монцодиоритах — это идиоморфные циркон, фторапатит, титанит и магнетит, и ксеноморфные Мп-ильменит и ортит в титаните.

Крупнозернистые равномернозернистые *биотитовые граниты* обладают гипидиоморфной структурой и сложены полевыми шпатами (30-40 % кислого плагиоклаза и 35-40 % калиевого полевого шпата), биотитом (5-7 %) и кварцем (25-30 %) (рис. 13). Калиевый полевой шпат образует субидиоморфные таблитчатые кристаллы, часто альбитизированные. В тех случаях, когда калиевый полевой шпат слабо изменён, хорошо видна микроклиновая решётка, также нередки простые двойники. В незональных удлинённых кристаллах плагиоклаза (An_{1-25}) также прослеживается два типа двойникования — присутствуют как простые, так и полисинтетические двойники. Биотит (умеренно-железистый биотит, f = 55-61 %) образует бурые уплощенные кристаллы субидиоморфного

облика, плеохроирующие от почти бесцветного до тёмно-коричневого цвета. Крупные зёрна кварца ксеноморфные, однако иногда угадываются гексагональные очертания кристаллов.

Главным акцессорным минералом является титанит. Он образует идиоморфные кристаллы по размеру близкие к зёрнам породообразующих минералов и содержит в себе большое количество включений как акцессорных минералов, так и породообразующих. Также присутствуют фторапатит, циркон и магнетит; ортит и Мп-ильменит в титаните. Магнетит образует включения в титаните, а сам часто содержит включения Се-монацита.

Граниты даек отличаются лишь размерностью зёрен породообразующих минералов. Встречаются жилы ортитоносных гранитных *пегматитов*, в которых также широко распространены титанит и апатит. Акцессорная минерализация пегматитов в целом идентична таковой гранитов. Краевые части пегматитовых тел сложены аплитом, который постепенно переходит в пегматит, при этом центральная зона представлена кварцевым ядром.

Лейкограниты Саввушинского массива весьма схожи с биотитовыми гранитами 13). третьей фазы (рис. Основными ОТЛИЧИЯМИ является количественное соотношение минералов и зачастую меньшая размерность зёрен породообразующих собой минералов. Лейкограниты представляют среднезернистые равномернозернистые светлоокрашенные горные породы гипидиоморфнозернистой структуры. Идиоморфные субидиоморфные И кристаллы плагиоклаза слагают 25-35 % породы, калиевого полевого шпата – 35-40 %, кварца — 25-30 %, биотит (умеренно-железистый биотит, f = 57,5-61 %) представлен бурыми субидиоморфными чешуйками, количество варьирует от 1 до 5 %. Отметим, что в лейкогранитах кварц образует субидиоморфные кристаллы и степень идиоморфизма калишпата и кварца сопоставима. Набор И характер распределения акцессорных минералов лейкогранитов идентичен таковому в гранитах.

Лейкограниты также встречаются в виде даек в породах более ранних фаз массива, как правило, они мелкозернистые и не содержат темноцветных минералов.

3.1.5. Атуркольский массив

Породы Атуркольского массива – порфировидные биотитовые (± амфибол) граносиениты и меланократовые монцограниты. Порфировые вкрапленники представлены калиевым полевым шпатом и, иногда, плагиоклазом. Количество 20 40 %. вкрапленников незакономерно варьирует ОТ ДΟ составе крупнозернистой основной массы монцогранитов в приблизительно равных количествах (25-30 %) присутствуют кислый плагиоклаз, калиевый полевой шпат и кварц; резко преобладающий темноцветный минерал – буро-коричневый биотит (10-15 %, умеренно-железистый аннит, f = 54-59 %), иногда встречаются зёрна амфибола (магнезиально-железистая роговая обманка) (рис. 14). В основной массе граносиенитов количество кварца понижено (до 20 %) за счёт калишпата и биотита. Среди акцессорных минералов широко распространены титанит и магнетит, также присутствуют ильменит, апатит, циркон и ортит. Акцессорные минералы, как правило, являются включениями в биотите или образуют с ним срастания.

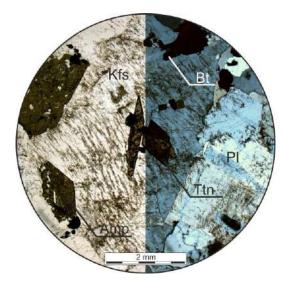


Рис. 14. Монцогранит Атуркольского массива. Слева николи параллельны, справа — скрещены.

Полевые шпаты в породах Атуркольского массива представлены плагиоклазом и калиевым полевым шпатом. Оба минерала встречаются как в виде идиоморфных порфировых вкрапленников таблитчатой формы размером 1–3 см.,

так и в виде ксеноморфных зерен в основной массе породы. Кристаллы плагиоклаза слабозональные. Порфировые вкрапленники калиевого полевого шпата часто сдвойникованы по карлебадскому закону. Биотит представлен идиоморфными кристаллами, плеохроирующими от светло до тёмно-коричневого цвета, размером от 0.5 до 4 мм. Амфибол в гранитоидах Атуркольского массива встречается в виде мелких идиоморфных кристаллов, плеохроирующих от изумрудно-зеленого до буро-зеленого цвета. Зёрна кварца ксеноморфные, с облачным погасанием.

Наиболее распространенным акцессорным минералом в гранитоидах Атуркольского массива является титанит. Он образует хорошо ограненные конвертовидные кристаллы размером от 0.2 до 1 мм по удлинению. Зерна титанита часто зональные, причем в центральных зонах обычно содержится большое количество включений магнетита, в то время как краевые зоны, как правило, не содержат минеральных включений. Апатит образует бесцветные идиоморфные призматические кристаллы, размером 50-300 мкм по удлинению, которые являются включениями во всех породообразующих минералах, а также в магнетите, титаните и ортите. Последний, в свою очередь, встречается в виде уплощенных идиоморфных кристаллов с тонкой зональностью. Призматические кристаллы циркона, размером от 40 до 300 мкм по длинной оси, встречаются в виде включений в породообразующих минералах, титаните и магнетите.

Необходимо отметить совместное нахождение в гранитоидах акцессорных магнетита и ильменита. В гранитоидах Атуркольского массива магнетит встречается гораздо чаще ильменита. Он, как правило, образует идиоморфные кристаллы, размером от 30 мкм до 1 мм. Скопления мелких (до 100 мкм) идиоморфных кристаллов магнетита часто отмечаются по периферии лейст биотита. Аналогичные зерна наблюдаются в центральных зонах клиновидных кристаллов титанита; также отмечены находки зональных идиоморфных зерен ортита, внутри которых заключен магнетит, имеющий кристаллографические очертания. Ильменит в виде самостоятельных включений в породообразующих и акцессорных минералах отсутствует. Он встречен в породах лишь в виде

выделений неправильной формы размером 50-200 мкм, имеющих неоднородную структуру и состав: на фотографиях, полученных с помощью сканирующей электронной микроскопии, видно, что эти выделения представляют собой тесные срастания магнетита и ильменита, причем ни тот ни другой не имеют кристаллографических очертаний.

3.1.6. Синюшенский массив

Гранит-лейкограниты — светло-серые или розовато серые порфировидные биотитовые породы (рис. 15). В пределах массива выделяются две разновидности: крупнозернистые и мелкозернистые порфировидные биотитовые граниты. Минеральный состав и текстурные особенности пород практически не различаются.

породообразующими Главными минералами гранитоидов являются калиевый полевой шпат, плагиоклаз, кварц и биотит. Порфировый облик породам придают вкрапленники калиевого полевого шпата, который присутствует в породе, как в виде порфировых вкрапленников размером до 3,5 см по удлинению, так и в виде ксеноморфных зерен в основной массе породы. Порфировые вкрапленники калишпата, количество которых составляет от 5-10 % до 40 % объема породы, представляют собой идиоморфные таблитчатые слабо зональные кристаллы, часто сдвойникованные по карлсбадскому закону. Зёрна калишпата Некоторые кристаллы образуют часто пелитизированы. закономерное прорастание с кварцем. Во вкрапленниках наблюдаются включения кварца, плагиоклаза, биотита и некоторых акцессорных минералов, причём наибольшее количество включений приурочено к краевым зонам вкрапленников.

Плагиоклаз An_{10-32} в гранитоидах Синюшенского массива является обычным минералом основной массы, изредка наблюдается в виде вкрапленников размером до 2 см. Зёрна плагиоклаза, как правило, досчатые, с хорошей кристаллографической огранкой, обладают слабо видимой зональностью, часто сдвойникованы по альбитовому закону. Центральные зоны зёрен часто серицитизированы, в краевых зонах встречаются тесные срастания с кварцем. В

качестве минеральных включений плагиоклаз встречается во вкрапленниках калиевого полевого шпата. Слюды в гранитоидах Синюшенского массива представлены биотитами (f = 61-81 %), резко плеохроирующими от буровато-коричневого до светло-коричневатого цвета. Ксеноморфные чешуйки биотита наблюдаются в основной массе породы, а также в виде минеральных включений в краевых частях вкрапленников калиевого полевого шпата. Часто отмечается развитие по биотиту вторичных минералов, отдельные зёрна иногда нацело замещены хлоритом. Кварц образует ксеноморфные зёрна в основной массе породы, а также включения в биотите и калиевом полевом шпате.

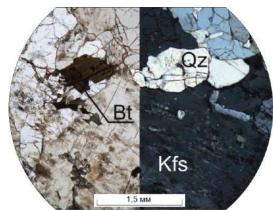


Рис. 15. Гранит Синюшенского массива. Слева николи параллельны, справа – скрещены.

Среди акцессорных минералов наиболее распространены магнетит, ильменит, циркон, монацит и апатит, реже (преимущественно в виде включений в магнетите) встречаются титанит и эвксенит.

Породы жильных тел представлены аплитами, минеральный состав которых идентичен более крупнозернистым разностям. В случае, когда мощность аплитовых жил увеличивается, в раздувах жил наблюдается пегматитовая структура, а в гнёздах также появляется турмалин. Иногда встречается кварцтурмалиновая графика.

3.1.7. Белокурихинский массив

Основной объём массива сложен порфировидными среднекрупнозернистыми *биотитовыми гранитами* второй фазы. Они представляют собой розовато-серые породы, цвет которых обусловлен большим содержанием полевых шпатов – 40-45 % калиевого полевого шпата и 20-30 % плагиоклаза (An_{1-38}), содержание темноцветного минерала – биотита, в породе варьирует от 5 до

8 % (рис. 16). Порфировидная структура породы обусловлена наличием крупных (до 9 см по удлинению) вкрапленников калиевого полевого шпата и изредка плагиоклаза. Вкрапленники калишпата суб- и идиоморфные досчатой формы, в то время как зёрна калишпата в основной массе породы имеют ксеноморфные очертания. Часто встречаются двойники по карлсбадскому закону, а во вкрапленниках также наблюдается микроклиновая решётка. Зёрна калиевого полевого шпата практически всегда сильно пелитизированы, при этом области, в которых проявлена микроклиновая решётка оказываются чистыми. калиевого полевого шпата содержат включения таких минералов, как плагиоклаз, кварц и акцессорный гранат. Плагиоклаз также изредка образует вкрапленники, но чаще встречается в основной массе породы в виде идиоморфных досчатых кристаллов с характерными полисинтетическими двойниками. В плагиоклазе встречаются включения практически всех акцессорных минералов (циркон, монацит, апатит, гранат, титанит, ильменит), а также кварца. Среди темноцветных минералов в гранитах Белокурихинского массива отмечается только биотит (умеренно-железистый аннит, f = 78-83 %), который образует субидиоморфные чешуйки размером от 0,2 до 2 мм в поперечнике. Цвет биотита плеохроирует от светло-коричневого до темно-бурого. Часто чешуйки биотита замещены хлоритом и в шлифе приобретают изумрудно-зелёный цвет. В зёрнах биотита наблюдаются включения магнетита и ильменита, а также циркона, монацита, апатита, титанита. Зёрна кварца ксеноморфные, в них, как правило, наблюдается облачное погасание.

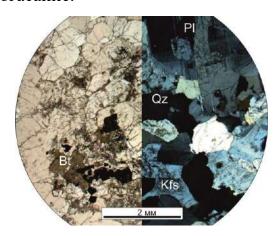


Рис. 16. Биотитовый гранит Белокурихинского массива. Слева николи параллельны, справа – скрещены.

Среди акцессорных минералов встречаются идиоморфные кристаллы циркона, апатита, магнетита и ильменита. Белокурихинский массив — единственный, среди изученных нами, в котором количество акцессорного ильменита превосходит количество магнетита. Ильменит образует идиоморфные кристаллы размером до 300 мкм, часто слабо зональные. Магнетит встречается в виде идиоморфных кристаллов, размером до 0,5 мм.

Биотитовые лейкограниты часто рассечены аплитовидными мелкозернистыми гранитами иногда порфировидного облика с редкими крупными вкрапленниками калиевого полевого шпата (ареал р. Песчаной). Однако, как правило, аплитовидные жилы равномернозернистые, с пегматоидной зоной в осевой части жилы. Минеральный состав аплитовидных и пегматитовых тел идентичен – кварц, калиевый полевой шпат и иногда биотит.

Биотитовые и двуслюдяные лейкограниты третьей фазы в пределах Белокурихинского массива образуют отдельные секущие тела среди пород второй фазы, а также два изолированных штока (Осокинский и Точильненский). Мелкосреднезернистые порфировидные лейкограниты сложены двумя полевыми шпатами (калиевый полевой шпат -40-45%, плагиоклаз $An_{1-23}-20-30\%$), кварцем (20-30 %), биотитом (2-5 %, f = 49-60 %), также в некоторых случаях наблюдается мусковит. Порфировые вкрапленники образованы крупными идиоморфными таблитчатыми кристаллами калиевого полевого шпата часто сдвойникованными по карлебадскому закону. Зёрна калишпата нередко изменены и альбитизированы, и содержат большое количество минеральных включений породообразующих кварца, плагиоклаза и слюд. Плагиоклаз представлен идиоморфными удлинёнными кристаллами, в которых наблюдаются не только тонкие альбитовые полисинтетические двойники, но и простые двойники по манебахскому закону. Кристаллы плагиоклаза зональные, причём в случаях, когда вторичному плагиоклаз подвергается изменению, периферические кристалла остаются неизменёнными. Биотит образует бурые субидиоморфные чешуйки, окраска которых сильно плеохроирует от светлого, почти бесцветного насыщенного зеленовато-бурого В ДО тёмного, цвета. двуслюдяных

разновидностях присутствует мусковит, ОН представляет собой также идиоморфные и субидиоморфные кристаллы, размером от 0,5 до 2 мм, светлоокрашенные, с характерным перламутровым переливом. В некоторых наблюдается замещение биотита мусковитом. Кварц образует ксеноморфные зёрна с облачным погасанием.

Набор акцессорных минералов в лейкогранитах шире, чем в гранитах. Наиболее часто встречаются циркон, апатит, магнетит и ильменит, но также присутствуют гранат, турмалин, рутил, титанит, монацит, уранинит и ксенотим.

3.2. Обсуждение результатов

Проведенные исследования показали, что при широком разнообразии структурно-текстурных характеристик и минералогических особенностей пермотриасовые магматические ассоциации Алтая обладают рядом сходных черт. Для абсолютного большинства гранитоидов порфировидный типичен резкопорфирового) облик. Это указывает многоэтапную историю на формирования пород. Кристаллизация гранитоидных магм, по-видимому, начиналась в ходе их подъёма (образование вкрапленников полевых шпатов, а кристаллизация акцессорных минералов) также И завершалась непосредственно на уровне становления интрузий. Более основные разности (габброиды, монцодиориты), как правило, равномернозернистые, но в них фиксируются признаки длительной кристаллизации, такие как наличие раннего и позднего минеральных парагенезисов габброидах И монцонитоидах Теранджикского массива.

Минеральный состав пород пермо-триасовых магматических серий достаточно разнообразен. Из темноцветных минералов в основных и средних породах присутствуют орто- и клинопироксены, иногда — оливин (в габброидах), повсеместно распространен амфибол. В гранитоидах основными темноцветными минералами являются биотит и амфибол. Последний характерен исключительно для пород габбро (монцодиорит)-гранитных и гранодиорит-гранитных серий, причем количественные соотношения его в гранитоидах разных массивов

различны. Так в гранодиоритах и граносиенитах Саввушинского, Тархатинского и Атуркольского массива амфибол крайне редок, в то время как в аналогичных разностях Айского и Теранджикского массивов — это обычный минерал (в последнем в граносиенитах встречаются, также, зерна замещенных клинопироксенов). В Айском массиве амфибол спорадически встречается в гранитах, а в кремнекислых разностях других массивов из темноцветов присутствуют только слюды.

Другой особенностью пермо-триасовых гранитоидов является наличие мусковита в наиболее лейкократовых разностях. Эта черта также присуща породам разных массивов в различной степени: в Айском массиве мусковит в лейграносиенитах либо отсутствует вовсе, либо встречается крайне редко; в Саввушинском и Синюшенском массивах — это обычный минерал, а в лейкогранитах белокурихинского комплекса он зачастую становится преобладающим (вплоть до полного отсутствия биотита). Очевидно, что эти особенности минерального состава могут быть следствием как различия химизма гранитоидов, так и разных механизмов и условий их формирования (эти вопросы более подробно разбираются в следующих главах).

Акцессорная минерализация пород пермо-триасовых ассоциаций Алтая достаточно разнообразна. Ряд минералов (циркон, апатит, окислы железа и титана) присутствуют во всех породах всех рассматриваемых интрузивах, другие (титанит, торит, монацит, флюорит) типичны либо для отдельных массивов, либо для определённых разностей пород. В целом, разнообразие акцессорной минерализации отдельных интрузий в большой степени зависит от набора слагающих их пород (максимальное разнообразие наблюдается в габброгранитных сериях).

Характерной особенностью пермо-триасовых гранитоидов является сосуществование магнетита и ильменита (в ряде случаев к ним добавляется титанит), соотношения которых носят сложный характер и резко различаются в разных массивах. Как будет более подробно показано в главе V, эти особенности акцессорной минерализации отражают специфику эволюции гранитоидных магм.

Структурные соотношения минералов в гранитоидах пермо-триасовых магматических ассоциаций Алтая свидетельствуют о том, близкий исследованных разностей характерен порядок кристаллизации минералов. Первыми во всех случаях кристаллизовались акцессорные минералы. Далее для гранит-лейкогранитов и более основных разностей порядок кристаллизации несколько различался. В гранодиоритах и граносиенитах минералы (биотит-амфибол) начинали кристаллизоваться темноцветные несколько раньше полевых шпатов, в то время как в гранит-лейкогранитах наблюдается обратный порядок кристаллизации: сначала крупные вкрапленники полевых шпатов, несколько позже (но ДО окончания кристаллизации вкрапленников) – слюды. Кварц во всех разновидностях пород является поздним минералом: его зерна кристаллизовались на завершающей стадии магматического процесса и занимают интерстициональное положение между индивидами других минералов.

Синтез полученной информации позволяет сделать следующие выводы:

- 1. Породы пермо-триасовых магматических ассоциаций Алтая характеризуются многообразием текстурно-структурных признаков и минерального состава. Структурные особенности пород свидетельствуют о многоэтапной кристаллизации магм (она, вероятно, началась в ходе подъёма расплавов на верхние уровни коры и завершилась уже на уровне становления интрузий).
- 2. Сходные по кремнекислотности породы разных ассоциаций и массивов имеют существенные отличия в минеральном составе, что может быть следствием как различия химизма гранитоидов, так и разных механизмов и условий их формирования.
- 3. Последовательность кристаллизации минералов в гранитоидах пермотриасовых ассоциаций Алтая сходна: она несколько отличается в породах с разной кремнекислотностью, но идентична для одних и тех же разностей пород в различных массивах и комплексах, что указывает на сходные условия становления интрузий.

ГЛАВА 4. ГЕОХИМИЧЕСКИЕ И ИЗОТОПНЫЕ ХАРАКТЕРИСТИКИ

4.1. Методика петрохимических и изотопных исследований

Содержания петрогенных компонентов в породах определялись методом ренттено-флюоресцентного анализа на рентгеновском спектрометре ARL-9900-XP фирмы ARL (Applied Research Laboratories) в ЦКП многоэлементных и изотопных исследований СО РАН (ЦКП МИИ) в ИГМ СО РАН, г. Новосибирск по стандартной методике (аналитики Н.Г. Карманова, Н.М. Глухова, А.И. Таряник). Содержания редких элементов определялись методом индуктивно-связанной плазмы с масс-спектрометрическим окончанием (ICP-MS) в ЦКП МИИ на приборе ELEMENT FINIGAN по методике [Николаева и др., 2012] (аналитики И.В. Николаева, С.В. Палесский). Концентрации F и Li были определены в Аналитическом центре ИГХ СО РАН (г. Иркутск) атомно-эмиссионным методом и методом пламенной атомно-эмиссионной спектрометрии (по методике [Зак и др., 2017]) соответственно. Погрешности определения концентраций не превышали 5 отн. % для петрогенных компонентов и 20 отн. % для редких элементов.

Определения содержаний и изотопных составов Sm и Nd пород выполнены Институте геологии и геохимии докембрия, (г. Санкт-Петербург) Геологическом Кольского (г. Апатиты) институте научного центра на многоколлекторном масс-спектрометре TRITON TI (г. Санкт-Петербург) Finnigan MAT 261 (г. Апатиты) в статическом режиме. В ИГГД РАН анализы выполняли В.П.Ковач, Л.Б.Тереньева, в ГИ КНЦ РАН – Т.Б.Баянова, С.А.Серов. Навески в 100 мг растертых в пудру образцов, к которым был добавлен ¹⁴⁹Sm-¹⁵⁰Nd трассер, разлагались в тефлоновых бюксах в смеси HCl+HF+HNO₃ (в ГИ КНЦ РАН при разложении вместо НС1 в смеси использовалась НС1О₄) при температуре 110 °C. Полнота разложения проверялась под бинокуляром. Nd и Sm были выделены методом экстракционной хроматографии на колонках LN-Spec ¹⁴³Nd/¹⁴⁴Nd (100-150)фирмы Eichrom. Измеренные отношения меш) нормализованы к отношению 146 Nd/ 144 Nd = 0,7219, и приведены к отношению

 143 Nd/ 144 Nd = 0,511860 в Nd стандарте La Jolla (в ГИ КНЦ РАН 0,511852 ± 8 (2r)). Средневзвешенное значение 143 Nd/ 144 Nd в Nd стандарте La Jolla за период измерений составляло 0,511833 ± 9 (в ГИ КНЦ РАН 0,511857 ± 6 (n = 5)). Уровень холостого опыта за время исследований не превышал 0,2 нг для Sm (в ГИ КНЦ РАН 0,1–0,2 нг) и 0,1–0,5 нг для Nd. Точность определения концентраций составила ± 0,5 %, изотопных отношений 147 Sm/ 144 Nd 144 Nd 143 Nd/ 144 Nd 144 Nd 144 Nd 144 Nd 144 Nd 145 Sm/ 144 Nd 145 Sm/ 145 Nd/ 144 Nd 145 Sm/ 145 Nd/ $^$

При расчете $\varepsilon_{Nd}(T)$ и модельного возраста $T_{Nd}(DM)$ использованы современные значения CHUR по [Jacobsen, Wasserburg, 1984] (143 Nd/ 144 Nd = 0,512638, 147 Sm/ 144 Nd = 0,1967) и DM по [Goldstein, Jacobsen, 1988] (143 Nd/ 144 Nd = 0,513151, 147 Sm/ 144 Nd = 0,2136). Для учета возможного фракционирования Sm и Nd во внутрикоровых процессах для исследованных пород дополнительно был рассчитан двустадийный Nd модельный возраст $T_{Nd}(DM-2)$ [Keto, Jacobsen, 1987], с использованием среднекорового отношения 147 Sm/ 144 Nd = 0,12 [Taylor, McLennan, 1985].

Rb-Sr изотопные исследования проведены по валовым пробам в ЦКП МИИ СО РАН (г. Новосибирск, Россия) на масс-спектрометре МИ 1201АТ, с использованием рениевых лент (аналитики В.Ю. Киселёва). Для анализа бралась навеска пробы 200 мг. Пробы, к которым был добавлен трассер ⁸⁵Rb и ⁸⁴Sr, разлагались при 230 °C в смеси плавиковой и хлорной кислот. После выпаривания добавлялась концентрированная кислота HClO₄, а затем HNO₃ и дважды HCl. Разделение Rb и Sr проводилось в хроматографической колонке методом ионообменной хроматографии со смолой Dowex AG W50x8 (200-400 меш) объемом 1-2 мл. Уровень холостого опыта по Rb и Sr составлял 2 и 4 нг, соответственно. Погрешность определения отношений ⁸⁷Rb/⁸⁶Sr не превышал 1 %. определения изотопных отношений Правильность Sr контролировалась параллельным измерением изотопного стандарта ИСГ-1. Первичное изотопное отношение стронция рассчитывалось по методике [Steager, Jager, 1977].

4.2. Результаты петрохимических и изотопных исследований

4.2.1. Айский массив

Породы Айского массива принадлежат к умеренно-щелочной серии (рис. 17а). Сиениты, кварцевые сиениты и граносиениты — ультракалиевые (шошонитовые), железистые породы, слабо недосыщенные глиноземом (рис. 17б, в, г), на диаграмме SiO₂-MALI (SiO₂-Na₂O+K₂O-CaO) точки их составов попадают в щелочную область (рис. 17д). Граниты и лейкограниты — высококалиевые, железистые, щелочно-известковистые. На диаграмме Маниара-Пикколи точки их составов образуют рой на границе полей S, I и A гранитов.

Габбро ксенолитов и постгранитных даек — умеренно- и высококалиевые, магнезиально-железистые, известковистые (до известково-щелочных) породы с низкими содержаниями титана, фосфора и фтора (0,92, 0,15, 0,043 мас. %, соответственно). Они имеют близкларковые концентрации несовместимых элементов (табл. 4.1 приложение 1). Спектры распределения редкоземельных элементов слабо

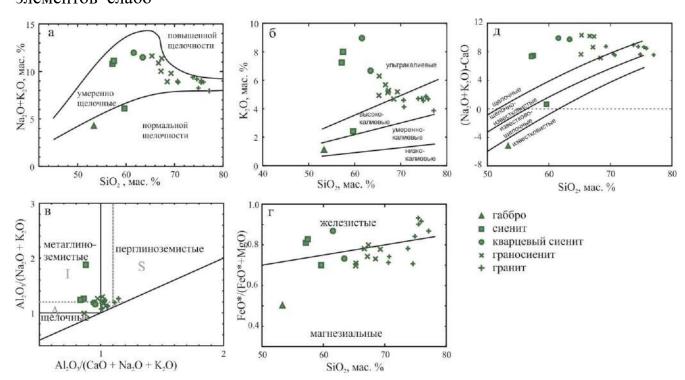


Рис. 17. Петрохимические диаграммы для пород Айского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂-K₂O». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+K₂O) — Al₂O₃/(Na₂O+K₂O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

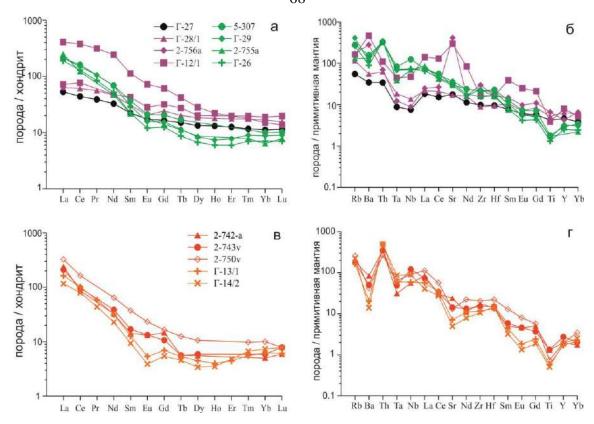


Рис. 18. Распределения редких и редкоземельных элементов в породах Айского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а, б) и по составу примитивной мантии [Sun, McDonough, 1989] (в, г). Цветами показаны разные разновидности пород: чёрный — габбро, фиолетовый — сиениты, зелёный — граносиениты, красный — граниты, оранжевый — лейкограниты.

асимметричные с $(La/Yb)_N = 4,4$ без аномалии по европию (рис. 18). На мультиэлементных диаграммах присутствуют небольшие минимумы по Nb и Ta (рис. 18). Сиениты обогащены Sr и Ba (до 8700 и 2000 ppm соответственно), Zr (до 330 ppm). При этом содержания остальных высокозарядных и редкоземельных элементов слабо отличаются от габбро (табл. 4.1 приложение 1). Кварцевые сиениты сохраняют высокие содержания Sr, Ba (до 6300 и 3200 ppm, соответственно, табл. 4.1 приложение 1). Они также обогащены другими HFSE (Nb – до 33 ppm, Ta – до 1,8 ppm) и REE (суммарно – до 520 ppm). Спектры распределения REE резко асимметричные с $(La/Yb)_N = 25,5$ без Eu аномалии. На мультиэлементных диаграммах присутствуют максимумы по Sr и Ba, минимумы по Ta, Nb, Ti, Zr и Hf (рис. 186, г).

Граносиениты характеризуются более низкими содержаниями Sr и Ba (600-800 и 900-1200 ppm, соответственно). Концентрации HFSE и REE в них несколько

ниже, чем в кварцевых сиенитах (табл. 4.1 приложение 1). Спектры распределения REE асимметричные с (La/Yb)_N = 22,8-38,9 со слабыми европиевыми минимумами (рис. 18). На мультиэлементных диаграммах присутствуют минимумы по Ва и Ті, максимум по Тh, при этом минимумы по Та и Nb, характерные для более основных пород, в граносиенитах выражены незначительно. Одновременно, граносиениты максимально обогащены фтором (до 0,7 мас. % в отдельных пробах). В остальных породах массива концентрации F не превышают 0,1 мас. %

В гранитах и лейкогранитах наблюдаются ещё более низкие содержания несовместимых элементов (табл. 4.1 приложение 1), по редкоэлементным характеристикам они близки к типичным І-гранитам по [Whalen et al., 1987]. Спектры распределения REE асимметричные, (La/Yb)_N изменяется от 33 до 14, понижаясь с ростом кремнекислотности пород. В гранитах Еu аномалия отсутствует, в лейкогранитах появляется небольшой минимум. Концентрации фтора в гранитах и лейкогранитах, также как и в граносиенитах, варьируют в широких пределах, достигая 0,17 мас. %.

Изотопный состав габбро не исследовался. Сиениты характеризуются (87 Sr/ 86 Sr) $_T=0,70620$ -0,70631 и $\epsilon_{\rm Nd}({\rm T})=+2,2$ (табл. 4.2, 4.3 приложение 1). Граносиениты и граниты имеют более низкие (87 Sr/ 86 Sr) $_T=0,70509$ -0,70593 и более высокие $\epsilon_{\rm Nd}({\rm T})=+2,6...+3$. Лейкограниты характеризуются ещё более низкими отношениями (87 Sr/ 86 Sr) $_T=0,70074$ -0,70588 и $\epsilon_{\rm Nd}({\rm T})=+3$. Модельный Nd возраст гранитоидов составляет 0,79-0,82 Ga. Кварцевые сиениты по изотопному составу стронция сходны с гранитами (0,70548), а изотопный состав неодима близок к наблюдаемому с сиенитах ($\epsilon_{\rm Nd}({\rm T})=+2,1$).

4.2.2. Теранджикский массив

Точки составов пород Теранджикского массива на TAS-диаграмме лежат в полях нормальной и умеренно-щелочной серий (рис. 19а). Габброиды — высококалиевые магнезиальные (до магнезиально-железистых) известково-

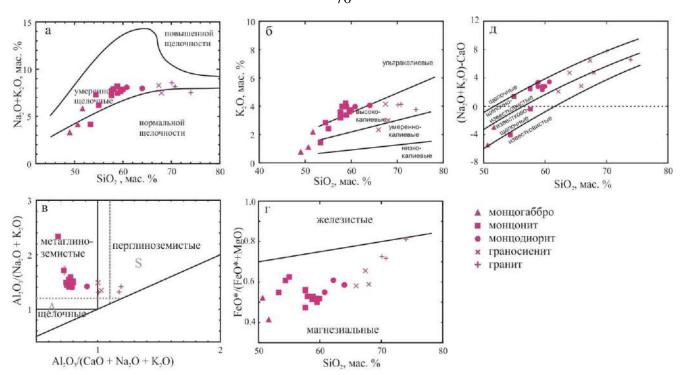


Рис. 19. Петрохимические диаграммы для пород Теранджикского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂-K₂O». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+K₂O) — Al₂O₃/(Na₂O+K₂O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

щелочные. Монцодиориты – умеренно-щелочные, шошонитовые, магнезиальные, метаглиноземистые, щелочно-известковистые. Граносиениты и граниты – высококалиевые магнезиально-железистые до железистых, слабо перглиноземистые, известково-щелочные до щелочно-известковистых (рис. 19б, в, г).

В породах массива с повышением содержания кремнезёма устойчиво падают содержания фемических элементов и кальция (табл. 4.1 приложение 1). Содержания калия растут от габбро к монцодиоритам и далее остаются практически неизменными.

В целом для пород массива характерны повышенные содержания Sr, Ba, Zr и REE. Содержания Sr, Zr и Hf возрастают от габброидов к монцодиоритам, затем понижаются с повышением SiO₂. Концентрации бария достигают максимума в граносиенитах, а затем снижаются (рис. 20). Концентрации фтора максимальны в монцогаббро (до 0,16 мас. %) и постепенно понижаются с ростом кремнекислотности до 0,06-0,07 мас. % в граносиенитах и гранитах.

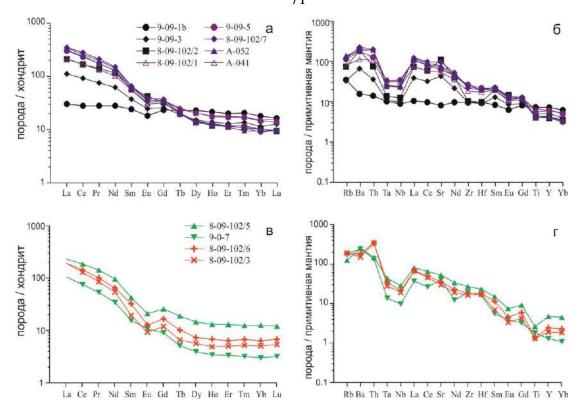


Рис. 20. Распределения редких и редкоземельных элементов в породах Теранджикского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а, б) и по составу примитивной мантии [Sun, McDonough, 1989] (в, г). Цветами показаны разные разновидности пород: чёрный — монцогаббро, фиолетовый — монцониты, синий — монцодиориты, зелёный — граносиениты, красный — граниты.

Концентрации фосфора достигают максимума в монцодиоритах $(0,66-0,68 \text{ мас. } \% P_2O_5)$, затем падают с ростом SiO_2 .

Габброиды делятся на два типа. Первый тип (обр. 9-09-1В) имеет минимальные концентрации Sr, Ва и REE, симметричный спектр распределения REE с небольшим Еи минимумом. На мультиэлементной диаграмме отсутствуют аномалии по танталу и ниобию.

Монцогаббро второго типа обогащены Sr и Ba (до 2000 и 1300 ppm, соответственно) и REE. Они имеют резко асимметричные спектры распределения P39 с (La/Yb)_N = 9,2-19,8 со слабым Eu минимумом (рис. 20). На мультиэлементных диаграммах отмечаются минимумы по Ta, Nb, Ti, максимумы по Sr и Ba (рис. 19). Монцодиориты обогащены Sr (до 2000 ppm), Ba (до 1600 ppm), Zr (до 290 ppm), Hf (до 7 ppm) и REE (суммарно до 380 ppm). Спектры REE также резко асимметричные с (La/Yb)_N = 28-37 без аномалии по европию. Форма мультиэлементных диаграмм аналогична монцогаббро.

Граносиениты и граниты имеют более низкие концентрации Sr, Ba, Zr, Hf и REE. Спектры их распределения резко асимметричные с $(La/Yb)_N = 17-35$ и с незначительными европиевыми минимумами. Для пород этой группы характерно понижение концентраций HFSE и REE. Содержания Sr и Ba также понижаются с ростом SiO_2 , однако даже в самых кремнекислых разностях остаются более высокими чем в I- и S- гранитах [Whalen et al., 1987].

Изотопные характеристики пород Теранджикского массива неоднородны (табл. 4.2, 4.3 приложение 1). Монцогаббро имеют низкие (87 Sr/ 86 Sr) $_T$ = 0,7045 и положительные $\varepsilon_{\rm Nd}(T)$ = +3,7. Монцодиориты характеризуются более высокими значениями (87 Sr/ 86 Sr) $_T$ = 0,70497 и более низкими $\varepsilon_{\rm Nd}(T)$ = +2,8. Граносиениты, напротив, обеднены в сравнении с монцогаббро радиогенным стронцием ((87 Sr/ 86 Sr) $_T$ = 0,70434) и имеют несколько более радиогенный состав неодима ($\varepsilon_{\rm Nd}(T)$ = +3,3). Модельный Nd возраст граносиенитов составляет 0,77 Ga.

4.2.3. Тархатинский массив

Породы Тархатинского массива относятся к умеренно-щелочной шошонитовой серии (рис. 21а, б). Они магнезиальные, метаглиноземистые, а по соотношению щелочей и кальуия щелочные до щелочно-известковистых в наиболее кремнекислых разностях. На диаграмме Маниара-Пикколи (рис. 21в) составы кварцевых сиенитов попадают в поле І-гранитов, а более кремнекислых породы соответствуют А-гранитам.

Монцодиориты обогащены всей гаммой несовместимых элементов. Для них характерны повышенные концентрации LILE (Rb - 350-400 ppm, Ba - 1000-1700 ppm), HFSE (Zr - 450-650 ppm, Hf - 17-18 ppm, Nb - 18-26 ppm, Ta - 1,7-1,8 ppm, Th - 30-45 ppm, U - 6,3-7,3 ppm) и REE (400-470 ppm). Спектры распределения REE резко асимметричные с (La/Yb)_N = 38-58 и небольшим европиевым минимумом (рис. 20). На мультиэлементных диаграммах присутствуют минимумы по Nb, Ta, Ti и Sr (рис. 22). В дальнейшем, с ростом кремнекислотности содержания несовместимых элементов в породах массива постепенно понижаются. Синхронно уменьшается асимметричность спектров

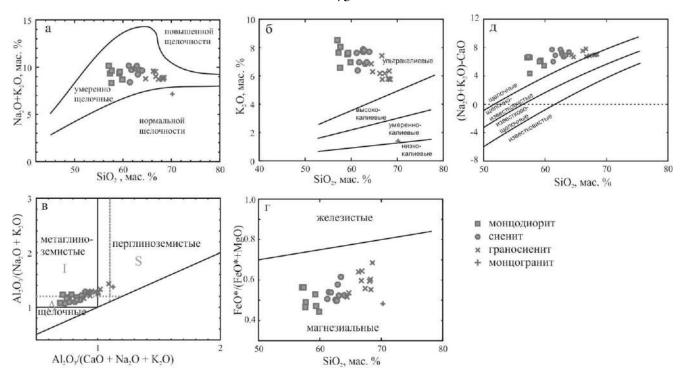


Рис. 21. Петрохимические диаграммы для пород Тархатинского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂-K₂O». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+K₂O) — Al₂O₃/(Na₂O+K₂O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

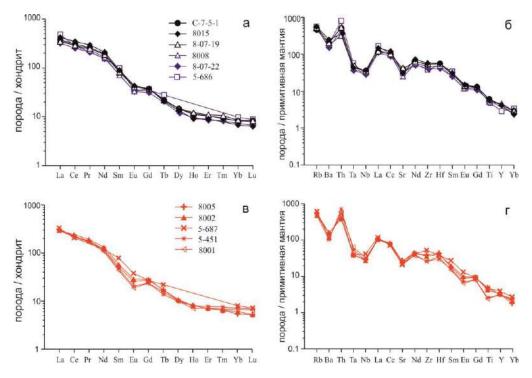


Рис. 22. Распределения редких и редкоземельных элементов в породах Тархатинского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а, б) и по составу примитивной мантии [Sun, McDonough, 1989] (в, г). Цветами показаны разные разновидности пород: чёрный – монцодиориты, фиолетовый – сиениты, красный – граниты.

REE и слабо растет глубина Eu минимума. Минимальные концентрации LILE, HFSE и REE отмечаются в гранитах.

Отдельного внимания заслуживает поведение летучих компонентов. Монцодиориты резко обогащены P_2O_5 (до 0,71 мас. %). С повышением кремнекислотности концентрации фосфора постепенно понижаются до 0,2-0,22 мас. %. Содержания фтора слабо возрастают от монцодиоритов к кварцевым сиенитам, затем слабо падают к граносиенитам и гранитам (табл. 4.1 приложение 1).

Гранитоиды Тархатинского интрузива резко отличаются по изотопным характеристикам от пород других изученных интрузий (табл. 4.2, 4.3 приложение 1). Монцодиориты имеют отношения $(^{87}\text{Sr}/^{86}\text{Sr})_T = 0,70773$ и отрицательные $\varepsilon_{\text{Nd}}(T)$ = -2,4. Сиениты характеризуются более высоким $(^{87}\text{Sr}/^{86}\text{Sr})_T = 0,70810$ и слабо повышенным $\varepsilon_{\text{Nd}}(T) = -2,1$. В граносиенитах отношение $(^{87}\text{Sr}/^{86}\text{Sr})_T$ колеблется от 0,70744 до 0,70837, а $\varepsilon_{\text{Nd}}(T)$ от -2,6 до -3,5. При этом с ростом содержаний Sr и Nd изотопный состав пород становится более радиогенным (табл. 4.2, 4.3 приложение 1). Модельный возраст граносиенитов составляет 1,26-1,33 Ga.

4.2.4. Саввушинский массив

Породы Саввушинского массива относятся, в основном, к нормальному ряду (рис. 23а). Исключение составляют монцодиориты и кварцевые монцодиориты. Это умеренно-щелочные высококалиевые железистые породы недосыщенные глиноземом (рис. 23а, в, г). На диаграмме SiO₂-MALI соответствуют щелочно-известковистым разностям (рис. 23б). Гранодиориты – умеренно-высококалиевые, железистые, метаглиноземистые и известковощелочные (рис. 23). Граниты и лейкограниты являются умеренно-щелочными, обогащёнными калием, железистыми породами.

Все породы Саввушинского массива имеют асимметричные спектры распределения REE с $(La/Yb)_N = 6,3-6,5$ и небольшим Еи минимумом (рис. 24). На мультиэлементных диаграммах фиксируются минимумы по Ta, Nb, Sr и Ti. Гранодиориты по редкоэлементному составу сходны с монцодиоритами, однако

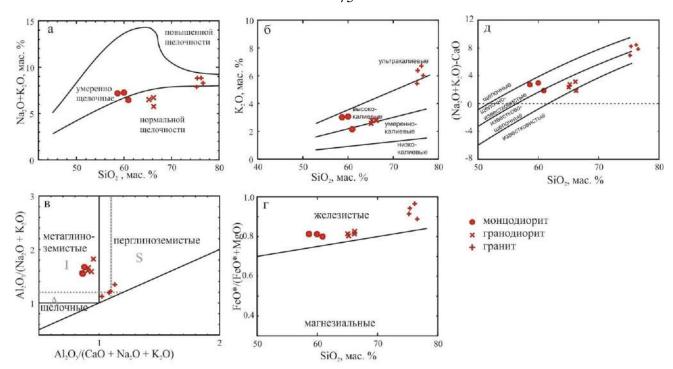


Рис. 23. Петрохимические диаграммы для пород Саввушинского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂-K₂O». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+K₂O) — Al₂O₃/(Na₂O+K₂O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

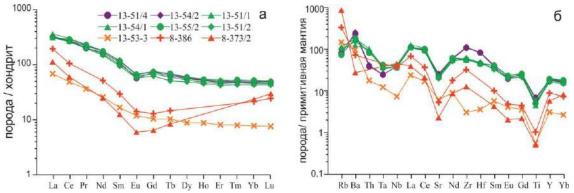


Рис. 24. Распределения редких и редкоземельных элементов в породах Саввушинского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а) и по составу примитивной мантии [Sun, McDonough, 1989] (б). Цветами показаны разные разновидности пород: фиолетовый — монцодиориты, зелёный — гранодиориты, красный — граниты, оранжевый — лейкограниты.

отличаются меньшими содержаниями фосфора, фтора, HFSE и REE, более пологим наклоном спектров и немного меньшей глубиной Еи минимума. Форма спайдерграмм аналогична наблюдаемой в монцодиоритах. Граниты и лейкограниты имеют низкие концентрации фосфора и фтора, резко пониженные концентрации Sr (130-48 ppm), Ba (670-190 ppm), HFSE (Zr - 360-35 ppm, Hf - 1,1-2,5 ppm, Y - 40-14 ppm, Th - 1,5-3 ppm, U - 0,4-0,5 ppm) и REE (148-57 ppm).

Спектры распределения REE слабо асимметричные с $(La/Yb)_N = 4-8$ почти без аномалии по Eu (рис. 24). На мультиэлементных диаграммах фиксируются минимумы по Ta, Nb, Sr и Ti (рис. 24).

Монцодиориты Саввушинского массива имеют (87 Sr/ 86 Sr) $_T = 0,70516$ и $\epsilon_{\rm Nd}(T) = +3,6$ (табл. 4.2, 4.3 приложение 1). Для кварцевых диоритов характерны немного более низкие значения (87 Sr/ 86 Sr) $_T = 0,70505$ и немного менее радиогенный состав неодима с $\epsilon_{\rm Nd}(T) = +3,1$. Далее, с ростом кремнекислотности (87 Sr/ 86 Sr) $_T$ слабо возрастает – 0,70511 в гранодиоритах до 0,70590 в гранитах. Значения $\epsilon_{\rm Nd}(T)$ при этом понижаются до +2,9 и +2,1. Лейкограниты имеют промежуточные изотопные характеристики между гранодиоритами и гранитами ((87 Sr/ 86 Sr) $_T = 0,70546$; $\epsilon_{\rm Nd}(T) = +3,7$). Модельный возраст гранитоидов варьирует в интервале 0,79-0,85 Ga.

4.2.5. Атуркольский массив

Гранитоиды главной фазы Атуркольского массива по петрохимическим особенностям соответствуют унимодальной граносиенит-гранитной ассоциации повышенной щелочности. Наиболее меланократовые граносиениты характеризуются повышенными содержания щелочей (Na₂O+K₂O – до 10– 11 мас. %, $K_2O - до 7$ мас. %). На TAS-диаграмме (рис. 25a) точки их составов лежат в поле пород умеренно-щелочной серии, а на диаграмме SiO₂-K₂O (рис. 25б) соответствуют ультракалиевым (шошонитовым) разностям. В монцогранитах суммарная и калиевая щелочность слегка понижена (Na₂O+K₂O - 7,5-9,0 мас. %, $K_2O - 4,5-6$ мас. %) (табл. 4.1 приложение 1). Соответственно, на TAS-диаграмме точки их составов локализуются на границе полей нормальной и повышенной щелочности, а на диаграмме SiO₂-K₂O – в поле высококалиевых разностей (рис. 25а, б). Одновременно в кремнекислых разностях возрастают значения индекса Шенда (повсеместно – до 1, в некоторых пробах – до 1,12–1,15; рис. 25в). Железистость пород Атуркольского массива невысока (68-74 %, рис. 25г). Граносиениты обогащены P_2O_5 (0,15–0,25 мас. %), в то время как в наиболее кремнекислых монцогранитах концентрация этого элемента находится на уровне

предела обнаружения. Аплитовидные граниты и аплиты характеризуются более низкой щелочностью ($Na_2O+K_2O-7,0-8,5$ мас. %) и высокой (> 75 %) железистостью.

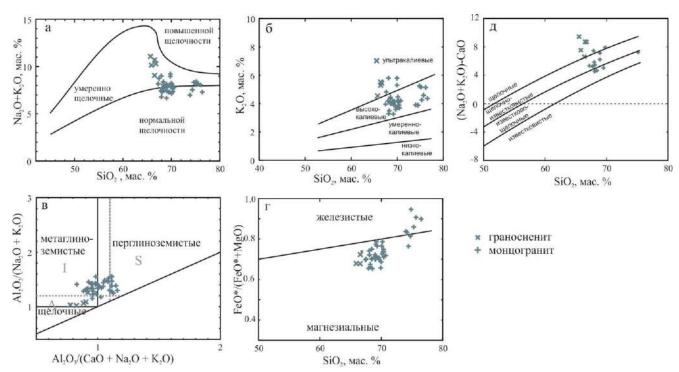


Рис. 25. Петрохимические диаграммы для пород Атуркольского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂-K₂O». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+K₂O) — Al₂O₃/(Na₂O+K₂O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

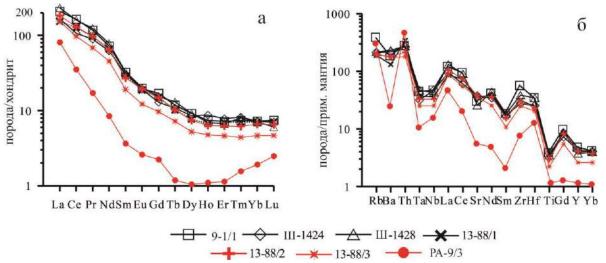


Рис. 26. Распределения редких и редкоземельных элементов в породах Атуркольского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а) и по составу примитивной мантии [Sun, McDonough, 1989] (б). Цветами показаны разновидности пород: чёрный – граносиениты, красный – монцограниты.

Общей геохимической особенностью всех пород Атуркольского массива являются повышенные содержания щелочноземельных металлов (Sr – 450– 680 ppm, Ba -670-1200 ppm). При этом концентрации стронция, несмотря на вариации, остаются близкими достаточно сильные на всем интервале кремнекислотности, в то время как содержания бария в граносиенитах существенно выше, чем в монцогранитах. Концентрации высокозарядных элементов и легких REE также повышены. Для граносиенитов характерны более высокие концентрации Zr, Nb, Та (до 464, 26 и 2 ppm, соответственно) и REE цериевой группы в сравнении с монцогранитами. Характер распределения REE в граносиенитах и монцогранитах однотипен: наблюдается резкое обогащение легкими лантаноидами относительно тяжелых ($La/Yb_N = 22-33$,), аномалия по европию практически отсутствует (рис. 26). Обращают на себя внимание пониженные концентрации Y И REE иттриевой группы. Форма мультиэлементных диаграмм в породах главной фазы практически идентична: присутствуют минимумы по Ti, Ta и Nb и максимумы по Zr и Hf.

Аплитовидные граниты и аплиты имеют минимальные содержания щелочноземельных элементов, HFSE и REE, в том числе — предельно низкие концентрации Y и REE иттриевой группы. Для них характерен асимметричный характер распределения REE с минимумом в области «средних» лантаноидов, на мультиэлементных диаграммах присутствуют минимумы по Та и Nb, максимумы по Zr и Hf.

Монцограниты Атуркольского массива характеризуются $(^{87}\text{Sr})^{86}\text{Sr})_T=0,70486$ и $\epsilon_{\text{Nd}}(T)=+1,9$ (табл. 4.2, 4.3 приложение 1). Модельный возраст монцогранитов 0,87 Ga.

4.2.6. Синюшенский массив

По петрохимическому составу породы Синюшенского массива отвечают унимодальной гранит-лейкогранитной ассоциации с преобладанием калия над натрием. Гранитоиды характеризуются низкими содержаниями фемических элементов, кальция и фосфора (табл. 4.1 приложение 1), имеют высокую (> 80 %)

железистость и слабо пересыщены глиноземом (рис. 27). Значение коэффициента агпаитности NK/A ((Na₂O+K₂O)/Al₂O₃, молекулярные количества) в большинстве изученных проб составляют 0.75-0.84, указывая на принадлежность гранитоидов к породам нормального ряда, и лишь в аплитах достигает 0.9 (минимальное значение для пород умеренно-щелочного ряда).

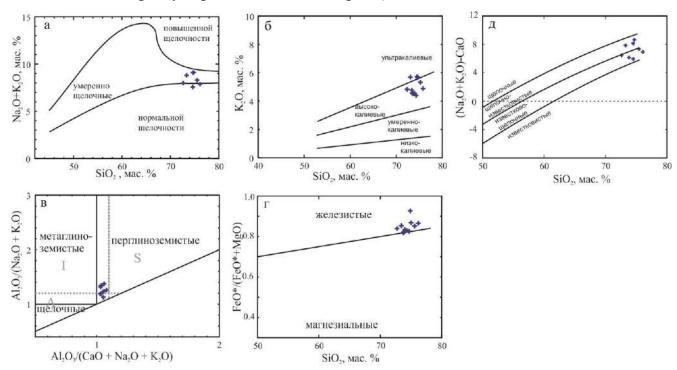


Рис. 27. Петрохимические диаграммы для гранитов Синюшенского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂- K_2O ». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+ K_2O) — Al₂O₃/(Na₂O+ K_2O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

Для пород характерны повышенные, в сравнении с кларком концентрации Li, Rb и Cs, пониженные содержания сидерофильных элементов, Sr и, в меньшей степени, Ba, относительная обогащённость HFSE. Концентрации фтора также повышены в сравнении с кларком и не обнаруживают значимых различий в крупно- и среднезернистых гранитах. Содержания REE находятся на вышекларковом уровне (\sum REE = 150–210 ppm), спектры их распределения асимметричные с отрицательным уклоном (La/Yb_N = 9,0–14,4) и небольшим европиевым минимумом (рис. 28). Примечательно, что крупнозернистые граниты северной части массива имеют более низкие содержания высокозарядных и редкоземельных элементов по сравнению со среднезернистыми породами

центральной части. Аплиты характеризуются максимальными содержаниями Rb, Cs, U, Nb и Та, минимальными концентрациями Sr, Ba и Zr. Спектры распределения REE имеют V-образную форму со слабым преобладанием тяжелых лантаноидов над легкими и глубоким европиевым минимумом (рис. 28). В целом, концентрации легких лантаноидов и Th в аплитах минимальны, а тяжелых и Y — максимальны среди наблюдаемых в породах Синюшенского массива. Ещё одной особенностью аплитов являются резко пониженные (в сравнении с другими породами комплекса) концентрации Li и F.

Породы Синюшенского массива имеют (87 Sr/ 86 Sr) $_T=0,70441$ -0,70452 и $\epsilon_{\rm Nd}({\rm T})=+1,4$ (табл. 4.2, 4.3 приложение 1). Модельный возраст гранитов 0,92 Ga.

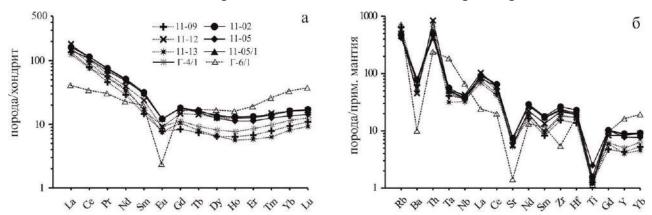


Рис. 28. Распределения редких и редкоземельных элементов в породах Синюшинского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а) и по составу примитивной мантии [Sun, McDonough, 1989] (б).

4.2.7. Белокурихинский массив

Породы Белокурихинского массива характеризуются выдержанным составом. По петрохимическим особенностям граниты и лейкограниты относятся к унимодальной граносиенит-гранитной ассоциации повышенной щелочности, щелочей В породах Белокурихинского суммарное содержание массива соответственно – $Na_2O+K_2O=7,2-8,6$ мас. % и 6,8-8,1 мас. %, $K_2O=4,0-5,9$ мас. % и 3,3-4,2 мас. %. На ТАЅ-диаграмме (рис. 29а) точки составов пород ложатся в поле умеренно-щелочной серии, а согласно диаграмме SiO₂-K₂O (рис. 29б) соответствуют высококалиевым (шошонитовым) разностям. На диаграмме Маниара-Пикколи составы гранитов и лейкогранитов образуют плотное облако

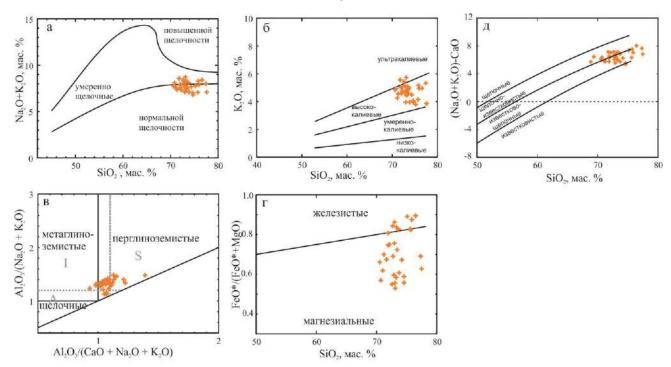


Рис. 29. Петрохимические диаграммы для гранитов Белокурихинского массива. а — TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б — диаграмма «SiO₂- K_2O ». Границы полей приведены в соответствии с [Rickwood, 1989]; в — диаграмма «Al₂O₃/(CaO+Na₂O+ K_2O) — Al₂O₃/(Na₂O+ K_2O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д — диаграмма «SiO₂-MALI» [Frost et al., 2001].

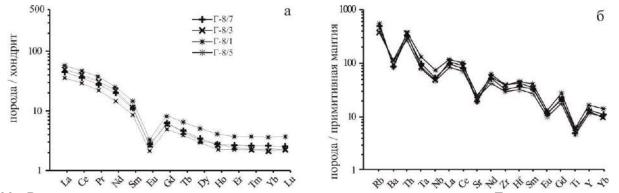


Рис. 30. Распределения редких и редкоземельных элементов в породах Белокурихинского массива. Номера проб соответствуют таковым в табл. 4.1 приложение 1. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] (а) и по составу примитивной мантии [Sun, McDonough, 1989] (б).

точек на границе полей S-, I- и A- гранитов (рис. 29в). Железистость варьирует в широких пределах 53-89 %, и в большинстве своём породы массива оказываются магнезиальными (рис. 29г).

Гранитоиды характеризуются относительно повышенными содержаниями редких щелочей и невысокими - щелочноземельных металлов (Rb - 129-330 ppm, Sr - 115-340 ppm, Ba - 270-714 ppm), высокозарядных элементов (Zr - 63-154 ppm, Hf - 3,4-6,1 ppm, Nb - 12-75 ppm, Ta - 0,8-4,9 ppm, Th - 15-24 ppm, U - 2,1-

6,8 ррт, Y – 13-47 ррт) и легких редкоземельных элементов (табл. 4.1 приложение 1). Для пород Белокурихинского массива характерны резко распределения Р3Э c обогащением асимметричные спектры лёгкими $(La/Yb_N = 15,2-22,7)$ лантаноидами относительно тяжёлых глубокой отрицательной аномалией по Eu. Форма мультиэлементных диаграмм для пород Белокурихинского массива однотипна, присутствуют минимумы по Nb, Ta, Ti, Ba и Sr (рис. 30).

Биотитовые граниты первой фазы Белокурихинского массива имеют $(^{87}\mathrm{Sr}/^{86}\mathrm{Sr})_T=0,70581$ и $\epsilon_{\mathrm{Nd}}(\mathrm{T})=+2,7,$ в то время как биотитовые граниты второй фазы $-(^{87}\mathrm{Sr}/^{86}\mathrm{Sr})_T=0,70727$ и более радиогенный состав неодима $\epsilon_{\mathrm{Nd}}(\mathrm{T})=+3,4$ (табл. 4.2, 4.3 приложение 1).

4.3. Обсуждение результатов

Проведённый анализ показал, что пермо-триасовые гранитоиды Алтая характеризуются широким разнообразием составов. При этом гранитоиды в большинстве своём относятся к породам нормальной щёлочности, в то время как более основные разности (габброиды, монцодиориты, сиениты), за исключением пород Саввушинского массива, отвечают умеренно-щелочной серии. В целом все породы обогащены калием. При этом точки составов гранитоидов на диаграмме SiO₂-K₂O образуют единую крупную область, а фигуративные точки основных и средних пород формируют два отдельных поля (рис. 31б): породы Айского и Тархатинского массивов соответствуют ультракалиевым разностям, a Теранджикского и Саввушинского – высококалиевым. Лейкократовые породы (граниты и лейкограниты) рассматриваемых массивов в той или иной мере пересыщены глиноземом, в то время как среди менее кремнекислых разностей (кварцевых монцодиоритов, гранодиоритов И т.д.) преобладают метаглиноземистые образования.

Для пород Теранджикского и Тархатинского массивов характерна невысокая железистость, тогда как гранитоиды синюшенского комплекса (Синюшенский и Саввушинский массивы), напротив, характеризуются высокой

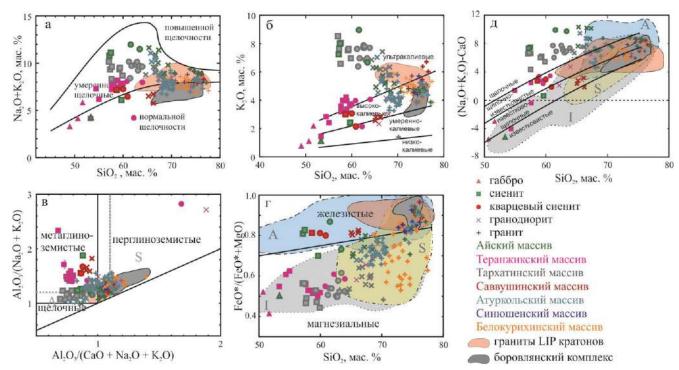


Рис. 31. Петрохимические диаграммы для пород пермо-триасовых интрузивных серий Алтая. а – TAS-диаграмма. Границы полей приведены в соответствии с [Le Maitre, 1989]; б – диаграмма «SiO₂-K₂O». Границы полей приведены в соответствии с [Rickwood, 1989]; в – диаграмма «Al₂O₃/(CaO+Na₂O+K₂O) – Al₂O₃/(Na₂O+K₂O)» (молекулярные количества [Maniar, Piccoli, 1989]; г - диаграмма «SiO₂-FeO_{tot}/(FeO_{tot}+MgO» [Frost et al., 2001], д – диаграмма «SiO₂-MALI» [Frost et al., 2001]. Поле гранитов LIP кратонов охватывает составы гранитов рапакиви [Ларин, 2009] и гранитоидов Байкальского выхода [Донская и др., 2003, 2018].

железистостью. Породы остальных массивов (Белокурихинского, Атуркольского и Айского массивов) занимают промежуточное положение (рис. 31г).

Общей геохимической чертой пород большинства рассматриваемых массивов являются вышекларковые содержания щелочноземельных LILE металлов, REE и HFSE. В массивах, сложенных габбро-гранитными сериями, содержания Sr и Ва сперва возрастают с повышением кремнекислотности пород, достигая максимума в монцодиоритах и сиенитах, а затем постепенно понижаются до минимальных значений в гранитах и лейкогранитах. Для пород гранит-лейкогранитных ассоциаций (Синюшенский и Белокурихинский массивы) характерны повышенные содержания Li, Rb и Cs.

Уровень накопления редкоземельных и высокозарядных элементов в породах разных массивов существенно различен. На классификационных диаграммах [Whalen et al., 1987] породы с низкой кремнекислотностью Айского, Теранджикского и Саввушинского массивов попадают в поле гранитов А-типа,

тогда как граниты Айского и Саввушинского занимают промежуточное положение между гранитами А-типа и фракционированными гранитами (рис. 32а, б), что объясняется не повышенным уровнем накопления типоморфных редких элементов, а повышенной железистостью пород и низкими содержаниями кальция. Для гранитов, граносиенитов и гранодиоритов Теранджикского и интрузивов, a Атуркольского также ДЛЯ всех разновидностей пород Тархатинского массива характерно расположение точек составов пород на границе полей нефракционированных гранитов (М-, І-, Ѕ-типов) и гранитов Атипа, что связано с обогащением пород высокозарядными и редкоземельными Синюшенского элементами. Породы Белокурихинского И массива Вэйлена отвечают геохимическим характеристикам согласно диаграммам фракционированным гранитам I- и S-типов (рис. 32a, б). Здесь необходимо ещё раз подчеркнуть, что геохимические особенности гранитов А-типа, характерных для внутриплитных обстановок, среди пермо-триасовых гранитоидов Алтая в максимальной степени проявлены в наиболее низкокремнистых разностях (кварцевые монцодиориты, граносиениты и кварцевые сиениты), в то время как большинстве лейкограниты своём ПО граниты геохимическим характеристикам близки к породам I- и S- типов.

 $(Na_2O+K_2O)-Fe_2O_3\times 5-(CaO+MgO)\times 5$ Согласно треугольной диаграмме позволяющей разделять гранитоиды на I+S и A₁, A₂ типы (рис. 32д), предложенной в работе [Гребенников, 2014], составы пород рассматриваемых массивов (за исключением наименее кремнекислых пород Теранджикского массива) попадают в поле I- и S- гранитоидов. На дискриминационных диаграммах, предназначенных определения тектонической ДЛЯ гранитоидов [Pearce et al., 1984] точки составов пород изученных нами пермомассивов Алтая образуют плотный рой на границе триасовых синколлизионных, внутриплитных островодужных гранитоидов (рис. 32в, г). При низкокремнистые породы Саввушинского ЭТОМ только массива И высококремнистые граниты Айского массива попадают в поле внутриплитных

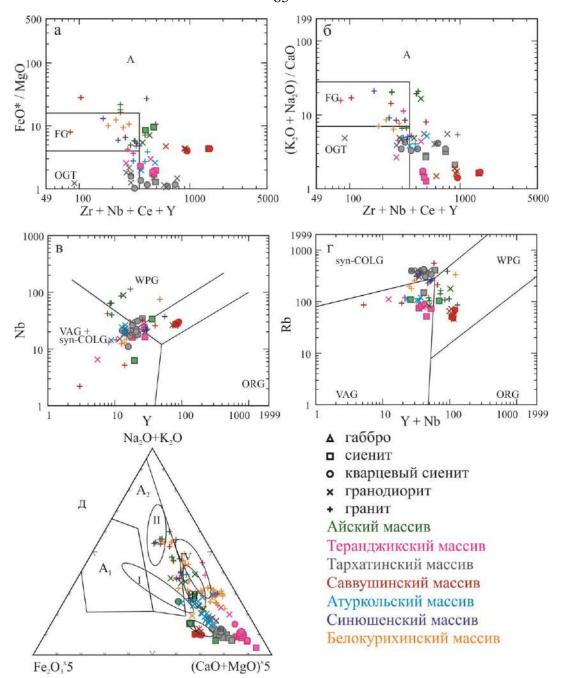


Рис. 32. а, б - Классификационные диаграммы «Zr+Nb+Ce+Y - FeO*/MgO» и «Zr+Nb+Ce+Y - Na₂O+K₂O/CaO» [Whalen et al., 1987]. Поля: FG - фракционированные граниты A-граниты A-гипа, OGT - нефракционированные граниты M, S и I-типов;

- в, г Дискриминационные диаграммы «Y+Nb Rb» и «Y Nb» [Pearce et al., 1984]. Поля: ORG граниты океанических хребтов, VAG граниты вулканических дуг, Syn-COLG синколлизионные граниты, WPG внутриплитные граниты;
- д диаграмма (Na_2O+K_2O) Fe_2O_3*5 (CaO+MgO)*5 (мол.кол.) [Гребенников, 2014]. Римскими цифрами обозначены поля кислых магматических пород главных геодинамических обстановок, по данным [Наумов и др., 2010]: І обстановки проявления мантийных плюмов в условиях океанических плит (океанические острова и лавовые плато); ІІ обстановки внутриконтинентальных рифтов и областей континентальных горячих точек; ІІІ и IV обстановки, связанные с субдукционными процессами (III зоны островодужного магматизма, заложенные на океанической коре, IV зоны магматизма активных континентальных окраин, вовлекающие в процессы магмообразования континентальную кору); V обстановки задугового спрединга.

гранитов, породы остальных массивов занимают промежуточное положение между полями пород различных геодинамических обстановок.

Для оценки температур образования гранитоидов использован термометр по насыщению цирконием [Watson, Harrison, 1983]. Температуры насыщения цирконием для пород Айского массива составили 714-812 °C, Теранджикского – 611-807 °C, Тархатинского – 747-914 °C, Саввушинского – 644-901 °C, Атуркольского – 742-791 °C, Белокурихинского – 736-784 °C, Синюшенского – 665-790 °C.

Ярким примером гранитов А-типа могут служить граниты-рапакиви. В геохимическом отношении граниты-рапакиви представляют собой метаглинозёмистые или слабо перглиноземистые породы, характеризующиеся повышенной кремнекислотностью, железистостью, высокими концентрациями K_2O , F, HFSE и REE (кроме Eu) и пониженными CaO, MgO, P_2O_5 и Sr по сравнению с гранитами в целом [Ларин, 2009; Rämö, Haapala, 1995]. На дискриминационных диаграммах Вэйлена [Whalen et al., 1987] и Пирса [Pearce et al., 1984] составы гранитов-рапакиви ложатся в поле гранитов А-типа и внутриплитных гранитов.

Среди типичных пород А-типа стоит также рассмотреть гранитоиды Байкальского выхода (Акитканского пояса) приморский, ирельский, абчадский татарниковский комплексы. Геодинамическая обстановка И формирования этих гранитоидов определяется как постколлизионная [Донская, 2019; Донская и др., 2003, 2005; Ларин и др., 2009]. Кроме того, граниты приморского комплекса рассматриваются как рапакивиподобные образования [Донская и др., 2003]. По своему химическому составу гранитоиды Байкальского выступа близки гранитам А-типа [Донская и др., 2003, 2018; Ларин и др., 2009]. Так, гранитоиды татарниковского комплекса принадлежат к умеренно-щелочной серии, являются железистыми и умеренно-глинозёмистыми, по соотношению SiO₂-MALI – щелочные до щелочно-известковистых. Характеризуются высокими концентрациями HFSE, Ba, также пониженными a содержаниями Sr. фракционированным распределением РЗЭ. На мультиэлементных спектрах

гранитоидов Татарниковского массива отмечаются отрицательные аномалии по Nb-Ta, Sr, P, Ti, положительные аномалии по La-Ce и Zr-Hf. На классификационной диаграмме Вэйлена [Whalen et al., 1987] точки гранитоидов попадают в поле гранитов А-типа, на дискриминационных диаграммах Пирса [Pearce et al., 1984] располагаются в основном в пределах поля внутриплитных гранитов [Донская и др., 2018].

Таким образом, сами по себе геохимические данные с одной стороны не позволяют надежно диагностировать пермо-триасовые магматиты Алтая как внутриплитные образования, а с другой — указывают на их значимые отличия от типичных гранитоидов А-типа, характерных для внутриплитных магматических провинций древних платформ.

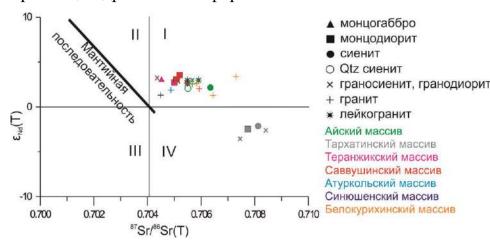


Рис. 33. Изотопные характеристики пород пермо-триасовых гранитоидных серий Алтая в координатах $(^{87}Sr)^{86}Sr)_T - \epsilon_{Nd}(T)$.

На диаграмме (87 Sr/ 86 Sr) $_T$ — ϵ_{Nd} (T) (рис. 33) точки составов пород большинства изученных массивов (за исключением Тархатинского) образуют линейный тренд, уходящий от мантийной последовательности вправо, в квадрант І. Такие характеристики типичны для гранитоидов большинства областей Центральной Азии, имеющих существенно ювенильную кору [Коваленко и др., 1996; Jahn et al., 2000]. Точки составов пород Тархатинского интрузива попадают в квадрант IV, соответствующий смешению мантийных магм с породами зрелой континентальной коры [Фор, 1989].

Изотопный состав Sr и Nd в породах, входящих в состав габбро (монцодиорит)-гранитных серий не показывают единой, общей для всех тенденции изменения изотопных характеристик с ростом кремнекислотности.

Тенденции изменения изотопного состава неодима при переходе от основных и средних пород к кислым в подавляющем большинстве случаев определяются изотопными характеристиками пород континентальной коры вмещающих геоблоков и их соотношениями с аналогичными характеристиками основных и средних пород интрузивных серий. В породах Айского массива при повышении кремнекислотности понижаются первичные отношения изотопов стронция и возрастают значения параметра $\varepsilon_{Nd}(T)$. Это логично объясняется ювенильной природой и существенно базитовым составом коры вмещающих блоков (Бийско-Катунский палеоокеанический террейн и тектонически перекрывающий его Каимский аллохтон). Так, например, кембро-ордовикские песчаники песчанской свиты Каимского аллохтона имеют модельный Nd возраст около 800 млн лет и значения $\varepsilon_{Nd}(T) = +2,9...+3$ (в пересчете на возраст 250 млн лет). В то же время для пород интрузий, локализованных в блоках, верхняя кора которых сложена, преимущественно, турбидитами (Тархатинский, Саввушинский, Белокурихинский массивы) кремнекислые разности характеризуются более высокими первичными отношениями изотопов стронция и более низкими значениями параметра ε_{Nd}(T) (табл. 4.2, 4.3 приложение 1). Лишь лейкограниты Саввушинского массива занимают промежуточное положение между монцодиоритами и гранитами. Для пород Теранджикского массива однонаправленный тренд изменения изотопных характеристик отсутствует: для монцогаббро и граносиенитов фиксируются близкие $(^{87}\text{Sr}/^{86}\text{Sr})_T$ и $\varepsilon_{\text{Nd}}(T)$, в то время как для монцодиоритов характерно более высокое отношение изотопов стронция и пониженное ε_{Nd} . Отметим, что упомянутые породы турбидитовых разрезов характеризуются близким к гранитоидам, но всегда несколько менее радиогенным составом неодима. Песчаники катунской свиты, вмещающие Тархатинскую интрузию, (Холзунско-Чуйский блок) имеют $\varepsilon_{Nd}(T)$ от -6 до -5,8 и модельный возраст 1,52-1,54 Ga; метаосадки Белокурихинского блока (Белокурихинский массив) – $\varepsilon_{Nd}(T)$ от +1 до +2,3 и модельный возраст 0,95-0,85 Ga; метаосадки Курайского блока (Теранджикский и Атуркольский интрузивы) – $\varepsilon_{Nd}(T)$ от -5,4 до -4,4 и модельный возраст 1,40-1,5 Ga; метаосадки Чарышско-Инского блока (вмещающего

Синюшенский массив) характеризуются $\varepsilon_{Nd}(T)$ от -2,8 до -1,4 и модельными возрастами 1,15-1,27 Ga; метаосадки корбалихинской свиты (основание верхнекорового разреза Рудного Алтая) — $\varepsilon_{Nd}(T) = 0...+1$ и модельный возраст 0,9-1 Ga. При этом Rb-Sr изотопные характеристики не обнаруживают ни единого тренда изменения при повышении кремнекислотности пород, ни значимой корреляции с составом коры вмещающих геоблоков. Однако известно, что в вулканических и осадочных породах Rb-Sr изотопные характеристики варьируют в существенно больших пределах, чем Sm-Nd. Таким образом, нарушение согласованного тренда эволюции изотопного состава от габбро до гранитов рассматриваемых гранитоидных пермо-триасовых серий Алтая может быть следствием плавления нескольких источников (пород мантии, нижней и верхней континентальной коры) при генерации и эволюции магм.

Обобщение и синтез полученной информации позволяют сделать следующие выводы:

- 1. Пермо-триасовые магматические ассоциации Алтая характеризуются большим разнообразием геохимических и изотопных характеристик слагающих их пород.
- 2. Общей особенностью рассматриваемых гранитоидов являются повышенные концентрации щелочноземельных LILE металлов, высокозарядных и редкоземельных элементов. В максимальной степени эти особенности проявлены в наименее кремнекислых разностях (кварцевые монцодиориты и сиениты).
- 3. По содержаниям щелочей и степени накопления типоморфных редких элементов пермо-триасовые гранитоиды Алтая резко отличаются от типичных Агранитов внутриконтинентальных рифтов и крупных изверженных провинций, расположенных в пределах древних платформ.

ГЛАВА 5. МИНЕРАЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ИНТРУЗИЙ

5.1. Методика минералогических исследований

Для исследования петрографических особенностей и взаимоотношений минералов проведено исследование шлифов и полированных пластинок образцов массивов методами оптической И электронной пород рассматриваемых микроскопии, позволило провести диагностику породообразующих минералов и установить их взаимоотношения. После изучения шлифов и пластинок методом оптической микроскопии отдельные фрагменты пластинок отобраны для проведения исследований с помощью электронной микроскопии и анализа состава минералов микроаналитическими методами. Кроме пластинок для определения состава использовались монофракции слюд, полевых шпатов и, при наличии, амфибола и пироксена, отобранные вручную под бинокулярным микроскопом.

Диагностика акцессорных минералов проводилась помощью сканирующей электронной микроскопии на приборе Tescan Mira 3LMU в Аналитическом ИГМ CO **PAH** (г. Новосибирск). Состав центре породообразующих акцессорных минералов определен методом И ренгеноспектрального микроанализа (EMPA) на приборах JEOL-JXA8100 и JEOL-JXA8230. Исследования проводились при ускоряющем напряжении 20 кB, силе тока 30 нА, и диаметре электронного пучка 2 мкм. Перед началом каждой съёмки проводилась калибровка – измерение интенсивностей всех анализируемых линий на стандартах (табл. 5.1), пределы обнаружения приведены в таблице 5.2. Помимо калибровки аналитических линий при проведении электронно-микрозондового анализа необходимо учитывать изменение параметров съёмки, обусловленных разными факторами, которое называется дрейфом. Для учета дрейфа прибора в процессе съёмки производилось измерение содержания соответствующего элемента в одном из используемых стандартов. Стандарт подбирался в соответствии с анализируемым минералом для минимизации влияния матричных эффектов (табл. 5.1). Составы стандартов измерялись в начале, середине и конце

съёмки. В отдельных случаях стандарт измерялся через каждые 10 точек. Было принято, что между съёмками стандартов дрейф имеет линейные характеристики. В соответствии с этими измерениями и положениями вводились поправки к измеренным концентрациям элементов. При исследовании состава слюд для коррекции матричных эффектов вводились поправки на содержание H_2O-4 мас. %.

Таблица 5.1. Стандарты, используемые на электронно-зондовом микроанализаторе для измерения составов породообразующих минералов.

пэмереп	11111 000	I CEDOD II	ородос	opus.	утощти	· willing	anob.							
	Albite	359-1	F-flog	F-apatite	Cl-apatite	Mn-IGEM	B.D.	RbNdWO42	CsNdMoO42	GF-55	BaSO4-P-REE	0-145	Di	GL-11Ba
SiO ₂	Fsp Mica	KFs Amp Px												
TiO_2										Mica				
Al ₂ O ₃	Fsp Mica	KFs Amp Px												
FeO						Fsp Mica						Amp Px		
MgO							Fsp Mica						Amp Px	
MnO						Fsp Mica								
CaO							Fsp Mica						Amp Px	
Na ₂ O	Fsp Mica													
K ₂ O		Fsp Mica	Amp Px											
P_2O_5				Fsp										
CsO									Fsp					
Rb ₂ O								Fsp Mica						
SrO														Fsp
BaO											Fsp			Mica
F			Mica											
Cl					Mica									

Таблица 5.2. Пределы обнаружения элементов на электронно-зондовом микроанализаторе JEOL-JXA8100.

Компонент	Предел обнаружения, мас.%					
	Mica	Fsp				
SiO ₂	0,14	0,07				
TiO ₂	0,05	-				
Al_2O_3	0,10	0,05				
FeO	0,08	0,05				
MgO	0,10	0,07				
MnO	0,25	0,04				
CaO	0,05	0,03				
Na ₂ O	0,12	0,13				
K ₂ O	0,48	0,03				
P_2O_5	-	0,07				
CsO	-	0,06				
Rb ₂ O	0,28	0,24				
SrO	0,14	0,14				
BaO	0,00	0,13				
F	0,25	-				
Cl	0,13	-				

5.2. Породообразующие минералы

Как говорилось выше, минеральный состав пород пермо-триасовых магматических серий достаточно разнообразен. Тем не менее, кварц и полевые шпаты (калиевый полевой шпат и плагиоклаз) присутствуют во всех разновидностях пород рассматриваемых массивов (исключение составляет лишь габбро Айского и Теранджикского массивов, где отсутсвует кварц).

Калиевые полевые шпаты изученных массивов характеризуются близким к стехиометрическому составом, как правило, являются чистым ортоклазом с небольшими примесями альбитового минала (табл. 5.3 приложение 2, рис. 34а). Наибольшие вариации составов калишпатов фиксируются в породах Айского, Тархатинского и Теранджикского массивов, причём в первых двух случаях наибольшая примесь альбитового минала характерна для наименее кремнекислых пород (8,9-31,2 % в калишпатах сиенитов Айского массива и 23-31,3 % в калишпатах монцодиоритов Тархатинского интрузива), а в Теранджикском

массиве не прослеживается корреляции между составом калиевых полевых шпатов и типом пород. Среди элементов-примесей обычно преобладают FeO и BaO, а концентрации MgO, MnO и SrO редко превышают предел обнаружения (табл. 5.3 приложение 2).

Плагиоклазы в породах рассматриваемых массивов нередко зональны. Наиболее широкими вариациями составов плагиоклазов характеризуются породы Айского ($An_{0.9-41.6}$), Саввушинского (An_{1-38}) и Белокурихинского массивов ($An_{0.01-1}$) 38.3) (табл. 5.3 приложение 2, рис. 346), причём для пород первых двух массивов это объясняется разнообразием пород в составе каждого массива, а широкие вариации номеров плагиоклазов Белокурихинского массива – зональностью зёрен полевых шпатов. Основными примесями в плагиоклазах являются FeO и SrO, концентрации остальных элементов изредка превышают предел обнаружения (табл. 5.4 приложение 2). В породах Теранджикского массива наблюдается два минеральных парагенезиса (исключение составляют лишь граниты). Плагиоклазы раннего парагенезиса всех разновидностей пород характеризуются более основным составом: лабрадор-андезин в монцогаббро и монцонитах (Ап₄₇₋₅₆ и An_{40-60}), кислый андезин в монцодиоритах и граносиенитах (An_{31-41}). В позднем парагенезисе монцогаббро и монцонитов состав плагиоклаза соответствует An_{22-37}), а в монцодиоритах и олигоклазу-кислому андезину (Ап₂₅₋₄₀ и граносиенитах — олигоклазам (An_{20-27}).

Согласно тройной диаграмме составов полевых шпатов с нанесёнными линиями солидуса (p_{H2O}=1,5 кбар) по данным [Barth T.F., 1961; Seck, 1972], температуры кристаллизации пород рассматриваемых массивов редко превышают 750 °C — точки составов калиевых полевых шпатов из пород Айского, Саввушинского, Атуркольского, Синюшенского и Белокурихинского массивов ложатся ниже линий солидуса при 650 °C, лишь монцодиориты Тархатинского массива и некоторые точки калишпатов иплагиоклазов из монцогаббро и монцонитов Теранджикского массива соответствуют температурам до 750 °C (рис. 34).

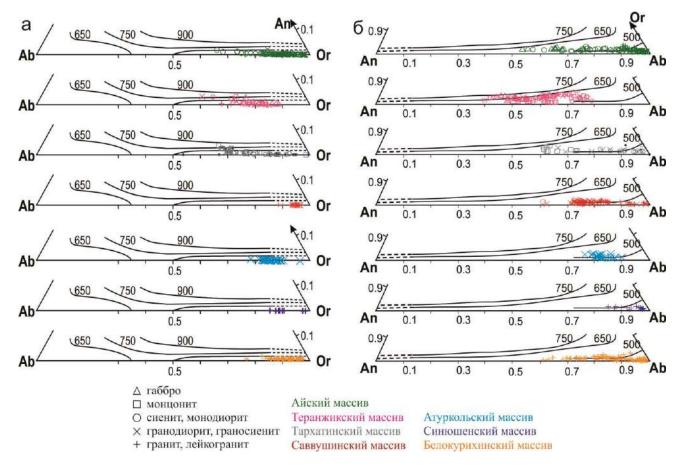


Рис. 34. Классификация калиевых полевых шпатов (а) и плагиоклазов (б) из пород пермотриасовых интрузивных серий Алтая в миналах Альбит (Ab) — Ортоклаз (Or) — Анортит (An). Линии солидуса проведены при p_{H2O}=1,5 кбар по данным [Barth T.F., 1961; Seck, 1972].

Распределение темноцветных минералов напрямую зависит от кремнекислотности пород. *Пироксен* – редкий минерал для изученных массивов пермо-триасовых габбро-гранитных серий Алтая, однако для наиболее основных пород он является обычным. Как правило, встречаются клинопироксены (диопсид-авгиты согласно классификации, утвержденной IMA1988 [Morimoto et al, 1988]), лишь в Теранджикском массиве присутствуют также и ортопироксены (энстатиты) (рис. 35). Состав пироксенов близок к стехиометрическому, и слабо различается между разными породными типами, исключение составляет лишь Айский интрузив, где наблюдается резкие различия в содержании основных примесей – TiO₂, Na₂O, K₂O (табл. 5.5 приложение 2).

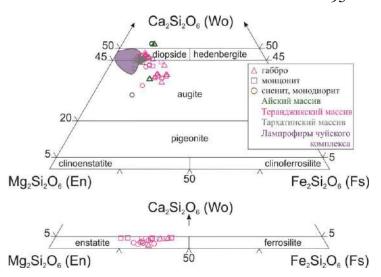
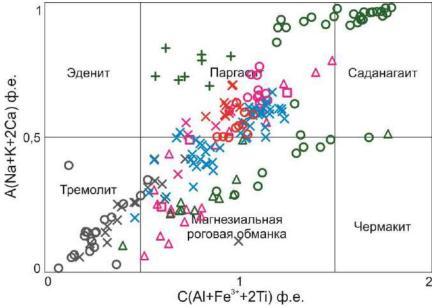



Рис. 35. Составы пироксенов из пород пермо-триасовых интрузивных серий Алтая, вынесенные на классификационную диаграмму миналов (MgSiO₃-FeSiO₃-CaSiO₃) [Morimoto et al., 1988].

Амфибол является чуть более широко распространённым минералом, чем пироксен — помимо основных и средних пород, он также иногда встречается в гранитах (Айский, Тархатинский и Атуркольский массивы). Амфиболы относятся к Са-подгруппе амфиболов (согласно классификации IMA2012, рекомендованной международным минералогическим комитетом [Hawthorne, Oberti, 2012]) (рис. 36). Наиболее значимой примесью в амфиболах изученных массивов является ТіО₂ и МпО (табл. 5.6 приложение 2).

∆ габбро
 □ монцонит
 ○ сиенит, монодиорит
 × гранодиорит, граносиенит
 + гранит, лейкогранит
 Айский массив
 Теранджикский массив
 Тархатинский массив
 Саввушинский массив
 Атуркольский массив

Рис. 36. Классификационная диаграмма амфиболов из пород интрузивных серий Алтая. Согласно классификации IMA2012, рекомендованной международным минералогическим комитетом [Hawthorne, Oberti, 2012].

Для сравнения использованы составы амфиболов из коровых анатектических гранитов Горного Алтая А-типа (Аскатинский и Елиновский массивы) и І-типа (Усть-Беловский массив). Составы амфиболов типичных А-гранитов Горного Алтая близки к составам амфиболов изученных нами интрузивов, однако,

являются существенно более железистыми (содержание FeO в амфиболах Елиновского массива 33,0-37,4 мас. % и Аскатинского – 31,9-36,2 мас. %).

соотношений концентраций Ha диаграмме летучих компонентов амфиболах, на которой Бушляков и Холоднов выделяют поля пород мантийного и корового образования [Бушляков, Холоднов, 1986], породы большинства изученных массивов (Айский, Тархатинский, Саввушинский и Атуркольский массивы), также как и породы типичных А-гранитов Горного Алтая, относятся к образований, производным коровых характеризующихся пониженным содержанием хлора (<0,1 мас. %) (рис. 37). Лишь породы Теранджикского массива онжом отнести К производным преимущественно мантийных базальтоидных магм, для которых характерны повышенные содержания С1 (0,1-1 %) и F около 1 %. Такое же положение занимают и точки составов амфиболов из Усть-Беловского, Аскатинского и Елиновского массивов, для которых доказано коровое происхождение [Крук, 2015].

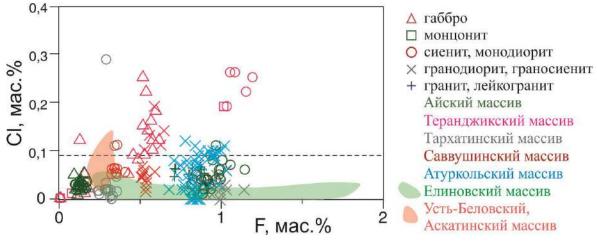


Рис. 37. Соотношения содержаний фтора и хлора в амфиболах из пород интрузивных серий Алтая.

Многими исследователями показано, что состав темноцветных минералов, в частности слюд, является чутким индикатором условий кристаллизации расплавов и может использоваться в качестве ценного инструмента в решении вопросов, связанных с петрогенезисом гранитоидов [например, Dodge et al., 1969; Barrière, Cotton, 1979; Neiva, 1981; Speer, 1981; Ague, Brimhall, 1988; Finch et al., 1995]. В экспериментальной работе [Wones, Eugster, 1965] Уонс и Эгстер продемонстрировали, что тёмные слюды являются чутким индикатором

окислительно-восстановительных условий в гранитных магмах. Кроме того, состав биотита некоторых случаях может быть использован тектономагматических реконструкциях [Nachit et al., 1985; Lalonde, Bernard, 1993; Burkhard, 1993; Abdel-Rahman, 1994; и др.]. Четырёхугольная диаграмма аннит сидерофиллит - флогопит - истонит (АСФИ) обычно используется графического изображения соотношений формульных единиц Al и Fe/(Fe+Mg) в слюдах изверженных пород [Speer, 1984] для классификации и номенклатуры слюд. Шабани с соавторами [Shabani et al., 2003] показали, что эта диаграмма имеет также петрологическое значение, поскольку обе переменные являются индикаторами глинозёмистости расплава, и позволяет оценить вклад корового материала в формирование гранитоидных магм.

Таким образом, особенности состава слюд необходимо рассмотреть подробно.

5.2.2. Слюды

В пермо-триасовых гранитоидах Алтая преобладают тёмные слюды, однако в гранитах Белокурихинского массива встречаются как мусковиты, так и биотиты. Все слюды рассмотренных массивов являются первичными (магматическими). Химический состав слюд приведён в таблице 5.7 приложения 2, формульные единицы рассчитаны с помощью программы Mica+ [Yavuz, 2003]. При описании слюд пермо-триасовых гранитоидов Алтая использована номенклатура рекомендованная IMA1998 [Rieder et al., 1998].

5.2.2.1. Тёмные слюды

Айский массив

По составу тёмные слюды Айского массива соответствуют железистым флогопитам (рис. 38б). Железистость варьирует от 48 до 66 %, причём самые высокие значения характерны для биотитов из основных пород – от 64 до 66 %, железистость биотитов остальных разновидностей пород одинаковая (табл. 5.7 прил. 2). Глинозёмистость слюд Айского массива уменьшается с увеличением

кремнекислотности пород (кварцевые сиениты -17,5-18,1%, граносиениты 14,6-18,7%, граниты -14,1-17,7%, лейкограниты 14,7-17,0%). Обратная зависимость прослеживается для примеси Rb_2O – её концентрации растут с ростом кремнекислотности пород от н.п.о.-0,095 мас. % в кварцевых сиенитах, н.п.о.-0,19 мас. % в граносиенитах, н.п.о.-0,174 мас. % в гранитах до 0,027-0,243 мас. % в лейкогранитах. Другой важной примесью является TiO2, содержания которого наиболее высоки в биотитах сиенитов (2,27-2,76 мас. %), и падают по мере кремнекислотности пород (0,96-3,75)мас. % ДЛЯ биотитов увеличения граносиенитов, 1,0-2,29 мас. % – гранитов, 1,42-2,16 мас. % – лейкогранитов). Концентрации MnO растут с увеличением кремнекислотности, от 0,33-0,38 мас. % в биотитах из сиенитов, 0.85-1.41 мас. % — из граносиенитов, 0.95-2.88 мас. % — из гранитов, до 2,21-3,28 мас. % – из лейкогранитов. Биотиты Айского массива богаты летучими компонентами – F и Cl. Концентрация фтора варьирует в широких пределах -0.21-0.52 мас. % для биотитов из сиенитов, 2.50-4.29 мас. % для гранитов и граносиенитов. Содержания хлора растут с уменьшением кремнекислотности – от н.п.о.-0,04 мас. % в слюдах лейкогранитов до 0,04-0,08 мас. % в сиенитах.

Теранджикский массив

Слюды Теранджикского массива соответствуют умеренно-железистым флогопитам (рис. 386). Железистость меняется в довольно широких пределах – 42-62 %, вне зависимости от кремнекислотности пород. Хотя глинозёмистость тёмных слюд (14,6-21,4 %) также остаётся выдержанной во всех разновидностях наиболее высокие биотитов значения отмечены ДЛЯ разновидностей (14,8-21,4 % - монцогаббро, 14,6-19,3 % - монцониты, 15,1-16,8 % — монцодиориты, граносиениты и граниты) (табл. 5.7 прил. 2). Наиболее значимыми примесями являются TiO₂ и MnO, содержания которых меняются в широких пределах, но незакономерно по отношению к кремнекислотности пород, − 1,11- 5,49 мас. % и н.п.о.-0,32 мас. % соответственно. В распределении летучих наблюдаются определённые закономерности. Концентрации фтора растут в ряду

монцогаббро-монцонит-монцодиорит и граносиенит-гранит $(0,18-2,24\,\text{ мас. }\%, 0,25-2,11\,\text{ мас. }\%, 1,5-2,24\,\text{ мас. }\%$ и $0,93-1,44\,\text{ мас. }\%, 1,62-2,37\,\text{ мас. }\%)$, в то время как содержания хлора, напротив, падают — от $0,22-0,8\,\text{ мас. }\%$ в биотитах монцогаббро, $0,09-0,44\,\text{ мас. }\%$ — монцонитов до $0,19-0,4\,\text{ мас. }\%$ — монцодиоритов, и от $0,19-0,44\,\text{ мас. }\%$ — в биотитах граносиенитов до $0,14-0,16\,\text{ мас. }\%$ — гранитов.

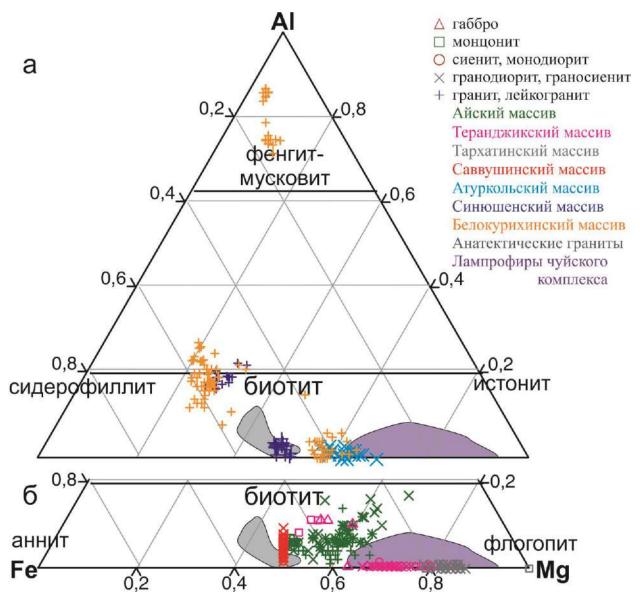


Рис. 38. Классификация слюд в породах пермо-триасовых интрузивных серий Алтая (а – граносиенитовых и гранит-лейкогранитных ассоциаций, б – габбро-гранитных серий) в миналах Аннит (Fe) – Мусковит (Al) – Флогопит (Mg) [Rieder et al., 1998]. Анатектические граниты – Боровлянский массив.

Тархатинский массив

Тёмные Тархатинского слюды массива представлены железистыми слюд флогопитами, причём точки составов монцодиоритов на классификационной диаграмме Fe-Mg-Al образуют отдельное поле (рис. 38б), показывая большие содержания магния и алюминия, при несколько более низких концентрациях железа в сравнении с биотитами более кремнекислых пород. Концентрации TiO₂ наиболее высокие в биотитах монцодиоритов – от 4,05 до 5,09 мас. %, в то время как в биотитах сиенитов и граносиенитов -2,90-4,45 мас. % и 2,30-4,41 мас. %, соответственно (табл. 5.7 прил. 2). Такой же характер распределения наблюдается и для примеси Rb₂O: 0,04-0,15 мас. % в слюдах монцодиоритов, н.п.о.-0,13 мас. % – сиенитов, н.п.о.-0,10 мас. % – граносиенитов. Содержания ВаО, напротив, существенно ниже в слюдах из монцодиоритов, чем в слюдах остальных разновидностей пород -0-0.14 мас. % и 0.02-0.50 мас. % соответственно. Глинозёмистость биотитов Тархатинского массива слабо возрастает с ростом кремнекислотности пород, 15 % в биотитах монцодиоритов, 15-16 % — сиенитов, 15-17 % — граносиенитов. Железистость слюд Тархатинского массива в целом невысокая, при этом наименьшая, 30-32 %, в биотитах монцодиоритов, 41-46 % в биотитах сиенитов, 36-47 % в биотитах граносиенитов. Концентрации МпО растут с увеличением кремнекислотности пород и, соответственно, с ростом железистости, но падают с увеличением содержания фтора, составляя 0.03-0.08 мас. % в биотитах монцодиоритов, 0.17-0.24 мас. % – сиенитов, 0,25-0,33 мас. % – граносиенитов. Содержания летучих компонентов, фтора и хлора, в биотитах из монцодиоритов также несколько отличаются от таковых для более кремнекислых пород – концентрации фтора оказываются наибольшими, а хлора наименьшими.

Саввушинский массив

По составу биотиты Саввушинского массива отвечают умеренно-железистым аннитам (рис. 38б). Наиболее значимыми примесями в них являются TiO_2 и MnO, их концентрации варьируют в широких пределах -0.66-3.02 мас. % и 0.56-1.69

мас. % соответственно, не обнаруживая корреляции с кремнекислотностью пород (табл. 5.7 прил. 2). Железистость биотитов также не зависит от типа пород и изменяется от 57 до 63 %, в то время как глинозёмистость уменьшается с увеличением кремнекислотности пород – от 16-17 % в слюдах диоритов до 14-16% в слюдах лейкогранитов. Содержания марганца имеют обратную корреляцию с железистостью и прямую с содержанием фтора и варьируют от 0,69-1,0 мас. % в биотитах диоритов, 0,69-1,29 мас. % – гранодиоритов, 0,67-1,1 мас. % – гранитов, до 1,1-1,54 мас. % в биотитах лейкогранитов, в целом, увеличиваясь с ростом кремнекислотности. Содержание летучих компонентов в биотитах Саввушинского массива высокое, наибольшие значения отмечаются для фтора, причём его концентрация увеличиваются с ростом кремнекислотности пород -0.53-0.62 мас. % в биотитах из диоритов, 0.57-0.93 мас. % в биотитах гранодиоритов, 0,67-1,29 мас. % в биотитах гранитов, 2,68-3,54 мас. % в биотитах лейкогранитов. Содержания хлора незначительно превышают предел обнаружения и не превышают 0,08 мас. %.

Атуркольский массив

По составу биотиты Атуркольского массива отвечают умеренно-железистым аннитам (рис. 38а). Концентрация титана варьирует от 2,1 до 3,2 мас. %, наблюдается прямая зависимость между содержанием TiO₂ и железистостью (54-59 %) (табл. 5.7 прил. 2). Глиноземистость биотитов меняется слабо (15-16 %). Концентрация МпО меняется от 0,6 до 0,8 мас. %, увеличиваясь с ростом железистости. Содержание фтора варьирует от 1,3 до 1,7 мас. %, не обнаруживая видимых отличий в центральных и краевых частях зёрен.

Синюшенский массив

По составу слюды Синюшенского массива отвечают умеренно-железистым (f = 61-82%) аннитам (рис. 38а). Концентрации титана варьируют в широких пределах — 1,7-3,4 мас. %, обнаруживая прямую корреляцию с железистостью (табл. 5.7 прил. 2). Глинозёмистость биотитов изменяется от 17 до 21 % и не коррелирует с содержаниями титана и железистостью. Концентрация фтора

варьируют от 1,9 до 3,7 мас. %, увеличиваясь с уменьшением глиноземистости и железистости, а хлора не превышают предела обнаружения. Также фиксируется прямая корреляция содержаний марганца и фтора, и обратная между железистостью и концентрациями MnO.

Биотиты из среднезернистых гранитов центральной части массива имеют максимальные среди пород массива содержания титана (2,58-3,06 мас. % TiO₂), (2,0-2,5)мас. %), марганца (0,82-0,97 mac. % MnO), фтора минимальной глиноземистостью (l = 18-19 %) и железистостью (f = 64-66 %). Одновременно, только для них фиксируется наличие значимых (выше предела обнаружения) примесей ВаО. Биотиты крупнозернистых гранитов северной части массива менее титанистые $(2,27-2,75 \text{ мас. } \% \text{ TiO}_2)$, марганцевые (0,75-0,86 мас. % MnO), фтористые (F – 0,61-0,94 мас. %), но более железистые и глиноземистые (f = 79-82 %, l = 22-23 %) и имеют максимальную примесь Rb (0,06-0,25 мас. %). При ЭТОМ корреляция между содержаниями фтора И глинозёмистостью железистостью наблюдается, в том числе, и для каждой разновидности пород. Биотиты аплитов по составу близки к биотитам крупнозернистых гранитов.

Белокурихинский массив

Биотиты Белокурихинского массива являются умеренно-железистыми аннитами (f = 54-59 % для гранитов первой фазы, 78-80 % — второй, 78-83 % — для биотитовых лейкогранитов третьей фазы и 49-60 % — для двуслюдяных лейкогранитов третьей фазы) (рис. 38а). Концентрации титана в слюдах изменяются от 1,43 до 3,12 мас. % (табл. 5.7 прил. 2), но не обнаруживается корреляции ни с железистостью, ни с содержанием фтора. Примесь марганца также не коррелирует с железистостью, однако, просматривается положительная корреляция с содержанием фтора. Наиболее высокие концентрации МпО фиксируются для биотитов лейкогранитов третьей фазы — 3,4-4,0 мас. % для двуслюдяных разностей и 0,82-1,4 мас. % для биотитовых. Более низкие содержания марганца (0,63-0,98 мас. %) в биотитах из гранитов первой фазы, а минимальные (0,40-0,52 мас. %) в тёмных слюдах гранитов второй фазы.

Содержания фтора варьируют в широких пределах — от 0,42 до 4,37 мас. %, причём самые высокие концентрации наблюдаются в биотитах двуслюдяных лейкогранитов третьей фазы (1,64-4,37 мас. %), чуть более низкие в биотитовых лейкогранитах третьей фазы (0,67-3,22 мас. %) и в гранитах первой фазы (1,78-2,42 мас. %), а самые низкие в биотитовых гранитах второй фазы (0,42-0,71 мас. %). Концентрации хлора незначительны (н.п.о.-0,06 мас. %) и коррелируют с содержанием фтора.

Для сравнения мы использовали составы биотитов из лампрофиров чуйского комплекса и типичных коровых анатектических гранитов Горного Алтая S-типа (Боровлянский массив).

На диаграмме [Маракушев, Тарарин, 1965], связывающей состав биотитов с щёлочностью пород, видно, что точки составов биотитов ложатся в поля биотитов из щелочных гранитов и сиенитов, при этом наименее щелочным соответствуют гранитоиды Синюшенского и Белокурихинского массивов (рис. 39). Точки составов биотитов Синюшенского массива образуют два поля – крупнозернистые разности и аплиты ложатся в поле нормальной щёлочности, а среднезернистые граниты – в поле щелочных гранитоидов (рис. 39д). Также и для гранитов Белокурихинского массива – биотитовые граниты второй фазы и биотитовые лейкограниты третьей фазы образуют линейный тренд и попадают в поля нормальной и повышенной щелочности, а граниты первой фазы ложатся в поле щелочных гранитов (рис. 39д). Точки составов биотитов из всех разновидностей пород Айского, Теранджикского и Тархатинского массивов ложатся в поле щелочных гранитов и сиенитов (рис. 39а-в). Однако и для них однозначно выделяются поля неперекрывающихся составов – в Айском массиве сиениты образуют плотное поле точек, не перекрывающееся с остальными породами, а точки тархатинских монцодиоритов образуют тренд, параллельный тренду сформированному точками биотитов сиенитов и граносиенитов. Биотиты монцограносиенитов Атуркольского массива соответствуют слюдам из щелочных

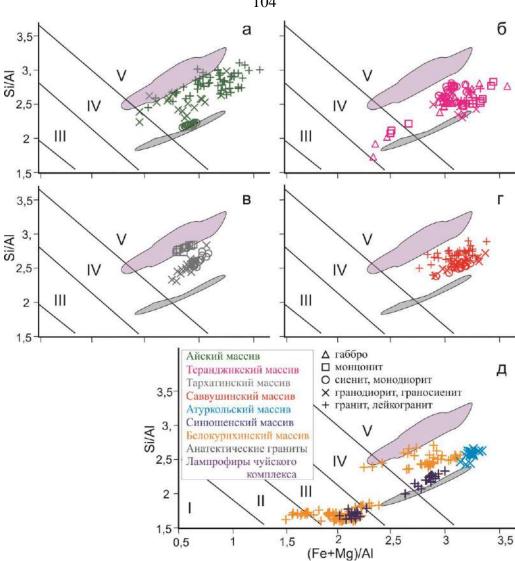


Рис. 39. Составы биотитов из пород пермо-триасовых интрузивных серий Алтая на диаграмме [Маракушев, Тарарин, 1965]. Поля составов слюд из гранитов различной щелочности: I, II — низкощелочные с высокоглиноземистыми минералами, III — нормальной щелочности, IV — повышенной щелочности, V — щелочные граниты, чарнокиты, сиениты. Анатектические граниты — Боровлянский массив. а-г — габбро—гранитные серии, д — существенно граносиенитовые и гранит-лейкогранитовые ассоциации.

гранитоидов, а точки составов биотитов Саввушинского массива ложатся в поле высокощелочных пород. Биотиты из пород Боровлянского массива, также как из лампрофиров чуйского комплекса, отвечают щелочным гранитам и сиенитам.

На треугольнике составов слюд с нанесенными полями типов гранитоидов по Abdel-Rahman [Abdel-Rahman, 1994] видно, что гранитоиды изученных интрузивов, также как граниты Боровлянского массива и лампрофиры чуйского комплекса, соответствуют породам щелочных серий анорогенного происхождения (рис. 40). Точки составов слюд Тархатинского массива из монцодиоритов образуют плотное облако, не перекрывающееся с составами

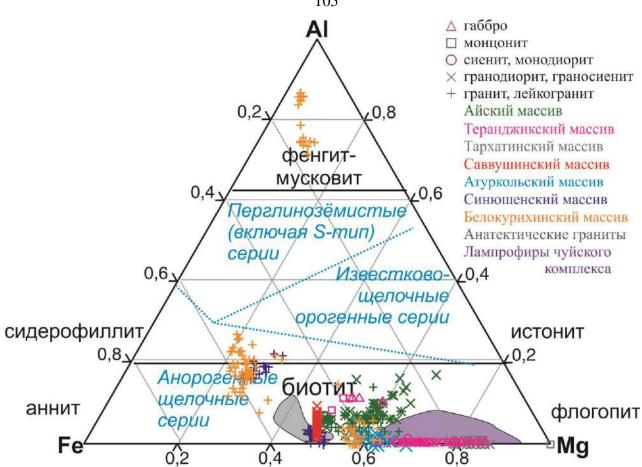
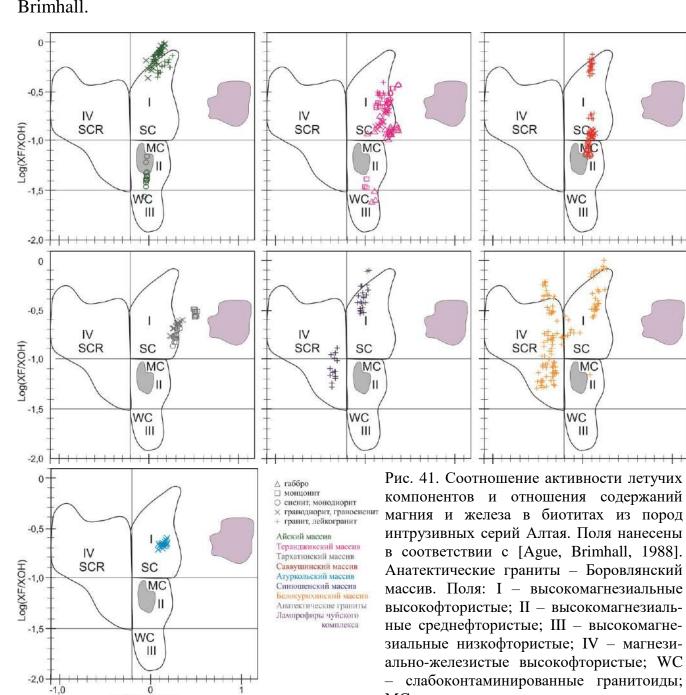



Рис. 40. Классификация слюд в породах пермо-триасовых интрузивных серий Алтая в миналах Аннит (Fe) – Мусковит (Al) – Флогопит (Mg) [Rieder et al., 1998] с нанесенными полями типов гранитоидов по [Abdel-Rahman, 1994]. Анатектические граниты – Боровлянский массив.

биотитов остальных пород. Биотиты из пород ранних и поздних фаз Синюшенского и Белокурихинского массивов в каждом случае также образуют неперекрывающиеся поля.

По соотношению активности летучих компонентов и отношения содержаний магния и железа в биотитах [Ague, Brimhall, 1988] породы изученных массивов в высокофтористым высокомагнезиальным, основном относятся К сильноконтаминированным гранитоидам (рис. 41). Точки составов биотитов из сиенитов Айского массива, диоритов Саввушкинского и иногда монцонитов среднефтористых Теранджикского массива ложатся В поле И среднеконтаминированных пород, отдельные точки составов, относящиеся к монцогаббро Теранджикского низкофтористых массива, поле слабоконтаминированных. Аплиты и крупнозернистые разности гранитов Синюшенского и биотитовые граниты первой фазы Белокурихинского массива

сильноконтаминированными оказываются магнезиально-железистыми восстановленными, что хорошо согласуется cих вещественным составом. среднефтористым Анатектические граниты Алтая относятся К И Точки среднеконтаминированным гранитоидам. составов биотитов монцодиоритов Тархатинского массива лежат вне полей, выделенных Ague и Brimhall.

Log(XMg/XFe)

МС – среднеконтаминированные гранито-

иды; SC – сильноконтаминированные гранитоиды; SCR – сильноконтаминирован-

ные и восстановленные гранитоиды.

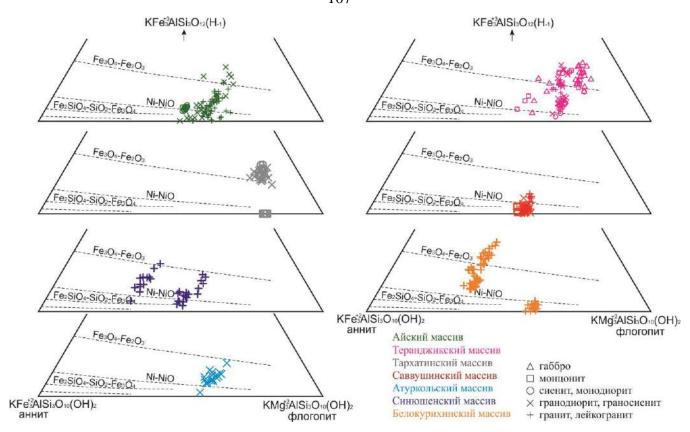


Рис. 42. Диаграммы составов тёмных слюд в миналах аннит-флогопит-оксибиотит, характеризующая степень окисленности гранитоидных магм [Wones, Eugster, 1965].

На треугольной диаграмме [Wones, Eugster, 1965], характеризующей степень окисленности гранитоидных магм, точки составов биотитов Айского массива образуют два поля: биотиты из сиенитов на границе буферов QFM и NNO, и точки составов биотитов из остальных пород – граносиенитов, гранитов и лейкогранитов, которые образуют вытянутое поле через все буферы (рис. 42). Породы Саввушинского массива образовались при схожих условиях – точки диоритов, гранодиоритов и гранитов ложатся кучно, в пределах поля буфера QFM, лишь лейкограниты образуют линейный тренд в сторону чуть более окисленных условий (буфер NNO). Монцодиориты Тархатинского массива формировались в условиях отличных от условий формирования сиенитов и граносиенитов этого массива – точки составов биотитов образуют два поля – монцодиоритов в наименее окисленных условиях и остальных пород – буфер НМ (наиболее окисленные). Обратная закономерность наблюдается среди пород Теранджикского массива – основные породы, монцогаббро и монцониты, образовались в более окислительных условиях (буфер НМ), при этом некоторые

точки располагаются в пределах буфера NNO, образуя общий тренд. Точки составов биотитов монцодиоритов образуют плотное облако в пределах поля буфера NNO, демонстрируя менее окислительные условия в монцодиоритовых расплавах. Магмы более кремнекислых разностей (граносиенитов и гранитов) были менее окислены, точки составов биотитов из этих пород образуют отдельный тренд, протягивающийся через поле буфера NNO и HM. Точки составов биотитов из монцограносиенитов Атуркольского массива ложатся плотным облаком в поле буфера NNO. Породы Синюшенского массива также образовывались в условиях буфера NNO, однако, как и на других диаграммах, прослеживается два параллельных тренда, один из которых образован точками составов биотитов из крупнозернистых гранитов и аплитов, а второй – из среднезернистых. Среди пород Белокурихинского массива наблюдается прямая корреляция степени окисленности и кремнекислотности пород. Граниты первой фазы внедрения формировались в наименее окисленных условиях, а двуслюдяные лейкограниты третьей фазы в наиболее, при этом точки биотитов составов лейкогранитов образуют вытянутый линейный тренд ОТ биотитовых лейкогранитов к двуслюдяным (буфер NNO – буфер HM).

Проводя корреляцию по содержанию фтора и хлора в биотитах типоморфных 1986] магматических ассоциаций [Бушляков, Холоднов, устанавливаются следующие закономерности. Породы всех рассматриваемых массивов, исключением Теранджикского, за характеризуются низким mac. %) хлора (<0,1]содержанием И относятся К относительно низкотемпературным «водным» (F<1,0-1,5 мас. %) и маловодным (F>1,5 мас. %), преимущественно коровым гранитоидам, к которым относятся типичные посторогенные габбро-сиенит-гранитные серии (рис. 43). При этом в каждом из массивов обособляются две группы пород – как правило, более и менее кремнекислые. Биотиты наименее кремнекислых сиенитов Айского массива образуют плотное облако точек в пределах поля биотитов «водных» гранитоидов, остальные, более кремнекислые породы, относятся к маловодным гранитоидам. Точки составов биотитов из пород Тархатинского массива ложатся более кучно,

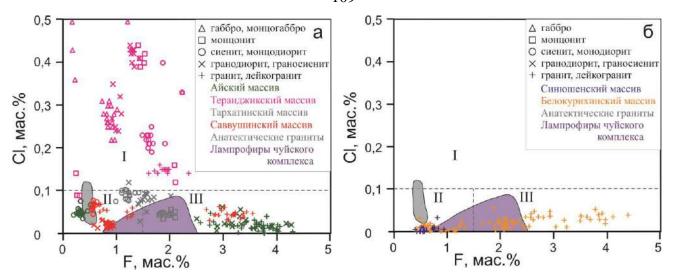


Рис. 43. Соотношения содержаний фтора и хлора в биотитах из пород габбро-гранитных (а) и гранит-лейкогранитных (б) ассоциаций Алтая. Анатектические граниты — Боровлянский массив. Поля проведены по [Бушляков, Холоднов, 1986]: І — гранитоиды, производные мантийных и мантийно-коровых базальтоидных и андезитоидных магм, ІІ и ІІІ — преимущественно коровые гранитоиды, ІІ — «водные», ІІІ — маловодные.

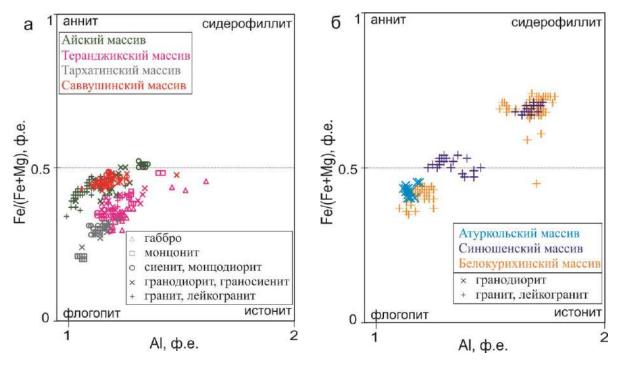


Рис. 44. Четырёхугольная диаграмма аннит - сидерофиллит - флогопит - истонит (АСФИ) для биотитов из пород пермо-триасовых габбро-гранитных (а) и существенно граносиенитовых, гранит-лейкогранитовых (б) ассоциаций Алтая.

однако также можно выделить «водные» сиениты, маловодные монцодиориты и промежуточного состава граносиениты. Точки составов биотитов из большинства гранитоидов Саввушинского массива ложатся в поле «водных» гранитоидов, и лейкограниты только оказываются маловодными. Для пород гранитлейкогранитных серий наблюдается разделение также на две группы. Крупнозернистые граниты и аплиты Синюшенского массива согласно диаграмме соотношений F-Cl являются «водными», а мелкозернистые — маловодными. Граниты первой фазы Белокурихинского массива — маловодные, в то время как биотитовые граниты второй фазы — «водные». Из общей картины выбиваются тёмные слюды Теранджикского массива более высокими содержаниями хлора и ложатся в поле гранитоидов, производных мантийных и мантийно-коровых базальтоидных и андезитоидных магм (рис. 43а). Стоит отметить, что анатектические гранитоиды Боровлянского массива и лампрофиры чуйского комплекса также характеризуются низкими содержаниями хлора. Концентрации фтора в биотитах гранитов Боровлянского массива соответствуют таковым в низкокремнекислых породах рассматриваемых пермо-триасовых интрузивах Алтая. А тёмные слюды лампрофиров Чуйского комплекса оказываются более фтористыми по сравнению с биотитами гранитов Боровлянского массива и занимают промежуточное положение между низко- и высоко-кремнекислыми породами изученных массивов.

Четырёхугольная диаграмма аннит - сидерофиллит - флогопит - истонит (АСФИ) также позволяет по составу биотитов выделить те же две группы пород по соотношению железистости и общего количества алюминия — менее и более кремнекислые (габбро, диориты, сиениты с одной стороны и граниты, лейкограниты с другой) (рис. 44). Кроме того для большинства массивов (за исключением Саввушинского и Атуркольского) просматривается линейный тренд увеличения железистости при росте общего количества алюминия.

5.2.2.2. Светлые слюды

Белокурихинский массив

В Белокурихинском массиве помимо биотитов встречаются светлые слюды в биотитовых и двуслюдяных лейкогранитах третьей фазы, представленные мусковитами. Согласно диаграмме Mg-Ti-Na [Miller et al., 1981], разделяющей первичные и новообразованные мусковиты, большинство светлых слюд Белокурихинского массива являются магматическими (рис. 45), однако на диаграмме Fe-F [Henderson et al., 1989] — положение точек составов светлых слюд

из биотитовых лейкогранитов соответствует тренду первичных слюд, а мусковитов двуслюдяных разностей — изменённых (рис. 46). Состав слюд этих двух проявлений несколько различен: концентрации титана, магния, железа и фтора в мусковитах биотитовых лейкогранитов выше, в то время как марганца и натрия — ниже (табл. 5.8 прил. 2). Содержания Rb₂O и BaO остаются выдержанными в обеих разновидностях пород (0,02-0,19, н.п.о.-0,04 мас. %), концентрации хлора не превышают предела обнаружения.

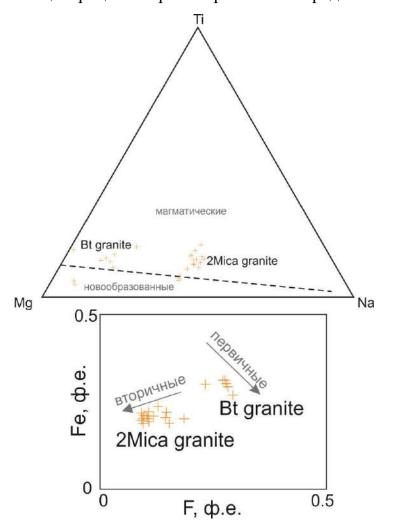


Рис. 45. Диаграмма составов светлых слюд из пород Белокурихинского массива в координатах Mg-Ti-Na. Граница, разделяющая первичные и новообразованные мусковиты, проведена в соответствии с [Miller et al., 1981].

Рис. 46. Соотношение формульных единиц железа и фтора в мусковитах из пород Белокурихинского массива. Тренды первичных и вторичных слюд проведены в соответствии с [Henderson et al., 1989].

5.3. Акцессорные минералы

5.3.1. Айский массив

Набор акцессорных минералов пород Айского массива схож — во всех разновидностях встречаются циркон, апатит, титанит, магнетит, ильменит (рис. 47). *Апатит* образует идиоморфные короткостолбчатые кристаллы размером 10-100 мкм в сечении, которые являются включениями во всех других

минералах, слагающих породу. Апатит Айского массива обогащён фтором и серой – концентрации F достигают 5,8 мас.%, а SO₃ – 1,5 мас.%, и согласно последним рекомендациям IMA [Pasero et al, 2010], является фтор-апатитом. Циркон является широко распространённым минералом. Кристаллы циркона имеют короткостолбчатый облик, достигают размера 100 мкм в сечении при удлинении до 300 мкм. Наиболее мелкие кристаллы характерны для наиболее основных пород. Кроме того, циркон габбро оказывается и наиболее однородным по составу, в то время как в цирконе из кислых пород, особенно гранитов и лейкогранитов, ярко проявляется зональность – центральные зоны кристаллов метамиктные. Вместе с тем, циркон из кислых пород Айского массива обогащён Nb_2O_5 1,3-2,6 мас.%, содержания ThO_2 в отдельных случаях достигают 5,7 мас.%. Цирконы из всех разновидностей пород содержат примесь HfO₂ от 0,73 до 3,7 мас.%. Монацит отмечен лишь в граносиенитах Айского массива, это мелкие (до 50 мкм) субидиоморфные кристаллы, которые заключены внутри псевдоморфоз по титаниту. Характерной особенностью монацита граносиенитов является повышенное содержание Се, состав монацита соответствует Се-монациту, согласно рекомендациям IMA [Nickel, Mandarino, 1987]. В гранитах изредка встречается ортит, он образует идиоморфные кристаллы, размером до 150 мкм. Центральные части кристаллов ортита метамиктные. Титанит присутствует во всех разновидностях пород Айского массива, однако морфология кристаллов сильно различна. В наиболее кремнекислых породах титанит образует мелкие, 30-80 мкм, идиоморфные кристаллы со слабопроявленной пятнистой зональностью. Размер выделений титанита в остальных породах существенно больше – от 0,5 мм в гранитах до 1-1,5 мм в сиенитах. В гранитах и граносиенитах, как правило, встречаются полные псевдоморфозы по титаниту – мелкокристаллические агрегаты ильменита и флюорита точно повторяющие форму клиновидных кристаллов титанита, лишь изредка встречаются идиоморфные кристаллы собственно титанита, частично замещённые ильменитом. В кварцевых сиенитах, также как и в габбро, титанит образует ксеноформные выделения в виде каймы разной мощности вокруг «пятен» ильменита. Титанит сиенитов напоминает

титанит лейкогранитов – это идиоморфные кристаллы с пятнистой зональностью размером от 40 мкм до 1 мм по удлинению.

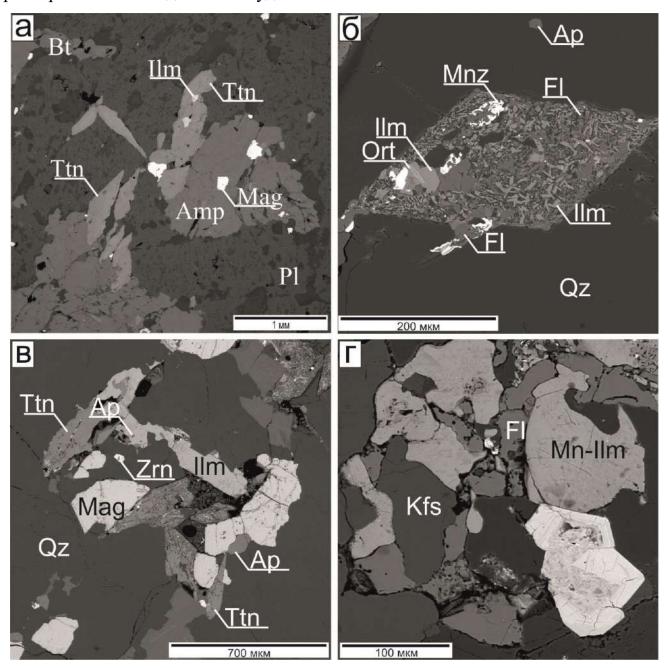


Рис. 47. Акцессорные минералы пород Айского массива.

(а) — идиоморфные кристаллы титанита с пятнистой зональностью и включениями ильменита (обр. Γ -12/1, сиенит); (б) — псевдоморфоза мелкозернистого агрегата ильменита, ортита, флюорита и монацита по кристаллу титанита в кварце (обр. Γ -29, граносиенит); (в) — субидиоморфные и идиоморфные кристаллы титанита с неровными гранями и включениями ильменита (обр. Γ -13/1, гранит); (г) — флюорит, манганильменит и циркон в породообразующих минералах (обр. Γ -14/2, лейкогранит). Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратно-рассеянных электронов (BSE).

В породах Айского массива (кроме габбро) *магнетити* образует идиоморфные и близко идиоморфные кристаллы (размером в поперечнике от первых десятком микрон до 1 мм). В наиболее основных породах вместо магнетита присутствуют субидиоморфные зёрна *пирита* размером до 500 мкм, часто почти полностью замещённые гётитом. *Ильменит* встречен во всех породах, кроме сиенитов, размер субидиоморфных кристаллов достигает 1 мм. Причём в кварцевых сиенитах и габбро ильменит образует зёрна неправильной формы в титаните. В ильмените гранитов и лейкогранитов часто наблюдается мелкая вкрапленность, предположительно, магнетита (из-за крайне небольшого размера не представляется возможным провести диагностику), а в ильмените граносиенитов — *рутила*, которая напоминает структуры распада. Состав ильменитов Айского массива зависит от кремнекислотности пород — в гранитах и лейкогранитах он близок к пирофаниту (содержание МпО достигает 25 мас.%), а

по мере увеличения основности пород концентрации марганца в ильменитах падают до 2 мас.%.

Таким образом, для пород Айского массива характерна однотипная акцессорная минерализация, тем не менее, обращают на себя внимание некоторые особенности. Так, акцессорная минерализация в кварцевых сиенитах, сиенитах и габбро менее разнообразна, чем в граносиенитах, гранитах и лейкогранитах. Кроме того, в последних присутствуют полные, либо частичные псевдоморфозы по титаниту, в то время как в габбро и кварцевых сиенитах титанит встречается в виде ксеноморфной каймы вокруг зёрен ильменита, лишь изредка угадываются очертания, напоминающие клиновидные кристаллы титанита. Также лишь для лейкогранитов характерен акцессорный флюорит.

5.3.2. Теранджикский массив

Набор акцессорных минералов во всех породах Теранджикского массива однотипен – апатит, циркон, отдельные находки торита, монацит, титанит, магнетит и ильменит (рис. 48). Основным различием является отсутствие

титанита в наиболее основных породах и различные формы выделения и взаимоотношения Fe-Ti окислов в породах разной кремнекислотности.

Апатит является широко распространённым минералом во всех породах Теранджикского массива. Длиннопризматические идиоморфные кристаллы встречаются в виде включений во всех породообразующих минералах, а также в Fe-Ti окислах, размер кристаллов апатита варьирует в широких пределах – от 20 до 300 мкм в поперечном сечении. Апатит Теранджикского массива обогащён летучими компонентами. Концентрации Cl и SO₃ достигают 0,16-2,0 мас.% и 0,27-1,7 мас.%, соответственно, а F - 2,2-8,7 мас.%. Отметим, что апатиты из монцодиоритов и граносиенитов по составу соответствуют F-апатиту (F = 2,5-8,7мас.%) (согласно последним рекомендациям IMA [Pasero et al, 2010]), в то время как содержание фтора в апатите из монцогаббро несколько ниже -2,2-3,1 мас.%. Также в апатитах наблюдаются высокие содержания SrO - 0.7-1.7 мас.%. *Циркон* во всех породах образует идиоморфные призматические кристаллы, 20-100 мкм в поперечном сечении. Циркон из монцогаббро, как правило, обогащён HfO_2-1 ,0-1,3 мас.%. Часто в срастании с цирконом наблюдаются идиоморфные кристаллы торита размером 30-50 мкм. В породообразующих минералах монцогаббро встречаются минеральные включения монацита. Oн образует субидиоморфные мелкие (их размер не превышает 20 мкм) кристаллы и по составу отвечает Се-монациту. Титанит в Теранджикском массиве отмечен лишь в граносиенитах. Это, как правило, ксеноморфные выделения неправильной формы co множеством включений других акцессорных минералов, «окаймляющие» ильменит и магнетит.

Магнетит в породах Теранджикского массива представляет собой субидиоморфные кристаллы до 400 мкм в поперечнике. Во всех разновидностях пород количество магнетита существенно больше, чем количество ильменита, причём, иногда в монцогаббро наблюдается замещение пироксена магнетитом. Ильменит встречается в виде идиоморфных однородных по составу кристаллов размером 20-100 мкм. Также ильменит отмечен в тесных срастаниях с магнетитом – по периферии идиоморфных кристаллов магнетита часто наблюдаются каёмки

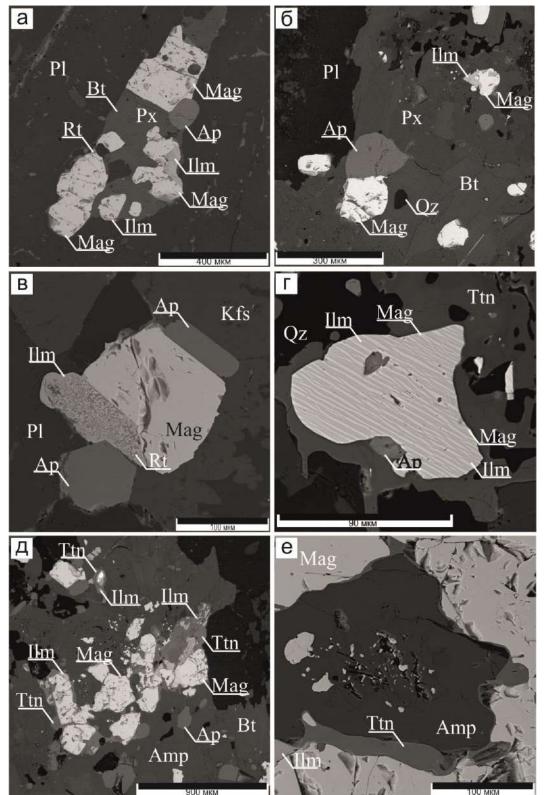


Рис. 48. Акцессорные минералы пород Теранджикского массива. (а) — ильменит, магнетит, апатит в пироксене (обр. 8-09-102/2, монцогаббро); (б) — ильменит, магнетит и апатит в породообразующих минералах (обр. 8-09-102/2, монцогаббро); (в) — кристаллы апатита, ильменита и магнетита в полевых шпатах (обр. А-041, монцодиорит); (г) — тесные срастания ильменита и магнетита с каймой титанита в кварце (обр. А-041, монцодиорит); (д) — титанит с включениями ильменита и зёрна магнетита, апатита в породообразующих минералах (обр. 9-09-7, граносиенит); (е) — ксеноморфная кайма титанита вокруг амфибола (обр. 9-09-7, граносиенит). Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратно-рассеянных электронов (BSE).

ильменита. Стоит отметить, что содержание MnO в мелких идиоморфных кристаллах ильменита существенно ниже, чем в каёмках ильменита в магнетите. В монцогаббро также иногда встречается *рутил* в виде тонкой вкрапленности в магнетите, либо в виде мелких ксеноморфных образований, расположенных по краям зёрен магнетита. В более кремнекислых породах рутил наблюдается в виде вкрапленности в ильмените, напоминающей структуры распада твёрдого раствора.

5.3.3. Тархатинский массив

Набор акцессорных минералов пород Тархатинского массива очень схож, это апатит, циркон, монацит, титанит, магнетит (рис. 49). Однако, наиболее основные породы, монцодиориты, отличаются отсутствием титанита, вместо которого встречается ильменит.

Наиболее распространённым акцессорным минералом BO всех разновидностях пород является апатит. Он образует длиннопризматические хорошо огранённые кристаллы, размером в поперечнике от 10 до 300 мкм, которые являются включениями во всех остальных минералах пород. Кристаллы однородные и не отличаются по составу в породах разной кремнекислотности. Циркон представляет собой идиоморфные удлинённые кристаллы, размером в поперечном сечении 20-100 мкм. В отдельных случаях размер циркона достигает 1 мм по удлинению. В цирконе Тархатинского массива фиксируется примесь HfO₂ – от 0,99 до 2,29 мас.%. Монацит является редким минералом для пород Тархатинского массива. Он встречается в виде мелких (10-20 мкм) субидиоморфных кристаллов в амфиболе из граносиенитов. Титанит, было сказано выше, присутствует лишь в кремнекислых породах как Тархатинского массива. Это, как правило, идиоморфные кристаллы размером 50-100 мкм в сечении. Нередко кристаллы титанита обладают слабой пятнистой обусловленной различными зональностью, концентрациями примесей. Наибольшие содержания фиксируются для примеси FeO – 1,5-3,4 мас.%, следующей по значимости является примесь $Al_2O_3 - 0.4-1.7$ мас.%, также часто

присутствуют примеси Ce_2O_3 и Nb_2O_5 – 0,5-2,0 мас.% и 0,3-0,9 мас.%, соответственно.

При рассмотрении Fe-Ti окислов в породах Тархатинского массива обращает на себя внимание тот факт, что в граносиенитах и сиенитах присутствует лишь магнетит, в то время как в монцодиоритах встречается как магнетит, так и ильменит. *Магнетит*, как правило, представляет собой субидио-

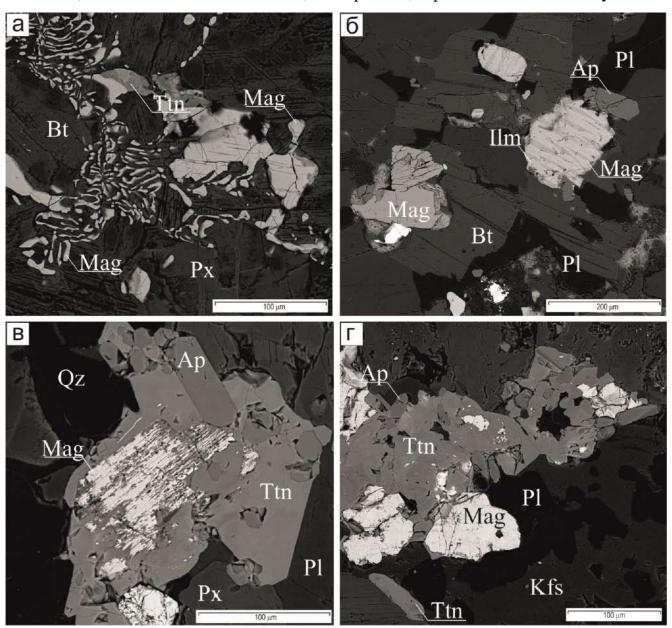


Рис. 49. Акцессорные минералы пород Тархатинского массива.

а – вростки магнетита и титанита в пироксене (обр. 8-07-19, монцодиорит); б – магнетитильменитовые срастания, апатит и циркон в породообразующих минералах (обр. 8-07-19, монцодиорит); в – магнетит, апатит, титанит в породообразующих минералах (обр. 5-451, граносиенит); г – титанит, магнетит и апатит в породообразующих минералах (обр. 5-451, граносиенит). Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратно-рассеянных электронов (BSE). морфные зёрна-включения в породообразующих минералах, размер такого магнетита составляет 30-200 мкм, причём в субидиоморфном магнетите из нередко встречаются ламелии ильменита, монцодиоритов напоминающие структуры распада твёрдых растворов. Также магнетит встречается в виде вкрапленности в пироксене, однако, если в граносиенитах и сиенитах это мелкие, не более 10 мкм, субидиоморфные однородные зёрна, то в монцодиоритах – «червеобразные» вростки, напоминающие симплектиты с полосами ильменита. В кремнекислых породах магнетит, кроме прочего, встречается виде ксеноморфных зёрен неправильной формы в амфиболе и титаните. Ильменит в монцодиоритах присутствует в виде идиоморфных или субидиоморфных кристаллов, размер которых варьирует от 30 до 300 мкм. Ильменит встречается в виде включений в породообразующих минералах, и нередко образует срастания с апатитом и цирконом. В таких случаях ясно видны поверхности совместного роста ильменита и других акцессорных минералов, а иногда ильменит даже оказывается более идиоморфным.

5.3.4. Саввушинский массив

В породах Саввушинского интрузива наблюдается большое количество акцессорных минералов, среди которых преобладают идиоморфные кристаллы титанита, фторапатита, циркона и магнетита, также встречаются выделения ортита и манган-ильменита (рис. 50).

Кристаллы апатита идиоморфные, длиннопризматического габитуса, размером 20-150 мкм в сечении, встречаются в виде включений во всех минералах пород. Крупные кристаллы апатита из кварцевых монцодиоритов и гранодиоритов, как правило, слабозональные, а из гранитов однородные. Апатит Саввушинского массива обогащён фтором (2,9-4,7 мас.%) и серой (0,2-1,0 мас.%) и, согласно последним рекомендациям IMA [Pasero et al, 2010], относится к фторапатиту. *Циркон* присутствует во всех разновидностях пород Саввушинского массива. Он образует призматические кристаллы размером 20-200 мкм в сечении, которые являются включениями во всех остальных минералах пород. В цирконах

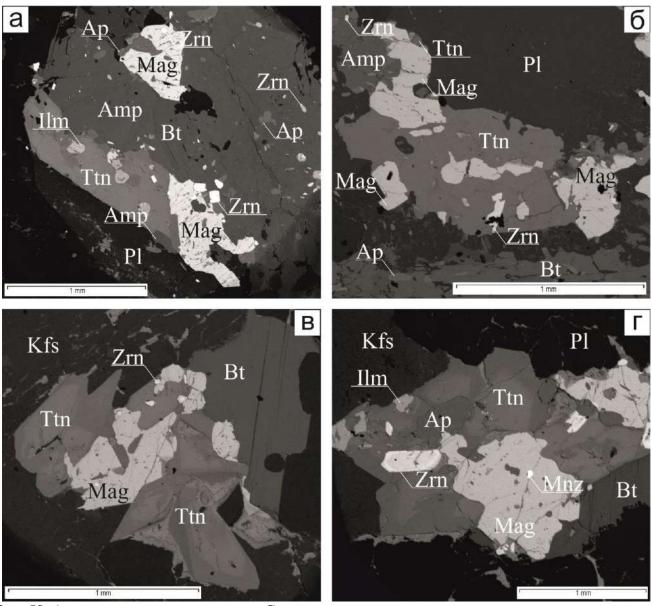


Рис. 50. Акцессорные минералы пород Саввушинского массива.

а — включения ильменита в титаните с пятнистой зональностью в срастании с магнетитом в породообразующих минералах (обр. Γ -3/3, диорит); б — включения циркона и магнетита в титаните в породоробразующих минералах (обр. Γ -2/9, гранодиорит); в — зональные кристаллы титанита в срастании с магнетитом и цирконом в калиевом полевом шпате (обр. Γ -3/2, гранит); г — субидиоморфный кристалл титанита с пятнистой зональностью и включениями циркона, магнетита, апатита и ильменита в породообразующих минералах (обр. Γ -3/2, гранит). Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратно-рассеянных электронов (BSE).

гранитов проявлена слабая зональность по HfO_2 , в то время как в более основных породах циркон однородный. В гранитах в качестве минерального включения в магнетите иногда встречается *монацит*, он образует мелкие (до 50 мкм) идиоморфные кристаллы и по составу соответствует Се-монациту. *Титанит* является самым широко распространенным акцессорным минералом во всех породах Саввушинского массива. Он представлен крупными (до нескольких мм

по удлинению) идиоморфными и субидиоморфными кристаллами с неровными гранями (в плоском срезе край кристаллов оказываются «фестончатыми»), а также ярко выраженной пятнистой зональностью, которая связана с различным, но всегда повышенным, содержанием FeO и редкоземельных элементов – Ce₂O₃, La_2O_3 , Nd_2O_3 , Y_2O_3 , также обращают на себя внимание повышенные концентрации алюминия в титаните (1,47-4,18 мас. %). Кроме того, в кварцевых монцодиоритах и гранодиоритах титанит встречается в виде ксеноморфной каймы, однородной по составу, вокруг магнетита. К хорошо огранённым кристаллам титанита приурочены скопления и других акцессорных минералов – апатита, циркона, магнетита, ильменита и ортита, причём последние, ильменит и ортит, образуют в титаните пятна неправильной формы. Ильменит в породах Саввушинского массива содержит от 7,5 до 24,1 мас. % МпО, то есть является манган-ильменитом. Также в качестве примеси часто присутствует СаО, его концентрации варьируют от 0,1 до 0,5 мас.%. Магнетит, как правило, представляет собой крупные субидиоморфные кристаллы, нередко изменённые и замещённые гётитом. Размер кристаллов магнетита в гранитах и гранодиоритах (400-800 мкм) существенно превосходит таковой в кварцевых монцодиоритах (до 100 мкм). Кроме того, в последних магнетит также присутствует в виде крупных (до 1 мм) ксеноморфных обособлений в титаните.

5.3.5. Атуркольский массив

Среди акцессорных минералов Атуркольского массива широко распространены титанит и магнетит, также присутствуют апатит, циркон, ортит и ильменит (рис. 51). Акцессорные минералы, как правило, являются включениями в биотите или образуют с ним срастания.

Апатит образует бесцветные идиоморфные призматические кристаллы, размером 50-300 мкм по удлинению, которые являются включениями во всех породообразующих минералах, а также в магнетите, титаните и *ортите*. Последний, в свою очередь, встречается в виде уплощенных идиоморфных кристаллов с тонкой зональностью. Призматические кристаллы *циркона*, разме-

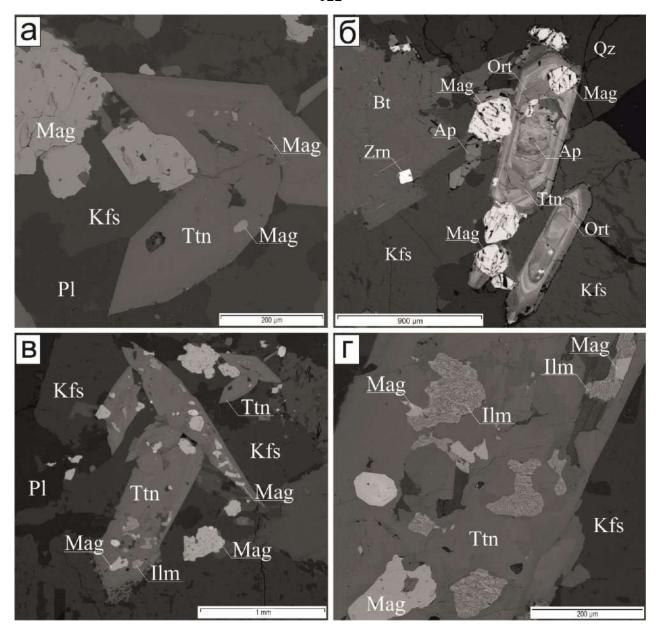


Рис. 51. Акцессорные минералы пород Атуркольского массива.

(а) — идиоморфные кристаллы магнетита и титанита; в центральной зоне последнего наблюдается скопление мелких кристалликов магнетита; (б) — хорошо ограненные уплощенные кристаллы магнетита и ортита с тонкой зональностью, а также более мелкие идиоморфные кристаллы апатита и циркона; (в) — идиоморфные кристаллы титанита с большим количеством включений других акцессорных минералов и «фестончатыми» краями; (г) — кристаллы магнетита и выделения неправильной формы, представляющие собой тесные срастания магнетита и ильменита, в титаните с пятнистой зональностью. Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратнорассеянных электронов (BSE).

ром от 40 до 300 мкм по длинной оси, встречаются в виде включений в породообразующих минералах, титаните и магнетите. Наиболее распространенным акцессорным минералом в монцогранитах Атуркольского массива является *титанит*. Он образует хорошо ограненные конвертовидные

кристаллы размером от 0,2 до 1 мм по удлинению. Зёрна титанита часто зональные, причем в центральных зонах обычно содержится большое количество включений магнетита, в то время как краевые зоны, как правило, не содержат минеральных включений.

В граносиенитах Атуркольского массива магнетит встречается гораздо чаще ильменита. Он, как правило, образует идиоморфные кристаллы, размером от 30 мкм до 1 мм. Скопления мелких (до 100 мкм) идиоморфных кристаллов магнетита часто отмечаются по периферии лейст биотита. Аналогичные зерна наблюдаются в центральных зонах клиновидных кристаллов титанита; также отмечены находки зональных идиоморфных зёрен ортита, внутри которых заключен магнетит, имеющий кристаллографические очертания. Ильменит в виде самостоятельных включений в породообразующих и акцессорных минералах отсутствует. Он встречен в породах лишь в виде выделений неправильной формы размером 50-200 мкм, имеющих неоднородную структуру и состав: фотографиях, полученных с помощью сканирующей электронной микроскопии, видно, что эти выделения представляют собой тесные срастания магнетита и ильменита, причем ни тот, ни другой не имеют кристаллографических очертаний. Содержания МпО достигает 30 мас.%. Таким образом, в монцограносиенитах Атуркольского массива магнетит является первично-магматическим Fe-Ti окислом, а образование ильменита началось позднее и, вероятнее всего, связано с поздними стадиями кристаллизации гранитоидной магмы.

5.3.6. Синюшенский массив

Акцессорная минерализация Синюшенского массива представлена магнетитом, ильменитом, цирконом, монацитом и апатитом. Реже (преимущественно в виде включений в магнетите) встречаются титанит и эвксенит (рис. 52).

Апатит образует кристаллы призматического габитуса, размер которых в поперечнике варьирует от первых микрон до 100-200 мкм. Более мелкие кристаллы (до 50 мкм в поперечнике) оказываются длиннопризматическими – до

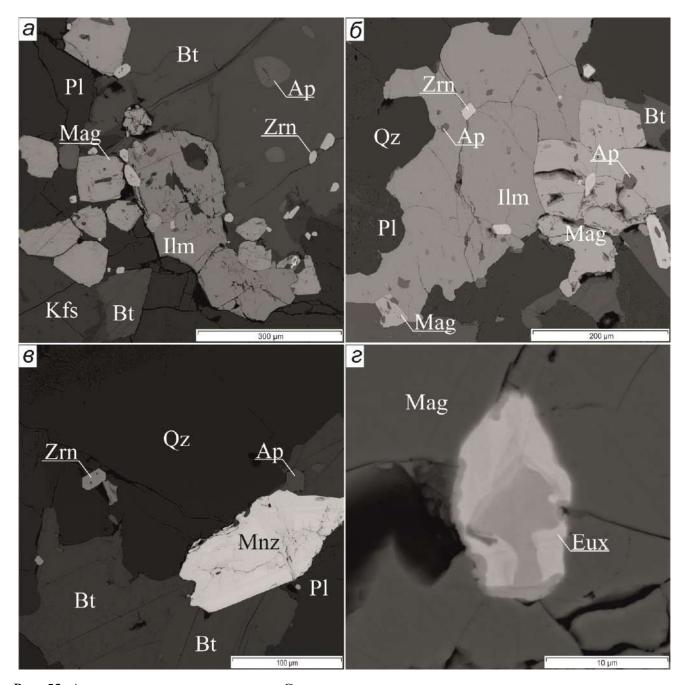


Рис. 52. Акцессорные минералы пород Синюшенского массива.

а — идиоморфные включения апатита, циркона, магнетита и ильменита в биотите и плагиоклазе (в кристалле ильменита тонкие включения магнетита, структуры распада?); б — идиоморфные включения апатита и циркона в ильмените и магнетите; в — включения идиоморфных кристаллов монацита, апатита и циркона в кварце и биотите; г — включение зонального кристалла эвксенита в магнетите. Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратно-рассеянных электронов (BSE).

150 мкм по удлинению и встречаются преимущественно в мелкозернистых гранитах, а в крупнозернистых гранитах и аплитах кристаллы размером в поперечнике >50 мкм короткопризматические. Основной примесью в апатитах Синюшенского массива является МпО и FeO, причём наиболее высокие

содержания FeO и наиболее низкие MnO наблюдаются в мелких идиоморфных кристаллах мелкозернистых гранитов. Апатиты крупнозернистых гранитов и аплитов обладают пятнистой зональностью, кроме того в них отмечаются примеси РЗЭ цериевой группы (Се и Nd) содержания которых незакономерно меняются от зоны к зоне. Включения апатита присутствуют породообразующих минералах, а также мелкие кристаллы встречаются в магнетите, ильмените цирконе. Циркон образует идиоморфные длиннопризматические кристаллы светло коричневатого цвета, размером от первых микрон до 300 мкм в поперечнике. Наиболее крупные кристаллы циркона зональные – во внешней зоне содержание HfO₂ выше, чем во внутренней. Кристаллы циркона обычно присутствуют в виде включений в кварце, биотите, калиевом полевом шпате, плагиоклазе, магнетите и ильмените. Монацим представлен идиоморфными кристаллами размером до 200 мкм, образующими включения в породообразующих минералах, часто зональными – внешние зоны обогащены ThO_2 (до 13.2 мас.%).

Интересной особенностью акцессорной минерализации является одновременное присутствие в породах ильменита и магнетита, которые присутствуют в породе в приблизительно равных количествах. Магнетит встречается в виде кристаллов (размером 50-300 мкм) с кристаллографическими очертаниями, а также в виде тонких включений в ильмените, напоминающих структуры распада твёрдых растворов. Включения магнетита наблюдаются в краевых зонах крупных вкрапленников калиевого полевого шпата, во всех породообразующих минералах, а также в ильмените. Часто встречаются срастания кристаллов магнетита и ильменита, в таких случаях, кристаллы магнетита оказываются более идиоморфными. Ильменим образует кристаллы размером от 100 до 600 мкм в поперечнике, нередко хорошо огранённые. Содержания MnO в ильмените не превышает 8 мас. %. Зёрна ильменита являются включениями в кварце, биотите, плагиоклазе и в краевых частях крупных вкрапленников калиевого полевого шпата.

5.3.7. Белокурихинский массив

Набор и особенности акцессорных минералов в гранитах и лейкогранитах Белокурихинского массива очень схожи. Это, в первую очередь, апатит, циркон, монацит и титанит, магнетит и ильменит, а также характерные только для пород Белокурихинского массива гранат, турмалин, ксенотим и уранинит (рис. 53).

Кристаллы апатита идиоморфные, вытянутые, размер варьирует от 20 до 100 мкм по удлинению. По составу апатит Белокурихинского массива соответствует фтор-апатиту (согласно последним рекомендациям IMA [Pasero et al, 2010]). *Циркон* образует хорошо огранённые удлинённые кристаллы размером 10-150 мкм, причём более мелкие кристаллы, 10-30 мкм по удлинению, оказываются зональными (по содержанию U, Th и Hf), а более крупные, до 150 мкм по длинной оси, однородные. Мелкие идиоморфные кристаллы ксенотима и монацита (5-20 мкм и 20-50 мкм соответственно) зональные. Титанит встречается в виде копьевидных кристаллов размером от 50 до 150 мкм по длинной оси, которые является включениями в породообразующих минералах. включений в породообразующих минералах обнаружены Также в виде субидиоморфные зёрна, размером 20-150 мкм, неопределённого минерала, в составе которого преобладают редкоземельные элементы ($Ce_2O_3 = 14,64-30,01$ мас.%, $La_2O_3 = 5.48-13.09$ мас.%, $Nd_2O_3 = 7.99-13.86$ мас.%) и фосфор ($P_2O_5 =$ 23,17-23,45 mac.%).

Наиболее широко распространённым акцессорным минералом является ильменит, причём Белокурихинский массив — единственный, среди изученных нами, в котором количество акцессорного ильменита превосходит количество магнетита. И магнетит, и ильменит образуют идиоморфные кристаллы размером до 500 мкм и 300 мкм, соответственно. Кристаллы ильменита часто слабо зональные. По онтогеническим наблюдениям можно сделать вывод о том, что и магнетит и ильменит образовались на раннемагматической стадии, однако кристаллизация магнетита, завершившаяся на ранних этапах кристаллизации гранитного вещества, сменилась образованием ильменита.

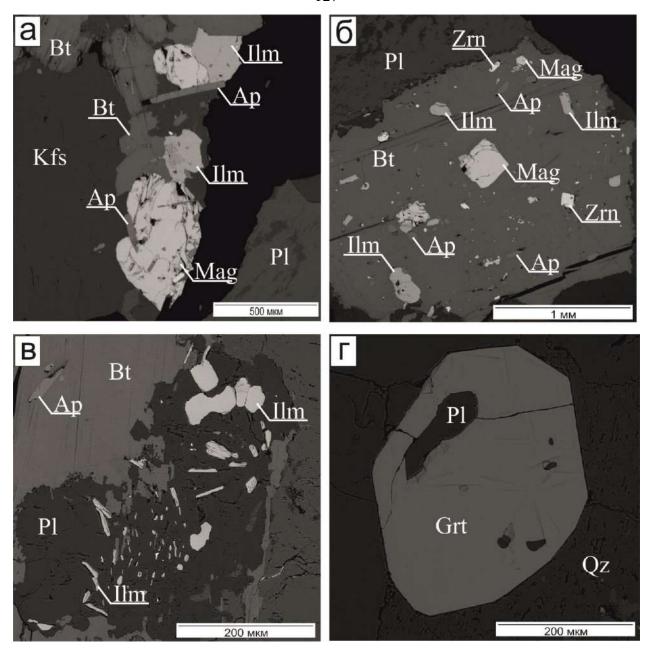


Рис. 53. Акцессорные минералы пород Белокурихинского массива. (а) — магнетит и ильменит, а также апатит и циркон в породообразующих минералах (обр. 8-1006/5, гранит); (б) — идиоморфные кристаллы апатита, циркона, магнетита и ильменита в биотите (обр. 8-1006/5, гранит); (в) — кристаллы ильменита в плагиоклазе (обр. 8-1006/5, гранит); (г) — кристалл граната в кварце (обр. 08-33, лейкогранит). Микрофотографии получены с помощью сканирующего электронного микроскопа Tescan Mira 3LMU в режиме обратнорассеянных электронов (BSE).

В лейкогранитах Белокурихинского массива (и только здесь среди изученных нами массивов) также нередки находки турмалина и граната. *Гранат* образует ромбододекаэдрические кристаллы розового цвета, размером 3-10 мм в сечении, и согласно классификации [Grew, 2013] является спессартинальмандином. Кристаллы *турмалина* (шерла) удлинённые, чёрного цвета,

размером 3-7 мм в сечении. Основными примесями в турмалине являются MgO = 0,38-2,95 мас.% и MnO = 0,32-0,61 мас.%. Также только в лейкогранитах обнаружены редкие зёрна уранинита, это идиоморфные кристаллы размером 20-25 мкм, с примесью тория.

Из вышеприведённого описания следует, что для всех разновидностей пород рассматриваемых пермо-триасовых гранитоидов Алтая характерны акцессорные магнетит, ильменит, апатит и циркон. Титанит и рутил также являются распространёнными акцессорными минералами, однако они не отмечены в гранитах Синюшенского массива, а рутил отсутствует и в породах Атуркольского массива. По набору акцессорных минералов от остальных массивов отличается Белокурихинский – для гранитов этого массива характерны и широко распространены такие акцессорные минералы, как гранат, турмалин, уранинит и ксенотим. Среди акцессорных минералов пород рассматриваемых массивов обращает на себя внимание одновременное присутствие в них магнетита, ильменита и титанита.

Описанные в породах изученных массивов различия в онтогенических Fi-Ti отражающие взаимоотношениях окислов, последовательность ИХ указывают различные условия формирования кристаллизации, на кристаллизации магм. Онтогенические взаимоотношения ильменита и титанита, свидетельствующие замещении (каймы 0 титанита вокруг «фестончатые» края кристаллов титанита, наличие в них включений Mnильменита, ортита, апатита и магнетита), и повышенные содержания марганца в ильмените интерпретируются как отражение высокой фугитивности кислорода [Czamanske et al., 1972]. В породах Айского массива более распространены полные псевдоморфозы мелкозернистого агрегата ортита, монацита, рутила, кварца, флюорита и других минералов по титаниту, что также обусловлено ростом активности кислорода [Pan et al., 1993; Harlov et al., 2006].

В случаях Айского, Синюшенского и Белокурихинского массивов, вероятно, происходила смена окислительно-восстановительных условий во время раннемагматической стадии формирования интрузий. В Атуркольском массиве ильменит отвечает поздней стадии кристаллизации гранитоидных магм. В Теранджикском массиве присутствуют ильменит и магнетит, как раннемагматической стадии, так и магнетит, замещающий темноцветные минералы, отвечающий поздним этапам становления гранитоидного массива.

5.4. Обсуждение результатов

5.4.1. Айский массив

По комплексу минералого-петрографических данных породы Айского массива уверенно разделяются на две группы – более основные породы (габбро, сиениты, кварцевые сиениты) и более кремнекислые (граносиениты, граниты, лейкограниты). Это позволяет утверждать, что более и менее кремнекислые (габбро, сиениты, кварцевые сиениты и граносиениты, граниты, лейкограниты) образовались при несколько различных условиях. Слюды основных пород обогащены титаном, хлором (по отношению к другим летучим), обладают высокой железистостью и глинозёмистостью, тогда как биотиты кислых пород обогащены рубидием, марганцем и фтором. Прямая корреляция между содержаниями фтора и кремнезёма в тёмных слюдах свидетельствует о дифференциации магм, а соотношение формульных единиц Al и Fe/(Fe+Mg) – о вкладе корового материала в формирование расплавов Айского массива (рис. 44). Вместе с тем меняется и степень окисленности магмы с изменением её кремнекислотности – это хорошо видно на диаграмме [Wones, Eugster, 1965] (рис. 42), причём, если основные породы ложатся в плотное облако точек, то кислые образуют линейный тренд, то есть степень окисленности скачкообразно возросла при переходе от кварцевых сиенитов к граносиенитам, а затем плавно увеличивалась с ростом кремнекислотности. Повышенные содержания марганца в ильмените из граносиенитов, гранитов и лейкогранитов также интерпретируются как отражение повышения фугитивности кислорода [Czamanske et al., 1972].

Морфологические особенности кайм титанита вокруг зёрен ильменита дают основания предполагать замещение ильменита титанитом, что также обусловлено ростом активности кислорода [Harlov et al., 2006]. При этом псевдоморфозы мелкозернистого агрегата ортита, монацита, рутила, кварца, флюорита и других минералов по титаниту описаны в литературе [Pan et al., 1993] и также объясняются повышением фугитивности кислорода под влиянием флюида.

Таким образом, минералогические особенности пород Айского массива однозначно показывают, что материнские магмы обеих групп пород (габбро, сиениты, кварцевые сиениты с одной стороны и граносиениты, граниты, лейкограниты с другой) претерпевали дифференциацию, при этом при формировании более кремнекислых пород существенен был вклад корового материала и флюида.

5.4.2. Теранджикский массив

Породы Теранджикского комплексу минералогомассива ПО петрографических данных однозначно разделяются на две группы – монцогаббро, монцониты, монцодиориты И граносиениты, граниты. Согласно [Бушляков, Холоднов, 1986] по соотношению летучих компонентов в темноцветных минералах породы массива классифицируются как производные мантийных и мантийно-коровых базальтоидных и андезитоидных магм (рис. 43). При этом положение точек составов тёмных слюд на классификационной диаграмме с нанесёнными полями по [Abdel-Rahman, 1994] говорит об их анорогенном происхождении (рис. 40). Кроме того, четырёхугольная диаграмма АСФИ маркирует вклад корового материала при генерации магм Теранджикского массива (рис. 44). Это также подтверждается положением точек составов биотитов на диаграмме [Ague, Brimhall, 1988] – в большинстве своём они ложатся в поле сильноконтаминированных пород, лишь отдельные точки монцонитов и монцогаббро относятся к слабо- и средне-контаминированным (рис. 41). В дополнение к особенностям состава темноцветных минералов, фиксируется и наличие двух парагенезисов, очевидно, отражающих две стадии кристаллизации,

что свидетельствует о дифференцированности пород. Также в пользу этого говорит и наличие корреляции между содержаниями фтора и кремнезёма в биотите – прослеживается тренд увеличения количества фтора при повышении SiO₂ от монцогаббро к монцонитам и монцодиоритам, и аналогичный тренд от граносиенитов К гранитам. Поскольку минералы раннего парагенезиса периодически имеют реакционные взаимоотношения с минералами позднего явно, что кристаллизация протекала при разных Р-Т- условиях. Наиболее вероятно, именно слюды раннего парагенезиса ложатся в поля слабо- и среднеконтаминированных пород по [Ague, Brimhall, 1988] (рис. 41). Окислительновосстановительные условия формирования магм также были не постоянными – при понижении кремнекислотности от наиболее основных пород, монцогаббро и монцонитов (выше буфера НМ), к монцодиоритам скачкообразно уменьшается степень окисленности (буфер NNO), а точки составов граносиенитов и гранитов образуют отдельный тренд между буферами NNO и HM. Также только в наиболее кислых породах, граносиенитах и гранитах, присутствует титанит, форма выделения которого говорит 0 замещении ильменита. Такая реакция (Amp+Ilm→Ttn+Mgt+Ilm+Qz) описывается в литературе для монцонитов, гранодиоритов и гранитов комплекса Финнмарка в Норвегии [Czamanske et al., 1972] и свидетельствует о смене окислительно-восстановительных условий (повышение активности кислорода).

Таким образом, особенности минералого-петрографического состава пород Теранджикского массива позволяют сделать вывод о различных условиях образования основных и кислых пород. В процессе кристаллизации монцогаббро, монцонитов и монцодиоритов важную роль играла дифференциация магм, затем при формировании граносиенитовых магм существенно возрос вклад корового материала, что вероятно стало причиной повышения фугитивности кислорода. Наиболее кремнекислые породы, граниты, явились результатом дальнейшей дифференциации расплавов.

5.4.3. Тархатинский массив

Среди пород Тархатинского интрузива выделяются две дискретные группы пород – монцодиориты с одной стороны и сиениты и граносиениты с другой, что в свою очередь свидетельствует о разных условиях кристаллизации. Тёмные слюды монцодиоритов в сравнении с более кремнекислыми разновидностями обогащены титаном и фтором, отличаются пониженной железистостью, и хлора. При ЭТОМ глинозёмистость биотитов содержаниями марганца Тархатинского остаётся выдержанной массива всём диапазоне на кремнекислотности. Концентрации рубидия и бария оказываются повышенными во всех породах интрузива, однако если содержания первого снижаются по мере увеличения кремнекислотности, то второго – увеличиваются. Линейный тренд на диаграмме АСФИ позволяет говорить о вкладе метаседиментационного материала в магмы сиенитов и граносиенитов, что также подтверждается положением точек состава биотитов на диаграмме [Ague, Brimhall, 1988] в пределах поля сильноконтаминированных гранитоидов (рис. 41). Сопоставление летучих компонентов в темноцветных минералах по [Бушляков, Холоднов, 1986] также позволяет определить породы Тархатинского интрузива как коровые гранитоиды (рис. 43). При этом степень окисленности скачкообразно увеличивается при переходе от одной группы пород к другой, что хорошо видно на диаграмме [Wones, Eugster, 1965] (рис. 42). Повышение фугитивности кислорода при формировании сиенитов и граносиенитов также подтверждается особенностями акцессорной минерализации, а именно смена акцессорного ильменита в монцодиоритах на титанит в более кремнекислых породах. В работе [Czamanske et al., 1972] подробно описано замещение ильменита в присутствии амфибола при повышении активности кислорода на титанит, магнетит и кварц.

Итак, особенности составов породообразующих минералов Тархатинского интрузива свидетельствуют о значимом вкладе корового материала при формировании сиенитовых и граносиенитовых расплавов под влиянием флюидов.

5.4.4. Саввушинский массив

По минералого-петрографическим особенностям среди пород Саввушинского массива выделяются лишь лейкограниты третьей фазы, точки составов остальных пород на диаграммах, представляющих петрогенетический интерес, обычно ложатся кучно, не обнаруживая закономерностей. Тем не менее, по диаграмме [Abdel-Rahman, 1994] видно, что точки составов биотитов ложатся в поле гранитоидов щелочных серий анорогенного происхождения (рис. 40). Также биотиты монцодиоритов отличаются повышенными содержаниями титана, хлора и несколько более высокими железистостью и глинозёмистостью, на диаграмме [Ague, Brimhall, 1988] они попадают в поле среднеконтаминированных пород, тогда как точки составов остальных разновидностей оказываются в поле сильноконтаминированных (рис. 41). Проводя сопоставление содержания летучих в темноцветных минералах согласно [Бушляков, Холоднов, 1986], породы Саввушинского массива соответствуют коровым гранитоидам, причём наиболее отличаются основные них, монцодиориты, несколько пониженными концентрациями фтора и рубидия по сравнению с гранодиоритами и гранитами (рис. 43). Лейкограниты значительно отличаются от всех остальных пород массива по концентрациям фтора в тёмных слюдах, а также степенью окисленности магм – они формировались в условиях буфера NNO, в то время как остальные породы – в менее окислительных условиях (рис. 42).

Пятнистая зональность и «фестончатые» края кристаллов титанита в совокупности с наличием в них включений Мп-ильменита, ортита, апатита и магнетита позволяют говорить о вероятном замещении ильменита вышеупомянутой ассоциацией минералов. Такое замещение описано в работе [Czamanske et al., 1972] и объясняется повышением активности кислорода, при этом особенности составов тёмных слюд маркируют слабо окислительные условия формирования пород массива. Также стоит отметить, что в породах Саввушинского массива такие псевдоморфозы встречаются повсеместно, в том числе и в наиболее основных породах, монцодиоритах, что означает схожие

условия формирования всех разновидностей пород массива. Это согласуется и с малой вариативностью составов темноцветных минералов этих пород.

Таким образом, минералого-петрографические особенности однозначно свидетельствуют о большом вкладе корового материала при генерации гранитоидных магм Саввушинского массива, но, тем не менее, не позволяют реконструировать в деталях условия их формирования.

5.4.5. Атуркольский массив

Породы Атуркольского массива характеризуются однообразным минералого-петрографическим составом. Точки составов тёмных слюд на рассматриваемых диаграммах ложатся кучно и не позволяют реконструировать эволюцию магм.

Согласно диаграмме [Маракушев, Тарарин, 1965] слюды граносиенитов Атуркольского массива отвечают слюдам из щелочных гранитоидов (рис. 39), а по классификации [Abdel-Rahman, 1994] — слюдам щелочных пород анорогенного происхождения (рис. 40). На диаграмме [Ague, Brimhall, 1988] точки составов биотитов образуют плотное облако в поле высокомагнезиальных высокофтористых, сильноконтаминированных пород (рис. 41), а по соотношению летучих компонентов в темноцветных минералах по [Бушляков, Холоднов, 1986] являются преимущественно коровыми гранитоидами (рис. 43).

5.4.6. Синюшенский массив

По минералого-петрографических комплексу данных породы Синюшенского массива разделяются на две группы – среднезернистые граниты и Повышенные крупнозернистые граниты, аплиты. содержания титана пониженная железистость биотитов среднезернистых гранитов, в сравнении с биотитами более поздних фаз, свидетельствуют о более высоких температурах образования. Кроме того, плагиоклазы среднезернистых гранитов отличаются максимальной основностью среди пород массива, а калишпаты – наиболее высокими содержаниями альбитового минала и максимальными примесями СаО, FeO и BaO. Это также подтверждает более высокие температуры кристаллизации среднезернистых гранитов (в сравнении с другими разновидностями пород). Расположение точек составов биотитов на диаграмме [Маракушев, Тарарин, 1965] свидетельствует о различной щёлочности расплавов — среднезернистые породы оказываются более щелочными, нежели крупнозернистые и аплиты, что также подтверждается и пониженной глиноземистостью биотитов (рис. 39).

Коровое происхождение расплавов уверенно фиксируется по составу тёмных слюд. Согласно сводке [Бушляков, Холоднов, 1986] породы Синюшенского массива относятся к преимущественно коровым гранитоидам, причём мелкозернистые граниты являются маловодными, остальные разновидности пород – «водными» (рис. 43). На диаграмме [Abdel-Rahman, 1994] точки составов биотитов крупнозернистых гранитов и аплитов ложатся в поле высокоглинозёмистых серий, лишь крупнозернистые граниты соответствуют щелочным сериям анорогенного происхождения (рис. 40). Также на диаграмме [Ague, Brimhall, 1988] точки составов мелкозернистых гранитов ложатся в поле сильноконтаминированных высокомагнезиальных и высокофтористых пород, крупнозернистых И аплитов В поле магнезиально-железистых 41). восстановленных Изменение сильноконтаминированных И (рис. окислительно-восстановительных условий в процессе формирования пород массива ярко демонстрирует диаграмма [Wones, Eugster, 1965], здесь точки составов биотитов обозначенных выше двух групп пород образуют два параллельных тренда. На четырёхугольной диаграмме АСФИ (рис. 44) просматривается горизонтальный тренд изменения составов биотитов из пород Синюшенского массива (увеличение общего количества Al (ф.е.) относительно постоянном отношении Fe/(Fe + Mg) (ф.e.)). Такой тренд описывается в литературе для сильноконтаминированных и восстановленных гранитов I-типа [Ague, Brimhall, 1988; Lalonde, Bernard, 1993].

Таким образом, несмотря на малые вариации петрографического и петрохимического состава пород Синюшенского массива, по особенностям химического состава породообразующих минералов ясно выделяются две группы – среднезернистые граниты с одной стороны и крупнозернистые граниты и

аплиты с другой. Условия формирования двух групп пород также были различны. Среднезернистые граниты кристаллизовались при более высоких температуре и активности щелочей, а также в более восстановительных условиях, чем крупнозернистые разности.

5.4.7. Белокурихинский массив

пород Белокурихинского массива ПО особенностям состава породообразующих минералов выделяются биотитовые граниты первой фазы, на большинстве диаграмм, представляющих петрогенетический интерес, образуют плотное облако точек не перекрывающееся с остальными породами. Биотиты этой разновидности пород отличаются (в сравнении с гранитами второй и лейкогранитами третьей фаз) пониженной железистостью, глинозёмистостью и более низкими концентрациями фтора. Согласно диаграмме [Маракушев, Тарарин, 1965] породы этой разновидности оказываются более щелочными, что согласуется и с пониженной глинозёмистостью биотитов (рис. 39). Пониженная железистость биотитов в купе с более высокими концентрациями бария в калиевых полевых шпатах и железа в плагиоклазах свидетельствуют о более высоких температурах кристаллизации гранитовых магм первый фазы.

По классификации [Бушляков, Холоднов, 1986] породы Белокурихинского массива являются преимущественно коровыми гранитоидами, причём биотитовые граниты первой фазы — маловодные, в то время как биотитовые граниты второй фазы — «водные» (рис. 43). Изменение окислительно-восстановительных условий в процессе формирования пород массива однозначно фиксируется по соотношению Fe³⁺-Fe²⁺-Mg в тёмных слюдах [Wones, Eugster, 1965] — точки составов слюд первой фазы ложатся ниже буфера NNO, в то время как остальные образуют вытянутый линейный тренд от буфера NNO к буферу НМ (рис. 42). Восстановительные условия при образовании гранитов первой фазы фиксируются и по диаграмме [Ague, Brimhall, 1988] — они ложатся в поле магнезиальножелезистых сильноконтаминированных и восстановленных пород (рис. 41). Аналогичная картина наблюдается и на четырёхугольной диаграмме АСФИ (рис.

44) — по составу биотитов породы Белокурихинского массива соответствуют сильноконтаминированным и восстановленным гранитам І-типа [Ague, Brimhall, 1988] (рис. 41).

Вышеприведённые особенности минералогического состава позволяют утверждать, что условия кристаллизации пород первой фазы и более поздних были различны. Так, гранитные расплавы первой фазы были более щелочными, высокотемпературными и более восстановленными в сравнении с гранитными и лейкогранитными магмами второй и третьей фаз.

5.5. Заключение к главе 5

Таким образом, особенности состава породообразующих и акцессорных минералов пермо-триасовых гранитоидов Алтая являются чуткими индикаторами условий их формирования. Минералого-петрографические особенности пород пермо-триасовых гранитоидных серий Алтая свидетельствуют о сложной многостадийной истории формирования. В каждой рассматриваемой ИХ интрузивной серии выделяется две группы пород, более и менее кремнекислые в габбро-гранитных сериях и породы ранних и поздних фаз лейкогранитных ассоциациях. Прямая корреляция между Al и Fe/(Fe + Mg) (ф.е.) в биотитах рассматриваемых массивов указывает на существенный вклад корового материала при формировании гранитоидных расплавов (в большей мере это касается пород гранит-лейкогранитных ассоциаций), а положение точек составов в координатах аннит-флогопит-«оксибиотит», и также соотношение активности летучих компонентов и отношения содержаний магния и железа – об кристаллизации, что окислительных условиях ИХ также подтверждается повышенными концентрациями марганца в ильмените. По замещению ильменита титанитом однозначно устанавливается смена окислительно-восстановительных условий, а также влияние флюидной составляющей на заключительных этапах формирования интрузий.

ГЛАВА 6. ПЕТРОГЕНЕЗИС

Формирование гранитоидов может быть результатом разнообразных петрологических процессов. Установлено, что большинство известных типов гранитоидов нормальной щелочности являются продуктами частичного плавления разнообразных пород континентальной коры [Beard, Lofgren, 1991; Rapp, Watson, 1995; Koester et al., 2002 и др.]. В то же время, ни в одном из подобных экспериментов (независимо от состава исходных субстратов и спектра Р-Т-условий) не были получены анатектические выплавки, близкие по составу к щелочным гранитоидам А-типа. Невозможность генерации таких гранитоидов за счёт анатексиса наиболее распространенных пород континентальной коры обусловила многолетнюю дискуссию об их природе. Формирование А-гранитов связывалось с плавлением мафических тоналитов или гранулитов нижней коры, смешением мантийных и коровых магм, фракционированием базальтового плавлением пород нижней коры под воздействием флюидов, отделяющихся от мантийных магм (подробный анализ этого вопроса приведен в [Лучицкая, 2014]). Общепринято мнение, что формирование внутриплитных гранитоидов обусловлено либо процессами фракционирования базитовых магм, воздействием на породы термальным континентальной вызывающим её плавление и часто сопровождаемым интенсивным коровомантийным взаимодействием. Такое взаимодействие реализуется либо путем прямого смешения мантийных и коровых магм, либо в форме воздействия флюидов, отделяющихся от мантийных магм, на породы коры и анатектические Учитывая выплавки. тесную временную сопряженность гранитоидов рассматриваемых массивов с излияниями траппов Сибирской платформы и Кузбасса, образованием многочисленных дайковых роев и мелких габброидных интрузий западной части АССО, подобный тепловой источник формирования гранитоидов представляется вполне вероятным. Дополнительным подтверждением такой возможности является присутствие пород мантийного генезиса (габброидов) в составе габбро-гранитных серий Горного Алтая (Айского,

Теранджикского, Тархатинского и Саввушинского массивов). В то же время необходимо отметить, что в ряде изученных интрузий лейкократовый характер гранитоидов и отсутствие в них каких-либо следов базитовых магм (меланократовых шлиров, резорбированных зёрен основного плагиоклаза либо темноцветных минералов, типичных для пород базитового состава) заставляет предполагать, что корово-мантийное взаимодействие в форме прямого смешения магм отсутствовало, а базитовые расплавы являлись лишь источником тепла и, возможно, флюидов, обеспечивавших анатексис и формирование гранитоидов.

петрографическим характеристикам среди изученных выделяется три типа ассоциаций: габбро-гранитные или сиенит-гранитные серии (Айский, Тархатинский, Теранджикский и Саввушинский массивы); граносиенитгранитные ассоциации, не содержащие в своём составе пород мантийного генезиса (Атуркольский массив); а также гранит-лейкогранитные комплексы (Синюшенский и Белокурихинский массивы). Приведенные в предыдущих главах разнообразие данные указывают широкое минерального на состава, геохимических И изотопных характеристик пород пермо-триасовых магматических серий Алтая (как габброидов, так и гранитоидов). Вместе с тем существует ряд признаков, общих для массивов изученных серий. При обсуждении механизмов петрогенезиса целесообразно рассматривать интрузивы в рамках выделенных ассоциаций.

6.1. Петрогенезис габбро-гранитных серий

Габброиды, входящие в состав магматических серий, широко варьируют по содержаниям щелочей, калия и несовместимых элементов. Однако, во всех случаях для них характерно избирательное обеднение Ta, Nb и Ti (рис. 54). Это указывает на генерацию расплавов за счёт вещества литосферной мантии, субдукционными изменённой процессами. Исключением являются габброиды деплетированные Теранджикского массива, сходные ПО геохимическим характеристикам с E-MORB.

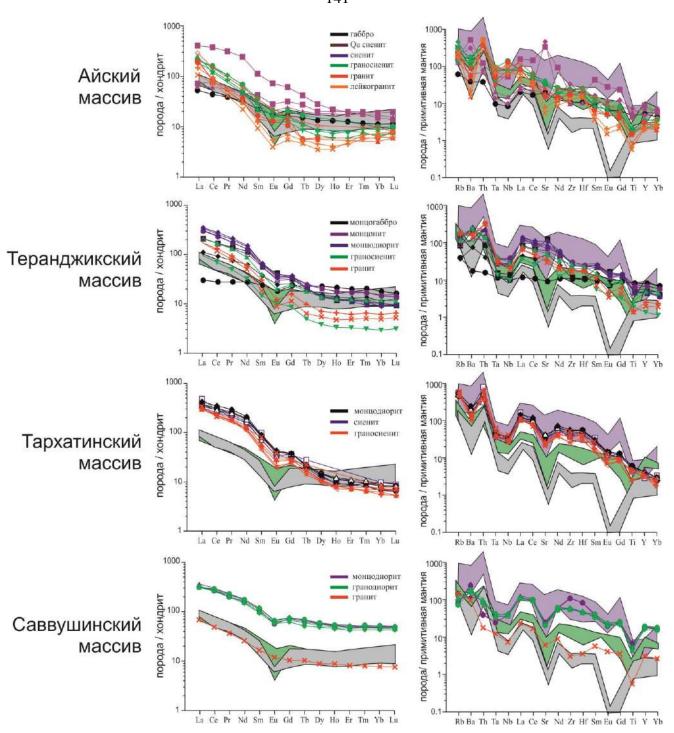


Рис. 54. Распределения редких и редкоземельных элементов в породах массивов габброгранитных серий. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] и по составу примитивной мантии [Sun, McDonough, 1989]. Серое поле – граниты Боровлянского массива, зелёное – Киндерлинского, фиолетовое – лампрофиры Чуйского комплекса.

Минералого-петрографические и геохимические особенности габброидов свидетельствуют, породы первичным расплавам, что ЭТИ не отвечают субстратами. мантийными Ha равновесным ЭТО указывают cвысокая железистость оливина (при его наличии), низкие концентрации MgO, обогащение несовместимыми элементами (прежде всего – Sr и Ba), асимметричные спектры распределения РЗЭ (рис. 54). Очевидно, эти расплавы перед внедрением на уровень кристаллизации, были дифференцированы.

В составе каждой серии по комплексу минералогических, геохимических и изотопных данных выделяется не менее двух дискретных групп пород. Первая включает габброиды (если эти породы присутствуют в составе серий), монцодиориты и кварцевые монцодиориты, вторая – более кремнекислые разновидности пород. Две группы пород ярко выделяются по особенностям состава темноцветных минералов (рис. 38-44). Так, среди пород Айского массива выделяются габбро и сиениты – тёмные слюды из этих пород отличаются повышенными, по сравнению с более кремнекислыми породами, содержаниями TiO_2 , Cl и глинозёмистостью, и, напротив, более низкими – Rb_2O . Подобные же закономерности наблюдаются и для пород Саввушинского и Теранджикского массивов: для биотитов более основных пород (монцогаббро, монцодиориты и кварцевые монцодиориты) характерны повышенные содержания хлора и пониженные фтора. Среди пород Тархатинского массива на основании состава породообразующих минералов также выделяется две дискретные группы – точки составов минералов из монцодиоритов всегда образуют плотное облако, не перекрывающееся с составами минералов остальных, более кремнекислых пород. Тёмные слюды монцодиоритов Тархатинского массива отличаются высокими концентрациями TiO₂, Rb₂O, F и пониженными Cl и железистостью.

Внутри первой группы с ростом кремнекислотности происходит накопление несовместимых элементов (прежде всего – HFSE и REE) при умеренном росте концентраций LILE (рис. 54). Синхронно возрастают содержания летучих компонентов (F. P_2O_5). Bo второй породной группе наблюдается противоположная тенденция. С ростом содержаний SiO₂ здесь наблюдается падение концентраций большинства несовместимых элементов (HFSE, REE, Sr, Ва) (рис. 54), а также летучих компонентов (F, P_2O_5). В то же время концентрации Li, Rb, Cs, Th и U не обнаруживают однонаправленного поведения в разных массивах (см. табл. 4.1 приложение 1). Несколько иные тренды демонстрируют породы Тархатинского интрузива. Здесь на всём интервале кремнекислотности происходит синхронное снижение концентраций всех несовместимых элементов, включая LILE, HFSE, REE и летучие компоненты.

В целом обогащение несовместимыми элементами (включая HFSE, REE, летучие компоненты) с повышением кремнекислотности типично для процессов кристаллизационной дифференциации. Именно с этим процессом связывается формирование большинства пород среднего состава (монцонитов, монцодиоритов сиенитов, включая кварцсодержащие разности). Вместе ИΧ систематические различия в изотопном составе основных и средних пород свидетельствуют, что наряду с кристаллизационной дифференциацией имела большинстве место контаминация ИΧ коровым веществом. В монцодиориты и сиениты по сравнению с габброидами имеют более низкие отношения $(^{87}\text{Sr}/^{86}\text{Sr})_T$ и повышенные значения $\varepsilon_{Nd}(T)$ (рис. 55). Это указывает на контаминацию мантийных магм базитовым веществом ювенильной коры, слагающей основание террейнов Алтая [Крук и др., 2010]. Исключением являются монцодиориты Теранджикского массива – для них можно предполагать контаминацию верхнекоровым материалом, соответствующим по изотопным характеристикам метаморфическим породам курайского комплекса.

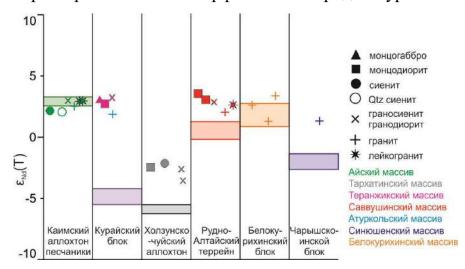


Рис. 55. Вариации изотопного состава Nd в породах пермо-триасовых интрузивных серий Алтая и породах вмещающих геоблоков.

Степень контаминации для разных массивов была неодинакова. Так, в Айском и Теранджикском массиве резко преобладали процессы дифференциации, что фиксируется обогащением монцодиоритов и сиенитов Sr, Ba, HFSE и REE в сравнении с предшествующими габброидами (рис. 54). В Тархатинском массиве

главную роль играла контаминация базитов коровым материалом. В результате монцодиориты и кварцевые сиениты обеднены несовместимыми элементами в сравнении с лампрофирами и лампроитами чуйского комплекса.

Более кремнекислые породы (гранодиориты, граносиениты) во всех случаях характеризуются более низкими содержаниями несовместимых элементов (в первую очередь – Sr, Ba, HFSE и REE) (рис. 54). Они также обеднены летучими компонентами (F, P₂O₅), при этом меняется и химический состав минералов. Так, при переходе от монцодиоритов и сиенитов к гранодиоритам и граносиенитам скачкообразно меняется содержание летучих (F и Cl) в темноцветных минералах (рис. 43). Изотопные характеристики пород свидетельствуют о значительном вкладе корового компонента (рис. 55), однако концентрации SiO_2 , K_2O и LILE в них существенно выше, чем в породах континентальной коры вмещающих геоблоков (по данным [Kruk et al., 2010, 2013, Kuibida et al., 2014, Kruk, 2015]). В то же время концентрации HFSE и REE в гранодиоритах и граносиенитах выше, чем в поздних гранитах и лейкогранитах этих же серий. Эти особенности не позволяют связать формирование гранодиоритов и граносиенитов ни с глубокой дифференциацией основных или средних магм, ни с более высокой степенью их контаминации коровым материалом, ни с масштабным плавлением коры. Как следствие, наиболее вероятным механизмом образования гранодиоритов и граносиенитов является смешение монцодиоритовых или сиенитовых магм с коровыми анатектическими выплавками.

Породы близэвтектического состава (граниты и лейкограниты) в составе пермо-триасовых серий варьируют от І- до А-гранитов. Изотопные данные указывают на их преимущественно коровый источник. Широкое разнообразие геохимических и изотопных характеристик пород в этом случае объясняется плавлением нижней коры под воздействием тепла и флюидов, отделяющихся от мантийных магм. Когда мантийный источник обеспечивает в основном тепловое поле — образуются гранитоиды І- типа. Такие гранитоиды присутствуют в составе Айского и Саввушинского массивов. Если наряду с теплом из базитовых очагов в область корового анатексиса поставляются значительные объемы флюидов -

образуются гранитоиды А- типа, обогащенные HFSE, REE, а также K₂O, Sr и Ba. Такие породы присутствуют в составе Теранджикского массива. Изотопный состав неодима в гранитоидах в обоих случаях идентичен таковому в коровом источнике, изотопный состав Sr может изменяться при взаимодействии с флюидом. Смешение образовавшихся выплавок с более основными расплавами приводит к появлению меланократовых гранитов, гранодиоритов и граносиенитов с характеристиками пород А-типа, имеющих изотопные характеристики, промежуточные между средними породами (сиенитами и монцодиоритами) и субстратами нижней коры.

6.2. Петрогенезис граносиенит-гранитных серий

Атуркольский массив

Типизация гранитоидов Атуркольского массива в рамках «алфавитной» классификации не вполне однозначна. Геологическая позиция указывает на их внутриплитную природу, а геохронологические данные свидетельствуют о тесной временной сопряженности (подобно остальным пермо-триасовым гранитоидам Алтая) с проявлениями мантийного базит-ультрабазитового магматизма как на Сибирской платформе, так и в её складчатом обрамлении. В то же время по минералогическим особенностям (наличие кальциевого амфибола, повышенная магнезиальность биотита, низкие содержания натрия в калишпатах и калия в плагиоклазах, преобладание магнетита над ильменитом) породы Атуркольского массива тяготеют к гранитоидам І-типа, единственным существенным отличием являются повышенные концентрации фтора в темноцветных минералах.

Геохимическая типизация гранитоидов также не вполне однозначна. Граносиениты по уровню накопления большинства типоморфных элементов соответствуют породам А-типа, в то время как монцограниты более похожи на Іграниты. На дискриминационных диаграммах [Whalen et al., 1987] точки составов гранитоидов формируют рой вблизи границы полей гранитоидов А-типа (туда попадают наименее кремнекислые разности) и нефракционированных І- и Ѕгранитов (в эту область попадают, в основном, монцограниты, рис. 32а, б). От

типичных А-гранитов все рассматриваемые породы отличаются относительно низкой железистостью, повышенными содержаниями фосфора и стронция, относительно невысокими концентрациями Nb и Та, низкими – Hf, Y и тяжелых РЗЭ. В частности, по этой причине на дискриминационных диаграммах Дж. Пирса с соавторами (рис. 32в, г) точки составов всех гранитоидов Атуркольского массива попадают в поле пород вулканических дуг и коллизионных зон.

Подобные особенности дают основания предполагать, что подобно многим внутриплитным гранитоидам [Еву, 1992; Третьяков и др., 2015; Хубанов и др., 2015] породы Атуркольского массива имеют корово-мантийный генезис, т.е. в их генерации принимали участие как мантийные расплавы, так и породы континентальной коры.

Геологические данные позволяют достаточно резко ограничить круг возможных источников, участвовавших в формировании изученных гранитоидов. Геологические комплексы зоны сочленения Горного Алтая и Западного Саяна, непосредственно вмещающие Атуркольский массив, представляют фрагмент деформированного турбидитового бассейна. Его верхняя часть сложена осадочными породами (зеленые сланцы башкаусского комплекса неметаморфизованные аналоги – песчано-сланцевые толщи артлашской свиты). Осадочные толщи подстилаются породами океанической коры. Последние на современном представлены уровне эрозионного среза преимущественно высокотитанистыми базальтами саратанской свиты, близкими по геохимическим характеристикам к OIB, однако на больших глубинах вполне возможно ожидать широкого развития деплетированных базальтов, подобных MORB, которые составляют основной объем верхнего слоя современной океанической коры.

В ходе ранне-среднепалеозойских геологических событий в Горном Алтае была сформирована кора континентального типа [Крук, 2015]. На большей части региона эти процессы сопровождались внедрением крупных гранитоидных интрузий [Шокальский и др., 2000; Владимиров и др., 2001; Крук, 2015]. Однако зона сочленения Горного Алтая и Западного Саяна характеризуется минимальным развитием ранне-среднепалеозойских гранитоидов (за исключением небольших

синкинематических интрузий, прорывающих метаморфические образования). Это даёт основание считать, что рассматриваемая область не испытала в допозднепермское время значительных термальных воздействий и эффективной внутрикоровой дифференциации. Как следствие, в качестве наиболее вероятных коровых субстратов имеет смысл рассматривать метаосадочные и метавулканические породы венда-раннего палеозоя.

В качестве мантийных расплавов, которые могли бы оказывать влияние на генерацию гранитоидных магм, сформировавших породы Атуркольского массива, можно предполагать магматические комплексы близкого (позднепермскогораннетриасового) возраста, проявленные в зоне сочленения геологических структур Горного Алтая и Западного Саяна: габброиды и монцонитоиды теранджикского комплекса, имеющие возраст 246–248 млн лет, а также лампрофиры чуйского комплекса, формирование которых происходило в два этапа: 245–242 и 237–234 млн лет [Васюкова и др., 2011; Крупчатников и др., 2015]. Геологическая позиция этих образований показана на рис. 4.

Геохимические и изотопные характеристики гранитоидов Атуркольского массива позволяют в первом приближении оценить мантийные и коровые источники, которые могли участвовать в их генерации. Во-первых, граносиениты имеют более высокие содержания калия, LILE и легких РЗЭ в сравнении как с более лейкократовыми породами массива, так и с типичными палингенными гранитоидами (рис. 54). Подобное обогащение несовместимыми элементами с понижением кремнекислотности абсолютно нетипично для анатектических процессов: оно может быть следствием только присутствия в составе гранитоидов мантийного компонента. «обогащенного» Вместе тем, c концентрации несовместимых элементов в граносиенитах, превышают уровень, типичный для пород теранджикского комплекса. Более высокие концентрации K, Rb, Cs зафиксированы только в чуйских лампрофирах. Следовательно, мантийная составляющая гранитоидов могла быть представлена расплавами близкими к лампрофирам. Во-вторых, изотопный состав Nd в гранитоидах Атуркольского массива ($\varepsilon_{Nd}(T) = +1.9$, табл. 4.2 приложение 1) более радиогенный, нежели в лампрофирах ($\varepsilon_{Nd}(T) = -0.6...-1.9$) и в метаосадочных породах верхней коры $(\varepsilon_{Nd}(240) = -5.4)$ (рис. 55). Это значит, что коровый компонент, участвовавший в формировании гранитоидов, был обогащен радиогенным неодимом ($\varepsilon_{Nd}(T) > +2$) и указывает на важную роль в источнике метабазальтов, подобных породам саратанской свиты. Наконец, в-третьих, спорадическое присутствие среди монцогранитов пород с низким содержанием кальция и высоким (> 1.1) значением индекса A/CNK (рис. 25в), типичными для S-гранитов, указывает на вовлечение в процессы гранитообразования метаосадочных толщ. Таким образом, наиболее вероятным вариантом формирования рассматриваемых гранитоидов «комбинированного» является плавление (метаосадочные породы метабазальты) источника под воздействием тепла лампрофировых магм и смешение образовавшихся анатектических выплавок с базитовыми расплавами.

Вместе с тем имеющиеся данные не позволяют объяснить формирование всей гаммы гранитоидов за счёт простого одноактного смешения двух магм. С одной стороны, в гранитоидах не встречены (даже в виде замещенных реликтов) минералы, присутствующие в виде вкрапленников в лампроитах и лампрофирах чуйского комплекса (клинопироксен, флогопит). Концентрации Sr и Ba полевых шпатах гранитоидов существенно ниже таковых во вкрапленниках лампрофиров [Васюкова и др., 2011]. Содержание F в слюдах и амфиболах гранитоидов Атуркольского массива также существенно ниже, чем в аналогичных минералах лампрофиров и гранитоидах Тархатинского интрузива (рис. 37, 43), являющихся по данным [Васюкова и др., 2011; Крупчатников и др., 2015] продуктами эволюции лампрофировых магм. Следовательно, кристаллизация породообразующих минералов происходила уже из гибридного расплава. Это согласуется с особенностями состава сосуществующих полевых указывающих на температуры кристаллизации вкрапленников не выше 700-750 °C (рис. 27, 28). В то же время, ряд геологических и геохимических фактов свидетельствуют о том, что смешение мантийных магм с анатектическими выплавками происходило многократно, как на уровне гранитоообразования, так и позже, в ходе подъёма расплавов на уровень становления массива. Так, низкое

содержание Ү и тяжелых лантаноидов в аплитовидных гранитах поздней фазы указывают большие глубины эволюции гранитоидных магм, уже претерпевших C гибридизм. другой стороны, отсутствие фазовых границ между монцограносиенитами И меланомонцогранитами указывает неполную гомогенизацию гибридной магмы, что неизбежно приводит к выводу о смешении расплавов в ходе их подъема на уровень становления интрузива. Наконец, с третьей стороны, широкие вариации содержаний щелочных и щелочноземельных металлов в гранитоидах с близкой кремнекислотностью и отсутствие строгой корреляции LILE с HFSE и РЗЭ (табл. 4.1 приложение 1) заставляет предполагать, что наряду с механическим смешением расплавов имел место флюидный синтексис.

На сложную историю формирования и становления гранитоидов указывают, также, соотношения магнетита и ильменита. Обычно при кристаллизации в замкнутой системе по мере охлаждения магмы происходит относительное повышение активности кислорода, которое может приводить к кристаллизации магнетита в изначально восстановленных (ильменитовых) расплавах. В случае Атуркольского массива наиболее ранним окислом железа в гранитоидах является магнетит, слагающий редкие идиоморфные кристаллы. Образование ильменита происходило на поздних стадиях кристаллизации гранитоидной магмы, и, возможно, явилось результатом реакции расплава с ранними магматическими минералами (по аналогии с реакцией, описанной в [Czamanske, Mihalik, 1972]). Таким образом, ранняя стадия эволюции расплава проходила в окислительных условиях, а на более поздних стадиях кристаллизации активность кислорода была понижена. Возможно, кристаллизация раннего магнетита происходила ещё из лампрофирового расплава до его гибридизации (хотя состав минералов не позволяет утверждать это с уверенностью), а дальнейшее понижение активности кислорода было обусловлено смешением лампрофировых магм с выплавками из метабазитов.

В работе [Крук и др., 2017] приведены результаты модельных оценок, проведённые с целью определения количественных соотношений в составе

гранитоидов мантийного и корового компонента и уточнения условий, при которых происходило плавление пород коры. Проведённые оценки показали, что количество мантийного компонента в граносиенитах можно оценить в 17–20 %, в монцогранитах – 10–13 %.

Завершая обсуждение петрогенезиса гранитоидов Атуркольского массива, необходимо ещё раз подчеркнуть, что процесс их формирования и эволюции был весьма сложен и имеющиеся данные не позволяют реконструировать его во всех деталях. Гораздо важнее подчеркнуть, что гранитоиды, очень близкие по минералогическим особенностям и геохимическим характеристикам к породам Ітипа, были сформированы во внутриконтинентальной обстановке за счёт плавления континентальной коры при минимальном вкладе (< 20 %) вещества мантийных магм.

6.3. Петрогенезис гранит-лейкогранитных ассоциаций

Пермо-триасовые гранит-лейкогранитные гранитоиды не несут в своём составе геохимических или изотопных мантийных меток. По особенностям минерального и петрохимического состава гранитоиды гранит-лейкогранитных серий (Синюшенского и Белокурихинского массивов) резко отличаются от По А-типа. «классических» гранитоидов петрогеохимическим характеристикам гранитоиды Синюшенского массива близки к S-гранитам, а породы Белокурихинского массива полностью ложатся в поле гранитов S-типа, что подтверждается положением точек их составов на классификационных диаграммах (рис. 32). На дискриминационных диаграммах Дж. Пирса [Pearce et al., 1984], предназначенных для определения палеогеодинамической позиции гранитоидов (рис. 32а, б), точки составов пород локализуются в поле гранитоидов вулканических дуг и коллизионных зон вблизи границ с полем внутриплитных гранитов. Изотопный состав Nd в гранитоидах также не существенно отличается от такового в породах верхней коры вмещающих геоблоков (Синюшенский массив - кембро-ордовикские турбидиты, Белокурихинский массив - кемброордовикские вулканогенно-осадочные породы) (рис. 55). Всё перечисленное

позволяет утверждать, что главным источником расплавов исследованных гранитоидов являлись метаосадочные породы верхней коры. Таким образом, в случае гранит-лейкогранитных ассоциаций мантийные магмы не участвовали в формировании гранитоидов путём дифференциации и смешения, а, вероятно, являлись лишь источником тепла и флюидов.

В то же время, в сравнении с позднедевонскими S-гранитами боровлянского комплекса, формирование которых было связано с анатексисом метаосадочных пород верхней коры [Kruk et al., 2011] рассматриваемые породы обнаруживают ряд отличий. Сопоставление петрохимических данных показывает, что пермотриасовые гранитоиды отличаются от S-гранитов боровлянского комплекса пониженной железистостью, слабо повышенной щелочностью и более высокими содержаниями калия (рис. 31), обогащены F, Li, Rb, Cs, Th и U, имеют более высокие концентрации HFSE (за исключением Y) и РЗЭ цериевой группы, в то время как концентрации «тяжелых» РЗЭ в породах находятся на близком уровне (рис. 56).

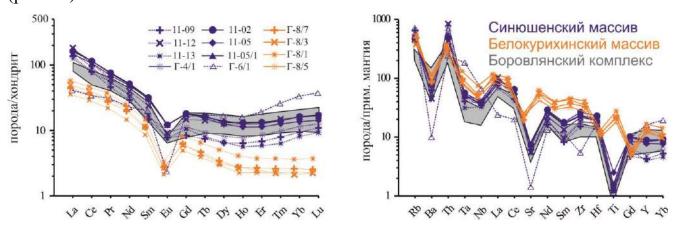


Рис. 56. Распределения редких и редкоземельных элементов в породах гранит-лейкогранитных ассоциаций. Содержания редких и редкоземельных элементов нормированы по составу хондрита [Boynton, 1983] и по составу примитивной мантии [Sun, McDonough, 1989]. Серое поле – граниты Боровлянского массива.

В сравнении со «стандартными» S-гранитами концентрации LILE, HFSE и «легких» РЗЭ могут быть либо следствием привноса этих элементов флюидом, либо отражать специфику анатектических процессов. Первый вариант представляется маловероятным по двум причинам. Во-первых, и высокозарядные элементы и лантаноиды цериевой группы относительно инертны; эффективный

перенос их флюидом фиксируется лишь в высокощелочных системах. Во-вторых, базиты Горного Алтая пермо-триасовые характеризуются «ураганными» концентрациями щелочноземельных LILE элементов (Sr – более 7000 г/т, Ba – до 3000 г/т). Поскольку эти элементы высоко мобильны, в случае интенсивного флюидно-магматического взаимодействия неизбежно обогащение ими анатектических выплавок. Однако содержания Sr в гранитоидах гранитлейкогранитных серий лишь незначительно повышены сравнении позднедевонскими S-гранитами, а концентрации Ва находятся на том же уровне.

Таким образом, как прямое смешение мантийных и коровых расплавов, так и интенсивное флюидно-магматическое взаимодействие вряд ли могли быть причинами, обусловившими специфику состава пород пермо-триасовых гранитлейкогранитных ассоциаций Алтая, а наиболее вероятным фактором, обусловившим своеобразие составов пород приходится считать специфические условия, в которых протекали процессы анатексиса.

Анализируя возможные механизмы формирования редкометалльных гранитов В.И. Коваленко с соавторами в качестве одного из вариантов рассматривал избирательное плавление слюд, являющихся основными концентраторами калия, крупноионных, литофильных и ряда рудных элементов в метаморфических породах [Коваленко и др., 1999]. В результате проведенных исследований авторами цитируемой работы было показано, что селективное плавление слюд не в состоянии значительно (более чем на порядок) изменить Rb/Sr отношение, T.e. увеличить его уровня, до характерного редкометалльных Li-F гранитов. Кроме того, избирательное плавление слюд (обогащенных Rb и обедненных Sr) неминуемо должно привести к резкому повышению ⁸⁷Sr/⁸⁶Sr в анатектических выплавках. На этом основании был сделан вывод о том, что для объяснения формирования редкометалльных Li-F гранитоидов данный механизм неприменим, а их генезис необходимо связывать с процессами глубокой дифференциации [Коваленко и др., 1999].

Вместе с тем необходимо отметить, что подобный механизм вполне способен объяснить формирование значительных количеств субредкометалльных

магм, имеющих в 2-3 раза более высокое, в сравнении с «обычными» анатектическими гранитами, Rb/Sr отношение, повышенные в несколько раз (по сравнению с кларком) концентрации фтора, крупноионных литофильных и некоторых рудных элементов. В терминах классификации Л.В. Таусона [Таусон, 1977] эти породы выделяются в качестве главной фазы редкометалльноплюмазитовых гранитоидов; на примере ряда интрузивных серий Забайкалья показано [Козлов, 2011], ЧТО повышенные концентрации крупноионных литофильных и ряда рудных элементов присущи расплавам этого типа изначально, а не являются следствием их дифференциации. К этому же типу относятся гранитоиды Синюшенского и Белокурихинского массивов.

Подчеркнём ещё раз, что речь здесь идёт не об обычном плавлении слюд температуры И увеличении степени анатексиса. закономерности многократно фиксировались в экспериментах по плавлению пород различного состава [Singh, Johannes, 1996; Patino Douce, Harris, 1998; Koester et al., 2002 и др.]. Судя по данным этих исследований, массовое разложение биотита начиналось при температурах 900-950 °C и неизбежно сопровождалось понижением кремнекислотности анатектических выплавок до 67–69 мас. % SiO₂ (за исключением результатов [Patino Douce, Harris, 1998], где в качестве субстрата использовались породы с кремнекислотностью 72 мас. % SiO₂ и выше). В рассматриваемом же случае содержания кремнезёма в расплавах остаются на близэвтектическом уровне; как следствие необходимо считать, что разложение слюд (в первую очередь биотита) обусловлено не просто подъёмом температуры, а особенностями флюидного режима, уменьшающими их поле устойчивости. При этом одновременное (с обогащением фтором и LILE) повышение содержаний высокозарядных и редкоземельных элементов, главными концентраторами которых являются акцессорные минералы (монацит, в меньшей степени циркон и апатит) заставляет предполагать, что эти фазы также становятся неустойчивыми и начинают плавиться в больших количествах, нежели при обычных процессах корового анатексиса.

Вариации особенностей минералогии вещественного состава гранитоидов Синюшенского и Белокурихинского массивов позволяют предполагать, что наибольшее воздействие флюида на процессы анатексиса имело место при формировании первичных расплавов, сформировавших породы ранних фаз, среднезернистые граниты центральной части Синюшенского массива биотитовые граниты первой фазы Белокурихинского массива. Эти породы имеют более высокие концентрации фтора, обогащены HFSE и легкими РЗЭ и, в значительно меньшей мере, крупноионными литофильными элементами (Rb, Cs, Ва). Одновременно, в сравнении с разностями более поздних фаз, граниты первой фазы имеют более высокие содержания титана, более низкую общую и калиевую щелочность, повышенные концентрации «переходных» элементов (Sc, Co). Плагиоклазы среднезернистых гранитов Синюшенского массива и биотитовых первой фазы Белокурихинского характеризуются максимальной основностью среди пород массивов, в калиевых полевых шпатах наблюдается наиболее высокое содержание альбитового минала, максимальные примеси СаО, FeO и BaO. Это свидетельствует о кристаллизации полевых шпатов из более высокотемпературных (в сравнении с другими разновидностями пород) расплавов. К аналогичному выводу приводит анализ составов биотитов: максимальные содержания титана и пониженная железистость указывают на более высокие температуры расплавов, из которых кристаллизовались биотиты, а пониженная глиноземистость – на более высокие концентрации щелочей (в первую очередь – калия, табл. 5.7 приложение 2, рис. 44).

Вопрос о том, какие именно факторы определяют подобную специфику анатектических процессов, остается открытым. Исследования устойчивости акцессорных минералов в присутствии флюида (см., например, работу [Ayers, Watson, 1991] и библиографию в ней) показали, что поле устойчивости циркона и монацита (также как и апатита) уменьшается с понижением рН среды. Следовательно, повышение общей щелочности системы или активности калия не могло быть причиной избирательного плавления акцессорных фаз. С другой стороны, повышенная, в сравнении с позднедевонскими S-гранитами,

магнезиальность как самих пород Синюшенского и Белокурихинского массивов (рис. 31), так и присутствующих в них биотитов (рис. 38), указывает на относительно более окисленную обстановку формирования первичных магм (в максимальной степени это относится к гранитам первых фаз). Возможно, именно повышение окислительно-восстановительного потенциала системы обусловило специфику анатектических процессов и, в конечном итоге, определило обогащение гранитоидных выплавок фтором и «литофильными» элементами. В любом случае, этот вопрос требует дальнейшего исследования; здесь же важно подчеркнуть, что образование достаточно больших объёмов гранитоидных магм, имеющих вышекларковые содержания крупноионных литофильных элементов и сопровождающихся разномасштабными проявлениями рудной минерализации, возможно не только за счёт плавления специфических субстратов, обогащенных LILE и рудными элементами (такой механизм формирования доказан для редкометалльных гранитов массива Пиа-Оак в Северном Вьетнаме, [Владимиров и др., 2012]), или в результате дифференциации больших объемов «стандартной» гранитоидной магмы [Коваленко и др., 1999]. Во внутриплитных крупных изверженных провинциях складчатых поясов формирование значительных объёмов гранитоидных магм повышенной редкометалльности может быть следствием корово-анатектических процессов, протекающих фоне на ограниченного притока флюидов, не привносящих в анатектические выплавки значительных количеств тех или иных редких элементов, но обеспечивающих более эффективное плавление и изменяющих состав реститовых парагенезисов. Подобный механизм предлагался ранее для объяснения генезиса умереннощелочных гранитоидов, умеренно обогащенных высокозарядными элементами и РЗЭ цериевой группы (флюидный синтексис по [Добрецов, 1983] или аллохимический анатексис по [Литвиновский, 1985]); очевидно он может обеспечивать, также, образование субредкометалльных магм.

6.3.1. Петрогенезис лейкогранитов

Проблема формирования лейкогранитных магм до сих пор остаётся нерешённой. Существует ряд экспериментальных работ по изучению фазовых Р-Т-Х диаграмм пералюминиевых лейкогранитных магм [Winkler, Platen, 1958, 1960, 1961; Weill, Kudo, 1968; Vielzeuf, Holloway, 1988; Patino Douce et al., 1991, 1998; Beard et al., 1991; Rapp et al. 1991; Rushmer 1991; Skjerlie et al., 1993; Sen, Dunn, 1994; Wolf et al., 1994; Patino Douce, 1997; Whittington et al., 2004; Ходоревская, 2006; Acosta-Vigil et al., 2006]. Винклер и Фон Платен [1958, 1960, 1961а, 1961б] и Фон Платен [1965] были одними из первых, кто детально занимался этим вопросом. Они показали, что процессы кристаллизации и плавления в природных салических системах корректно рассматривать в координатах Ab-Or-Q-An-H₂O, и представили результаты экспериментов по c различными плавлению таких системах содержаниями анортита. Исследовалось также изменение составов расплавов при плавлении гнейсов и кристаллических сланцев при высоких степенях метаморфизма. В ходе экспериментального ультраметаморфизма карбонатсодержащих иллитовых глин богатых Na₂O появляется аплитовый расплав с кремнекислотностью 78-79 мас. %, а при дальнейшем повышении температуры – гранитный расплав (73-76 мас.% SiO₂). Они также подчеркнули, что даже малые содержания An-компонента сильно влияют на температуры солидуса и состав котектических расплавов. Согласно [Winkler, 1979, v. Platen 1965] температура солидуса резко возрастает с увеличением содержания анортитовой составляющей в плагиоклазах. Один из наиболее важных выводов в работах Винклера и Фон Платена, объясняющих образование мигматитов и последующих расплавов гранитного состава, касается тесной взаимосвязи между составом плагиоклаза, температурами солидуса и составом расплава.

Позже фазовые диаграммы также изучались экспериментально на опытах по кристаллизации и плавлению природных лейкогранитов [Huang, Wyllie, 1973, 1981; Benard et al., 1985; Weidner, Martin, 1987; London et al., 1989; Scaillet et al., 1995]. В этих работах преимущественно решались вопросы кристаллизации

лейкогранитов и пегматитов. При этом большая часть экспериментов касается плавления метаосадочных пород и фокусируется на составах, в которых единственной водной фазой является биотит [Le Breton, Thompson, 1988; Holtz, Johannes, 1991; Skjerlie, Johnston, 1993; Vielzeuf, Montel, 1994; Carrington, Harley, 1995; Patino Douce, Beard, 1995, 1996; Dooley, Patino Douce, 1996; Patino Douce, 1996], и лишь некоторые на составах, где присутствует как биотит, так и мусковит [Vielzeuf, Holloway, 1988; Patino Douce, Johnston, 1991; Gardien et al., 1995]. B остальных экспериментальных исследованиях для моделирования плавления метаосадочных пород используется упрощённая минеральная ассоциация или синтетические («чистые») компоненты – флогопит+кварц [Peterson, Newton, 1989; Vielzeuf, Clemens, 1992], мусковит+кварц [Storre, 1972; Storre, Karotke, 1972], мусковит+альбит+кварц [Peto, 1976]. Суммируя результаты этих работ, можно утверждать, что высококремнекислотные анатектические выплавки (SiO₂ от 75 % и выше) были получены при плавлении в закрытой системе при высоком содержании воды в стартовом материале. При этом их состав характеризуется более низким отношением K_2O/Na_2O , чем выплавки в экспериментах по дегидратационному плавлению, которые, кроме прочего, отличались значимо более низкой кремнекислотностью.

В работе [Patino Douce, Harris, 1998] образование лейкогранитовых магм также было рассмотрено с точки зрения плавления метапелитовых пород, однако исходными материалами служили как биотит-содержащие, так и мусковитсодержащие породы (мусковитовый сланец и турмалин-содержащий мусковитбиотитовый сланец). Было показано, что дегидратационное плавление начинается при 750-800 °C и даёт расплавы практически идентичные по составу гималайским лейкогранитам. Добавление Н₂О снижает солидус, способствуя плавлению плагиоклаза и кварца, а расплавы полученные таким образом являются трондьемитовыми и отличаются по составу от большинства гималайских лейкогранитов. Патино Доус и Харрис доказали, что лейкогранитовые магмы Гималаев образовались при дегидратационном плавлении высококремнекислых адиабатической Исследования пород метапелитов при декомпрессии.

континентальной коры Горного и Рудного Алтая свидетельствуют об отсутствии таких пород в регионе. Таким образом, описанные механизмы образования лейкогранитных пород в рассматриваемых в данной работе ассоциациях неприменимы. Следовательно, следует предполагать образование лейкогранитных магм путём эволюции менее кремнекислых расплавов.

Экспериментальные исследования проливают свет на фазовые P-T-X диаграммы лейкогранитных расплавов, однако текстуры и состав большинства магматических пород являются результатом ряда наложенных друг на друга процессов, которые, возможно, не были завершены из-за вялой кинетики протекающих реакций. Таким образом, кинетические исследования в петрологии, касающиеся путей достижения равновесия в системе, могут быть также важны для интерпретации геологических данных и количественной оценки скорости геологических процессов.

Пути диффузионного переноса в силикатных жидкостях являются важным звеном в понимании кинетики связанных с магмой процессов, таких как частичное плавление, перемешивание, ассимиляция и кристаллизация магмы [Watson 1982; Watson and Jurewicz 1984; Baker 1990; van der Laan and Wyllie 1993; Lesher 1994; Chakraborty et al. 1995; Liang et al. 1996]. Хотя существует ряд исследований, касающихся диффузии в водонасыщенном гаплогранитном растворе [Watson 1982; Baker 1990, 1991; van der Laan and Wyllie 1993; Mungall et al. 1998; Acosta-Vigil et al. 2005, 2006], всё же недостаточно ясна кинетика процесса образования гранитных расплавов из коровых протолитов. Некоторые работы решают вопрос о распределении расплава при частичном плавлении коровых пород [Mehnert et al., 1973; Busch et al., 1974; Arzi, 1978; Brearley and Rubie, 1990; Hacker, 1990; Rutter and Neumann, 1995; Wolf и Wyllie, 1995; Rushmer, 1995, 1996; Sawyer, 2001; Holness et al., 2005], однако в опубликованной литературе очень мало информации о точном составе расплава в зависимости от изменения P-Т условий и времени [Brearley and Rubie 1990; Holness et al. 2005]. Также недостаточно ясны условия, при которых происходит перекристаллизация реститов [Johannes 1980; Johannes and Holtz 1992], или скорость процессов,

контролирующих степень плавления континентальной коры. Таким образом, мало что известно о составе исходных расплавов, образовавшихся в разных микродоменах протолита, о том, как отдельные жидкие аликвоты диффундируют в гомогенный расплав, времени, необходимом для достижения химической однородности в объёме жидкости и уравновешивания рестита и расплава, и как эти временные рамки соотносятся с предполагаемым временем отделения расплава от рестита.

В [Acosta-Vigil et al., 2006] экспериментально исследована кинетика плавления аплитового лейкогранита (кварц+плагиоклаз Ab₉₀+калиевый полевой шпат+биотит). Результаты показывают, что частичное плавление кварц-полевошпатового протолита при избытке H₂O приведет к перекрытию плёнками расплава границ кристаллических зёрен даже при очень низких степенях частичного плавления (<5 об. %). Таким образом, частичное плавление при этих экспериментальных условиях создает взаимосвязанную сеть расплавов с самого начала анатексиса, что делает возможным сегрегацию расплава и его извлечение [Sawyer 1994; Brown et al. 1995].

В работе [Patino Douce, 1999] обобщены данные петрологических исследований, основанных как на экспериментальных работах, так и природных объектах, и показано, что только глиноземистые лейкограниты представляют собой расплавы, образованы «чистые» коровые которые результате дегидратационного плавления богатых мусковитом метаосадков при быстрой адиабатической декомпрессии. В свою очередь граносиенит-гранитные серии, сильно глиноземистые граниты S-типа и недосыщенные глиноземом граниты Aтипа представляют собой гибридные магмы, образованные в результате взаимодействия базальтовых расплавов \mathbf{c} коровыми метаморфическими породами.

В то же время, целый ряд экспериментальных и теоретических работ указывает на то, что взаимодействие между мантийными мафическими магмами и материалом земной коры является эффективным механизмом генерации высококремнекислых расплавов [Beard, Lofgren, 1991; Rapp et al., 1991; Rushmer,

1991; Sen, Dunn, 1994; Wolf, Wyllie, 1994; Patino Douce, Beard, 1995; Ходоревская, 2006; Жариков, Ходоревская, 2006]. В работах [Ходоревская, 2006; Жариков, Ходоревская, 2006] приведены результаты экспериментального моделирования диффузионного взаимодействия гранитов и амфиболитов. Воспроизведена фильтрация раствора, содержащего щелочи и кремнезём, через амфиболиты разного минерального состава и различной текстуры, тем самым смоделирован процесс гранитизации. Показано, что просачивание флюида через амфиболит привело к образованию серии полевошпатовых и дебазированных пород гранитного расплава, полностью замещающего амфиболит в проксимальной зоне. Также диффузия кремнезёма и щелочей привела к метасоматическому изменению амфиболита образованию И гранитных капель И линз развитием мигматитоподобных зон, существенно отличающихся по составу и структуре от зон инфильтрационной гранитизации. В случае пермо-триасовых гранитоидов Алтая магматические ассоциации c широким развитием лейкогранитов формируются, преимущественно, за счёт плавления метатерригенных пород, обладающих более высокими концентрациями SiO₂ и K₂O нежели амфиболиты, использованные в описанных опытах. Как следствие, дополнительное обогащение субстратов (или анатектических выплавок) кремнезёмом представляется ещё более вероятным.

На треугольной диаграмме нормативных составов ортоклаз-кварц-альбит (рис. 57) точки составов гранитов и лейкогранитов рассматриваемых интрузивов располагаются преимущественно в поле кристаллизации из расплава кварца. Некоторые точки составов гранитов – в поле кристаллизации калиевого полевого шпата. В пределах каждого рассматриваемого массива обнаруживается тренд, направленный в сторону кварцевой вершины. При этом с точки зрения особенностей, петрографических напротив, В лейкогранитах Айского, Синюшенского и Белокурихинского массивов калиевый полевой шпат образует порфировые вкрапленники, а кварц – ксеноморфные зёрна, в то время как в породах Саввушинского – кварц и калишпат сопоставимы ПО степени идиоморфности, что не согласуется с положением точек на диаграмме ортоклаз-

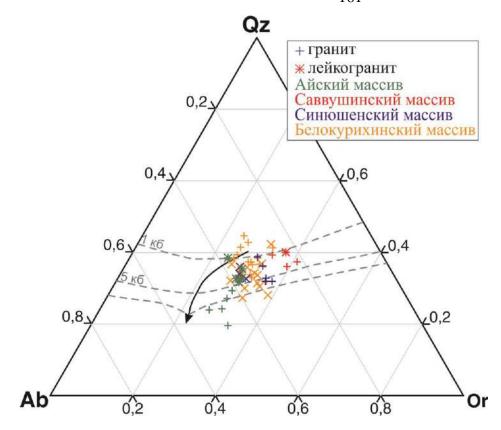


Рис. 57. Нормативные составы гранитов и лейкогранитов сматриваемых пермотриасовых интрузивов Алтая на диаграмме гаплогранитной темы ортоклаз (Or) кварц (Qz) – альбит $(Ab) - H_2O$. Пунктиром показаны котектические кривые при повышенном давлении Н2О; стрелкой – смещение минимума котектик при повышенном давлении Н2О (от 1 до 10 кбар) по [Huang, Wyllie, 1975; Коваленко, 1977].

кварц-альбит. Следовательно, можно сделать предположение, что изначально расплав не был лейкогранитовым, а обогащение его кремнезёмом (и, возможно, другими элементами) было связано с поступлением флюида в уже имеющийся очаг гранитной магмы, которая к этому времени уже частично закристаллизовалась.

В случае, когда не наблюдается вкрапленников калиевого полевого шпата (лейкограниты Саввушинского массива) представляется вероятным два варианта – либо флюидный синтексис происходил ещё на стадии гранитообразования, либо гибридная магма существовала достаточно долго для того, чтобы вкрапленники прореагировали с расплавом.

Стоит упомянуть, что повышение кремнекислотности расплавов может быть связано не только с привносом кремнезёма, но и с выносом щелочей. Так, в развитии идей Д.С. Коржинского об участии трансмагматических флюидов в процессах эволюции гранитных расплавов, модель «вызревания» была предложена В.Е. Загорским и И.С. Перетяжко для пегматитовых тел [Загорский, Перетяжко, 2006]. Однако, модель «вызревания» подразумевает длительное сосуществование расплава и флюидной фазы, В.Е. Загорским с соавторами был

установлен временной разрыв в 10 млн лет между пегматитами и гранитами Завитинской системы [Загорский и др., 2015]. С точки зрения особенностей геохимии редкоземельных элементов длительное «вызревание» может проявляться появлением тетрад-эффекта.

Тетрад-эффект был обнаружен в спектрах распределения РЗЭ горных пород и водных растворов в последние десятилетия при широком применении высокоточных аналитических методов (ICP-MS, ICP-AES). Считается, что когерентности f-подуровня тетрады отражают нарушение заполнения электронной конфигурации лантаноидов в четырёх группах (тетрадах): La-Nd, Pm-Gd, Gd-Ho, Er-Lu [Fidelis, Siekierski, 1966; Peppard et al., 1969; Nugent, 1970; Siekierski, 1971, Kawabe, 1992; Bau, 1995 и др.]. Выделяют два основных типа тетрад-эффектов: W-тип с вогнутыми кривыми между конечными элементами, обнаруженный в спектрах РЗЭ для морской воды, водорослей, губок, ракушечных известняков и некоторых грунтовых вод [Masuda, Ikeuchi, 1979], и М-тип с выпуклыми кривыми, впервые описанные для гранитов Южного Китая [Masuda et al., 1987], а позднее обнаруженных во многих других гранитоидных породах и слагающих их минералах. Тетрадные эффекты в спектрах распределения РЗЭ гранитоидов обычно связывают с воздействием на породы обогащённых F и Cl флюидов [Перетяжко, 2010; Jahn et al., 2001 и библиография в ней]. При этом тетрад-эффекты, если они присутствуют, обычно обнаруживаются в породах, ассоциирующих с редкометалльным оруденением (Sn, W, REE, U и др.) [Jahn et al. 2001].

Для численного описания тетрад-эффектов в РЗЭ спектрах гранитоидов используют первую (La-Nd), третью (Gd-Ho) и четвертую (Er-Lu) тетрады. Вторую тетраду (Pm-Gd) обычно не учитывают в расчётах в связи с наличием европиевого минимума и отсутствием Pm в земных условиях. Первая тетрада также в ряде случаев не используется из-за отрицательной или положительной аномалии Ce. По данным [Irber, 1999; Ясныгина, Рассказов, 2008], с учётом аналитической погрешности метода ICP-MS, наиболее часто применяемого для анализа РЗЭ, тетрад-эффект считается значимым, когда $T_i < 0.9$ (W-тип) и $T_i > 1.1$

(M-тип). В нормированных спектрах P39, где отсутствуют тетрад-эффекты, величины T_i равны единице.

Для пород рассматриваемых массивов не обнаружено значимых величин тетрад-эффекта. Таким образом, отсутствие временного разрыва между габброидными и гранитоидными породами, а также отсутствие тетрад-эффекта в наиболее кремнекислых фазах противоречит идее образования лейкогранитных магм рассматриваемых интрузивов путём выноса щелочей.

Итак, на основании перебора вариантов можно придти к выводу, что наиболее реальным механизмом формирования лейкогранитных магм в пермотриасовой гранитоидной провинции Алтая является флюидный синтексис (или аллохимический анатексис). Этот вариант уже предложен для гранитов Синюшенского и Белокурихинского массивов. Но там влияние мантийных предполагается на стадии гранитообразования и обеспечивает избирательное плавление слюд и акцессорных минералов (см. выше). Если такой процесс оказывается более растянутым во времени и поступление флюидов от кристаллизующихся базитовых магм в кору реализуется не только на стадии выплавления гранитоидных магм, но и позже, на стадии их сегрегации, то за счёт привноса кремнезёма вполне возможно образование лейкогранитных магм. В данном случае необходимо разделить понятия аллохимического анатексиса и флюидного синтексиса. В первом случае имеется в виду процесс выплавления гранитной магмы в условиях привноса флюида, тогда как во втором преобразование (лейкократизация) уже выплавившейся магмы под действием поступающего флюида, содержащего кремнезём и, вероятно, щёлочи.

6.4. Петрогенетическая модель формирования пермо-триасовых интрузивных ассоциаций Алтая

Синтез всех полученных данных позволяет предложить общую петрогенетическую модель формирования пермо-триасовых интрузивных ассоциаций Алтая.

Воздействие мантийного плюма на литосферу в краевой части LIP привело к плавлению неоднородной литосферной мантии. При этом происходила генерация широкого спектра расплавов (от примитивных толеитовых, близких к Е-МОRВ, через умеренно-щелочные, обогащённые HFSE и REE до лампроитовых, имеющих аномально высокие содержания всех несовместимых элементов). Состав расплавов в каждом конкретном случае определялся составом мантийного источника, условиями плавления и спецификой эволюции первичных магм [Крупчатников и др., 2015].

Внедрение мантийных базитовых расплавов сопровождалось формированием на разных уровнях коры промежуточных очагов, в которых происходила фракционная кристаллизация базитовых расплавов с образованием монцодиоритов сиенитов. Этот процесс сопровождался активным взаимодействием мантийных расплавов c корой. Образование очагов высокотемпературной магмы обусловило разогрев и частичное плавление пород коры с образованием широкого спектра магм гранитного состава: от I- и S- до Aтипов (последних – при поступлении мантийных флюидов в анатектические коровые очаги).

Масштабы и динамика взаимодействия мантийных магм с коровоанатектическими выплавками для разных серий были резко различными. В одних случаях имело место масштабное смешение монцодиоритовых и сиенитовых (и, в меньшей степени, базитовых) магм с коровыми анатектическими выплавками, что привело к формированию гранодиоритовых и граносиенитовых магм. При внедрении на верхние уровни коры расплавы спорадически испытывали контаминацию верхнекоровым материалом. В случае Тархатинского массива это привело к образованию магм граносиенит-гранитного состава. В целом отражением подобного сценария являются габбро (монцодиорит)-гранитные серии Айского, Тархатинского, Теранджикского и Саввушинского массивов. В других случаях процессы смешения мантийных и коровых магм имели ограниченное распространение. Это привело к образованию преимущественно гранодиорит (граносиенит) меланогранитовых магм, демонстрирующих лишь слабые признаки «гибридного» генезиса. Примером этого типа ассоциаций является Атуркольский массив. Наконец третий случай – это полное отсутствие механического смешения мантийных базитовых магм и их дифференциатов с коровыми выплавками. Глубинные расплавы в этом случае являлись источниками тепла и флюидов, вероятно обеспечивавших специфические условия анатексиса (в т.ч. – приоритетное плавление слюд и акцессорных минералов). Аллохимический анатексис метаосадочных толщ привел к образованию «субредкометалльных» гранитоидов с близэвтектической кремнекислотностью (породы Синюшенского массива, ранние фазы гранитоидов Белокурихинского массива). При длительной базитовых флюидный кристаллизации И дегазации очагов ситексис (дополнительное обогащение уже сформировавшихся гранитных магм флюидами, содержащими кремнезём и, возможно, щелочи) приводило к формированию лейкогранитных магм (поздние фазы Белокурихинского массива).

Предлагаемые механизмы позволяют объяснить широкое развитие в складчатых поясах внутриплитных гранитоидов с «коровыми» геохимическими и изотопными характеристиками. Как показывают результаты наших исследований, такие магмы, в том числе, могли быть сформированы за счёт плавления пород континентальной коры при крайне ограниченном вкладе мантийного компонента. В случае Атуркольского массива наличие ЭТОГО вклада фиксируется исключительно благодаря специфическим редкоэлементным характеристикам мантийных магм (одновременное резкое обогащение LILE, HFSE, РЗЭ и сидерофильными элементами). В случаях, когда мантийные магмы имеют менее «экзотический» состав доказать их участие в генерации гранитоидов можно только геологическим методами (например – по наличию минглинг-даек или мафитовых включений), что удается далеко не всегда. Таким образом, весьма вероятно, что предложенный механизм генерации гранитоидных магм является типичным (а, возможно, и преобладающим) для внутриплитных обстановок в складчатых поясах.

ЗАКЛЮЧЕНИЕ

Пермо-триасовые интрузивные образования Алтая представлены тремя главными типами ассоциаций, габбро (монцодиорит)-гранитными, существенно граносиенитовыми и гранит-лейкогранитными, имеют внутриплитную природу, их образование происходило в течение короткого временного интервала (254-247 млн лет) и было синхронно с формированием Сибирской крупной изверженной провинции. Чёткая временная связь между типами магматических ассоциаций и их возрастом отсутствует, разнообразие пермо-триасовых гранитоидов Алтая определяется, в первую очередь, спецификой сосуществующего базитового магматизма.

Пермо-триасовые магматические ассоциации Алтая характеризуются большим разнообразием геохимических и изотопных характеристик слагающих их пород. По содержаниям щелочей и степени накопления типоморфных редких элементов пермо-триасовые гранитоиды Алтая резко отличаются от типичных Агранитов внутриконтинентальных рифтов и крупных изверженных провинций, расположенных в пределах древних платформ.

Минералого-петрографические особенности пород рассматриваемых массивов однозначно показывают, что при формировании гранитоидных расплавов существенен был вклад корового материала. Внутри каждого интрузива выделяется две группы пород (более и менее кремнекислые для габброгранитных серий и породы первых и более поздних фаз в случае гранитлейкогранитных ассоциаций), которые характеризуются различными условиями кристаллизации. При этом в образовании магм более поздних фаз большую роль играла флюидная составляющая.

Таким образом, наблюдаемое разнообразие пород пермо-триасовых гранитоидных серий Алтая объясняется тремя факторами: 1) плавлением неоднородной по составу литосферной мантии; 2) природой нижней и средней коры вмещающих геоблоков (основной источник гранит-лейкогранитных расплавов), 3) механизмами и степенью мантийно-корового взаимодействия

(смешение магм, флюидный синтексис и др.). В целом же формирование пермотриасовых внутриплитных гранитоидов Алтая происходило за счёт плавления пород нижней коры под воздействием тепла и флюидов, отделяющихся от мантийных очагов.

Список используемой литературы

- 1. Афанасьев Г.Д. Признаки редкометального оруденения в юговосточной части Горного Алтая / Г.Д. Афанасьев // ДАН СССР, новая серия. 1938 T. XXI. № 1-2. C. 48-50.
- 2. Бабин Г.А., Бабин Г.А., Владимиров А.Г., Крук Н.Н., Сергеев С.А., Сенников Н.В., Гибшер А.С., Советов Ю.К. Возраст заложения Минусинских впадин (Южная Сибирь) // Доклады РАН. 2004. Т. 395. № 3. С. 367-370.
- 3. Белоусов А.Ф. Проблемы анализа эффузивных формаций. Новосибирск: Наука, Сиб. Отд.-ние. – 1976. – 332 с.
- 4. Белоусов А.Ф., Кривенко А.П. Магмогенезвулканических формаций. Новосибирск: Наука, Сиб. Отд-ние. – 1983. – 167 с.
- 5. Белоусов А.Ф., Кривенко А.П., Полякова З.Г. Вулканические формации. Новосибирск: Наука, Сиб. Отд-ние. 1982. 281 с.
- 6. Белоусов А.Ф., Лапин Б.Н., Полякова З.Г. и др. Вулканогенноосадочные комплексы докембрия и палеозоя Алтае-Саянской провинции. Петрозаводск. – 1972. – С. 51-53.
- 7. Белоусов А.Ф., Налётов Б.Ф., Полякова З.Г. Вулканические комплексы рифея и нижнего палеозоя Кузнецкого Алатау. Новосибирск: Наука, Сиб. Отдние. 1974. 211 с.
- 8. Берзин Н.А., Колман Р.Г., Добрецов Н.Л., Зоненшайн Л.П., Чанг Э.З. Геодинамическая карта западной части Палеоазиатского океана // Геология и геофизика. 1994. Т. 35. № 7-8. С. 8—28.
- 9. Берзин Н.А., Кунгурцев Л.В. Геодинамическая интерпретация геологических комплексов Алтае-Саянской области // Геология и геофизика. 1996. T. 37. N 1. 63-81.
- 10. Борисенко А.С., Павлова Г.Г., Васюкова Е.А., Травин А.В., Говердовский В.А.,Гусев Н.И. Возраст лампрофиров Алтая и северо-запада Монголии и их соотношение с другими типами магматизма и оруденением // Геология и минерагения Сибири: Сб. науч. тр. 2010.

- 11. Борисенко А.С., Сотников В.И., Изох А.Э., Поляков Г.В., Оболенский А.А. Пермо-триасовое оруденение Азии и его связь с проявлением плюмового магматизма // Геология и геофизика. 2006. Т. 47. № 1. С. 166-182.
- 12. Бурмакина Г.Н., Цыганков А.А. Мафические включения в позднепалеозойских гранитоидах Западного Забайкалья, Бургасский кварц сиенитовый массив: Состав, петрогенезис // Петрология. 2013. Т. 21. № 3. с. 309-334.
- 13. Буслов М.М., Джен Х., Травин А.В., Отгонббатор Д., Куликова А.В., Минг Ч., Семаков Н.Н., Рубанова Е.С., Абилдаева М.А., Войтишек А.Э. Тектоника и геодинамика Горного Алтая и сопредельных структур Алтае-Саянской складчатой области // Геология и геофизика. 2013. Т. 54. № 10. с. 1600-1627.
- 14. Буслов М.М., Сафонова И.Ю., Федосеев Г.С., Рейков М., Дэвис К., Бабин Г.А. Пермотриасовый плюмовый магматизм Кузнецкого бассейна (Центральная Азия): геология, геохронология и геохимия // Геология и геофизика. -2010.- Т. 51.- № 9.- с. 1310-1328.
- 15. Бушляков И.Н., Холоднов В.В. Галогены в петрогенезисе и рудоносности гранитоидов. Москва: Наука. 1986 г. 191 с.
- 16. Васюкова Е.А., Изох А.Э., Борисенко А.С., Павлова Г.Г., Сухоруков
 В.П., Ань Ч.Т. Петрология и возрастные рубежи раннемезозойских лампрофиров
 Горного Алтая // Геология и геофизика. 2011. Т. 52. № 12. с. 2001-2021.
- 17. Васюкова Е.А. Петрология и флюидный режим формирования лампрофиров чуйского комплекса (ЮВ Алтай-СЗ Монголия) // Диссертация на соискание степени кандидата геолого-минералогических наук. Новосибирск. 2014 г. 166 с.
- 18. Винкман М.К. Объяснительная записка к геологической карте СССР масштаба 1:200 000 листа М-45-II. Госгеолтехиздат. 1948. 198 с.
- 19. Владимиров А.Г., Балыкин П.А., Ань Ф.Л., Крук Н.Н., Фыонг Н.Т., Травин А.В., Хоа Ч.Ч., Анникова И.Ю., Куйбида М.Л., Бородина Е.В., Кармышева И.В., Ньен Б.А. Габбро-гранитный массив Кхаокуэ–Тамтао (Северный Вьетнам) –

- петрологический индикатор Эмейшаньского плюма // Тихоокеанская геология 2012. V. 6. № 5. pp. 395-411.
- 20. Владимиров А.Г., Гибшер А.С., Есин С.В. и др. Петролого-геохронологическое исследование магматических и метаморфических комплексов западной часи Алтае-Саянской складчатой области: Отчёт по проекту (в 3 книгах и 1 папке). Новокузнецк. 1994. 695 с.
- 21. Владимиров А.Г., Козлов М.С., Шокальский С.П., Халилов В.А., Руднев С.Н., Крук Н.Н., Выставной С.А., Борисов С.М., Березиков Ю.К., Мецнер А.Н. Основные возрастные рубежи интрузивного магматизма Кузнецкого Алатау, Алтая и Калбы (по данным U-Pb изотопного датирования) // Геология и геофизика. 2001. Т. 42. № 8. с. 1157-1178.
- 22. Владимиров А.Г., Крук Н.Н., Полянский О.П., Владимиров В.Г., Бабин Г.А., Руднев С.Н., Анникова И.Ю., Травин А.В., Савиных Я.В., Палесский С.В. Корреляция герцинских деформаций, осадконакопления и магматизма Алтайской коллизионной системы как отражение плейт-и плюмтектоники // Проблемы тектоники Центральной Азии. М., ГЕОС. 2005. с. 277-308.
- 23. Владимиров А.Г., Крук Н.Н., Руднев С.Н., Хромых С.В. Геодинамика и гранитоидный магматизм коллизионных орогенов // Геология и геофизика. -2003. Т. 44. № 12. с. 1321-1338.
- 24. Владимиров А.Г., Крук Н.Н., Хромых С.В., Полянский О.П., Червов В.В., Владимиров В.Г., Травин А.В., Бабин Г.А., Куйбида М.Л., Хомяков В.Д. Пермский магматизм и деформации литосферы Алтая как следствие термических процессов в земной коре и мантии // Геология и геофизика. 2008а. Т. 49. № 7. с. 621-636.
- 25. Владимиров А.Г., Пономарева А.П., Шокальский С.П., Халилов В.А., Костицын Ю.А., Пономарчук В.А., Руднев С.Н., Выставной С.А., Крук Н.Н., Титов А.В. Позднепалеозойский-раннемезозойский гранитоидный магматизм Алтая // Геология и геофизика. 1997. Т. 38. № 4. с. 715-729.
- 26. Владимиров А.Г., Хромых С.В., Мехоношин А.С., Волкова Н.И., Травин А.В., Юдин Д.С., Крук Н.Н. U-Рb-датирование и Sm-Nd-изотопная

- систематика магматических пород Ольхонского региона (Западное Прибайкалье) // Доклады РАН. 20086. T. 423. N 5. C. 651-655.
- 27. Волкова Н.И., Скляров Е.В. Высокобарические комплексы Центрально-Азиатского складчатого пояса: геологическая позиция, геохимия и геодинамические следствия // Геология и геофизика. 2007. Т. 48. № 1. С. 109-119.
- 28. Волкова Н.И., Ступаков С.И., Третьяков Г.А., Симонов В.А., Травин А.В., Юдин Д.С. Глаукофановые сланцы Уймонской зоны свидетельство ордовикских аккреционно-коллизионных событий в Горном Алтае // Геология и геофизика. 2005. Т. 46. № 4. С. 367-382.
- 29. Врублевский В.В., Гертнер И.Ф., Владимиров А.Г., Руднев С.Н., Борисов С.М., Левченков О.А., Войтенко Д.Н. Геохронологические рубежи и геодинамическая интерпретация щелочно-базитового магматизма Кузнецкого Алатау // Доклады РАН. 2004. Т. 398. № 3. С. 374-378.
- 30. Гордиенко И.В., Андреев Г.В., Кузнецов А.Н. Магматические формации палеозоя Саяно-Байкальской горной области. Наука, 1978 г., 220 с.
- 31. Горностаев Н.Н. Геология Горного Алтая // В сборнике «Ойротия» М: Изд-во АН СССР. 1937. С. 49-84.
- 32. Государственная геологическая карта Российской Федерации масштаба 1:200 000. Издание второе. Серия Алтайская. Лист М-45-II (Горно-Алтайск). СПб: Изд-во СПб картфабрики ВСЕГЕИ. 2004.
- 33. Государственная геологическая карта Российской Федерации масштаба 1:200 000. Издание второе. Серия Алтайская. Лист М-45-XVII (Ортолык). Аэрогеологический трест. 1958.
- 34. Государственная геологическая карта Российской Федерации масштаба
 1:1 000 000. Алтае-Саянская серия. Лист М-44 (Рубцовск). Санкт-Петербург:
 Картографическая фабрика ВСЕГЕИ. 2015.
- 35. Государственная геологическая карта Российской Федерации масштаба 1:1 000 000. Лист М-45. Алтае-Саянская серия. Санкт-Петербург: Картографическая фабрика ВСЕГЕИ. 2011.

- 36. Гребенников А.В. Гранитоиды А–типа: Проблемы диагностики, формирования и систематики // Геология и геофизика. 2014. Т. 9. № с. 1356-1373.
- 37. Гусев А.И., Кривчиков В.А. Эталон Белокурихинского габбромонцонит-сиенит-гранит-лейкогранитового комплекса Алтая. Новосибирск: СНИИГГиМС, 2009 г., 150 с.
- 38. Гусев Н.И. Рудопродуктивный магматизм Северо-Западного Алтая. 2015 г., 280 с.
- 39. Добрецов Н.Л. К проблеме генезиса щелочно-салических пород // Геология и геофизика. 1983. Т. 1. с. 69-74.
- 40. Добрецов Н.Л. Крупнейшие магматические провинции Азии (250 млн лет): сибирские и эмейшаньские траппы (платобазальты) и ассоциирующие гранитоиды // Геология и геофизика. 2005. Т. 46. № 9. с. 870-890.
- 41. Добрецов Н.Л. Мантийные плюмы и их роль в формировании анорогенных гранитоидов // Геология и геофизика. 2003. Т. 44. № 12. с. 1243-1261.
- 42. Добрецов Н.Л. Пермо-триасовые магматизм и осадконакопление в Евразии как отражение суперплюма // Доклады РАН. 1997. Т. 354. № 2. С. 220-223.
- 43. Добрецов Н.Л. Правильная периодичность глаукофансланцевого метаморфизма: иллюзия или правильная закономерность // Петрология. 1999. Т. $7. N_2 4. C. 430-459.$
- 44. Добрецов Н.Л., Борисенко А.С., Изох А.Э.,Жмодик С.М. Термохимическая модель пермотриасовых мантийных плюмов Евразии как основа для выявления закономерностей формирования и прогноза медноникелевых, благородно- и редкометалльных месторождений // Геология и геофизика. 2010. Т. 51. № 9. с. 1159-1187.
- 45. Добрецов Н.Л., Колман Р.Г., Берзин Н.А. Геодинамическая эволюция палеоазиатского океана // Геология и геофизика. 1994. Т. 7-8. № 35. С. 269.

- 46. Жариков В., Ходоревская Л. Гранитообразование по амфиболитам // Петрология. -2006. Т. 14. № 4. С. 339-357.
- 47. Загорский В.Е., Шокальский С.П., Сергеев С.А. Возраст, длительность формирования и геотектоническая позиция Завитинской литиеносной гранитно-пегматитовой системы (Восточное Забайкалье) // Доклады академии наук. 2015. Т. 460. N 2. C. 198-203.
- 48. Загорский В.Е., Перетяжко И.С. Малханская гранитно-пегматитовая система // Доклады академии наук. 2006. Т. 406. № 4. С. 511-515.
- 49. Зак А. А., Шабанова Е. В., Васильева И. Е. Новые возможности многоканального спектрометра «Колибри-2» при анализе геологических образцов // Заводская лаборатория. Диагностика материалов. 2017. Т. 83. №. 1 р. II. С. 38-45.
- 50. Изох Э.П. Оценка рудоносности гранитоидных формаций в целях прогнозирования. М.:Недра. 1978. 136 с.
- 51. Изох Э.П., Юдалевич З.А., Пономарёва А.П. и др. Формационный анализ гранитоидов Западного Узбекистана. Новосибирск Наука. 1975. 518 с.
- 52. Коваленко В.И. Петрология и геохимия редкометальных гранитоидов. Наука, 1977.
- 53. Коваленко В.И., Костицын Ю.А., Ярмолюк В.В. Источники магм и изотопная (Sr, Nd) эволюция редкометальных Li-F гранитоидов // Петрология. $1999. T. 7. N \cdot 4. C. 401-429.$
- 54. Коваленко В.И., Ярмолюк В.В., Ковач В.П., Котов А.Б., Козаков И.К., Сальникова Е.Б. Источники фанерозойских гранитоидов Центральной Азии: Sm-Nd-изотопные данные // Геохимия. 1996. N = 8. С. 699-712.
- 55. Козлов В.Д. Особенности редкоэлементного состава и генезиса гранитоидов шахтаминского и кукульбейского редкометалльного комплексов Агинской зоны Забайкалья // Геология и геофизика. 2011. Т. 52. №. 5. С. 676-689.

- 56. Крук Н.Н. Континентальная кора Горного Алтая: этапы формирования и эволюции, индикаторная роль гранитоидов // Геология и геофизика. 2015. T. 56. № 8. c. 1403-1423.
- 57. Крук Н.Н. Эволюция континентальной коры и гранитоидный магматизм Горного Алтая // Диссертация на соискание учёной степени доктора геолого-минералогических наук. Новосибирск. 2015 г. 554 с.
- 58. Крук Н.Н., Бабин Г.А., Крук Е.А., Руднев С.Н., Куйбида М.Л. Петрология вулканических и плутонических пород Уймено-Лебедского ареала, Горный Алтай // Петрология. 2008. Т. 16. № 5. С. 548-568.
- 59. Крук Н.Н., Владимиров А.Г., Бабин Г.А., Шокальский С.П., Сенников Н.В., Руднев С.Н., Волкова Н.И., Ковач В.П., Серов П.А. Континентальная кора Горного Алтая: Природа и состав протолитов // Геология и геофизика. 2010. Т. 51. N 5. c. 551-570.
- 60. Крук Н.Н., Владимиров А.Г., Руднев С.Н., Владимиров В.Г., Савиных Я.В., Левченков О.А., Ковач В.П., Киреев А.Д. Внутреннее строение, геодинамическая позиция и U-Pb изотопный возраст Кубадринского гранитоидного батолита (Горный Алтай) // Геология и геофизика. 2004. Т. 45. $N_{\rm P}$ 6. С. 688-702.
- 61. Крук Н.Н., Волкова Н.И, Куйбида Я.В., Гусев Н.И., Демонтерова Е.И. Природа метаморфических комплексов Горного Алтая // Литосфера. 2013. № 2. С. 20-44.
- 62. Крук Н.Н., Гаврюшкина О.А., Руднев С.Н., Шокальский С.П., Васюкова Е.А., Котов А.Б., Сальникова Е.Б., Травин А.В., Ковач В.П.,Крук Е.А. Петрология и возраст гранитоидов Атуркольского массива (Горный Алтай): к проблеме формирования внутриплитных гранитоидов // Петрология 2017. Т. $25. \mathbb{N} \ 3. \mathrm{c}. 313-332.$
- 63. Крук Н.Н., Плотников А.В., Владимиров А.Г.,Кутолин В.А. Геохимия и геодинамические условия формирования траппов Кузбасса // Докл. РАН. 1999. Т. 369. N 6. с. 812-815.

- 64. Крук Н.Н., Титов А.В., Пономарева А.П., Шокальский С.П., Владимиров А.Г.,Руднев С.Н. Внутреннее строение и петрология Айской сиенитграносиенит-гранитной серии (Горный Алтай) // Геология и геофизика. 1998. Т. 39. № 8. с. 1072-1084.
- 65. Крупчатников В.И. Петрология калиевых магматических комплексов юго-восточной части Горного Алтая // Диссертация на соискание учёной степени кандидата геолого-минералогических наук. Новосибирск. 2010 г.
- 66. Крупчатников В.И., Врублевский В.В., Крук Н.Н. Раннемезозойские лампроиты и монцонитоиды юго-востока Горного Алтая: Геохимия, Sr-Nd изотопный состав, источники расплавов // Геология и геофизика. 2015. Т. 56. N_{\odot} 6. с. 1057-1079.
- 67. Кужельный Н.М. О комплексе малых интрузий и возрасте полиметаллического оруденения в северо-западной части Рудного Алтая // Геология и геофизика. -1962. -№ 5. c. 125-129.
- 68. Кузнецов В.А. Геотектоническое районирование Алтае-Саянской области // Вопросы геологии Азии. М.: Изд-во АН СССР. 1954. Т. 1. С. 202-227.
- 69. Кузнецов В.А. Интрузивные массивы и молибденовое оруденение северного склона Катунских Альп // Вестник Западно-Сибирского Геол. Треста. 1938. № 2. С. 1-14.
- 70. Кузнецов В.А. Кузнецко-Алтайские геоструктуры и зона ларамийского ртутного оруденения // Вестник Западно-Сибирского геологического управления.
 1939. №1. С.18-29.
- 71. Кузнецов В.А. Основные этапы геотектонического развития юга Алтае-Саянской горной области // Труды Горно-геологического института. — 1952. — Вып. 12. — С. 9-44.
- 72. Кузнецов В.А.Чаган-Узунское ртутное месторождение на Алтае // Вестник Западно-Сибирского Геол. Треста. 1934. Вып. 5. С. 26-36.
- 73. Кузнецова Р.П., Колобов В.Ю., Шеплев В.С. Анализ роста зональных минеральных сегрегаций и получение характеристик массопереноса при

- метаморфизме. Исследование системы SiO_2 - Al_2O_3 -FeO-MgO- K_2O -(Na₂O) // Геология и геофизика. 1994. Т. 10. С. 105-115.
- 74. Куйбида М.Л. Базальтовый вулканизм системы островная дугазадуговый бассейн (Алтайская активная окраина) // Тихоокеанская геология. — 2019. - T. 38. - N 3. - c. 108-120.
- 75. Куйбида М.Л. Петрология плагиогранитоидов Алтая // Диссертация на соискание учёной степени кандидата геолого-минералогических наук. Новосибирск. 2009 г.
- 76. Куйбида М.Л., Крук Н.Н., Мурзин О.В., Шокальский С.П., Гусев Н.И., Кирнозова Т.И., Травин А.В. Геологическая позиция, возраст и петрогенезис плагиогранитов северной части Рудного Алтая // Геология и геофизика. 2013. Т. 54. № 10. с. 1668-1684.
- 77. Куйбида Я.В., Крук Н.Н., Гусев Н.И., Владимиров В.Г., Демонтерова Е.И. Геохимия метаморфических пород курайского блока (Горный Алтай) // Геология и геофизика. 2014. Т. 55. № 4. с. 527-548.
- 78. Лавренчук А.В. Программа для расчета динамики внутрикамерной дифференциации основной магмы "Pluton" // Вторая Сибирская международная конференция молодых ученых по наукам о Земле: Тез. докл. Новосибирск. 2004. С. 105-106.
- 79. Лебедев А.П. Геолого-петрографические исследования в Прикатунском районе (северный Алтай) // Труды СОПС и Петрин АН СССР, серия Сиб.. 1937. вып. 24 Материалы по петрографии и геохимии Кузнецкого Алатау и Алтая Ч. IV. С. 95-193.
- 80. Лебедев А.П. К петрографии северо-восточного Алтая // Труды Петрин АН СССР. 1938. Вып. 13. С. 77-103.
- 81. Литвиновский Б.А. Магмообразование в условиях ограниченного поступления глубинных флюидов. Гранитоиды индикаторы глубинного строения земной коры. Под ред. Э.П. Изоха. Новосибирск. Наука. 1985. С. 25-41.

- 82. Литвиновский Б.А., Занвилевич А.Н., Алакшин А.М., Подладчиков Ю.Ю. Ангаро-Витимский батолит–крупнейший гранитоидный плутон // Новосибирск: Изд. ОИГГМ СО РАН. 1992. с. 4.
- 83. Литвиновский Б.А., Посохов В.Ф., Занвилевич А.Н. Новые Rb-Sr данные о возрасте позднепалеозойских гранитоидов Западного Забайкалья // Геология и геофизика. 1999. Т. 40. № 5. с. 694-702.
- 84. Лучицкая М.В. Гранитоидный магматизм и становление континентальной коры северного обрамления Тихого океана в мезозое—кайнозое // Диссертация на соискание степени доктора геолого-минералогических наук. ГИН РАН. 2012. 457 с.
- 85. Маракушев А.А., Тарарин И.А. О минералогических критериях щелочности гранитоидов // Изв. АН СССР. сер. геол. 1965. Т. 3. с. 20-37.
- 86. Моссаковский А.А., Руженцев С.В., Самыгин С.Г., Хераскова Т.Н. Центрально-Азиатский складчатый пояс: геодинамическая эволюция и история формирования // Геотектоника. 1993. Т. 6. с. 3-33.
- 87. Мухин А.С. Курайское каменноугольное месторождение в Юго-Восточном Алтае // Вестник Западно-Сибирского геологического управления. $1938 N_{\odot} 3. C. 14-24.$
- 88. Налётов Б.Ф. Региональная петрохимия гранитоидов. // Новосибирск: Наука. – 1976. – 127 с.
- 89. Нехорошев В.П. Алтай и его недра. Л, М: Георазведиздат. 1933. 76 с.
- 90. Нехорошев В.П. Геологический очерк Алтая // Очерки по геологии Сибири. М. 1932. 46 с.
 - 91. Нехорошев В.П. Геология Алтая. М.: Госгеолтехиздат. 1958. 263 с.
- 92. Нехорошев В.П. Новые рудные месторождения на Алтае // Вестник Геологического Комитета. 1925а. Т. I. № 5. С. 47-94.
- 93. Нехорошев В.П. Новые данные для стратиграфии Горного Алтая // Вестник Геологического Комитета. 1925б. Т. І. № 4. С. 1-3.

- 94. Нехорошев В.П. Тектоника и рельеф Русского Алтая // Геологический вестник. 1926. Т. V. № 1-3. С. 23-31.
- 95. Николаева И.В., Палесский С.В., Чирко О.С., Черноножкин С.М. Определение основных и примесных элементов в силикатных породах методом масс-спектрометрии с индуктивно-связанной плазмой после сплавления с LiBO₂ // Аналитика и контроль. 2012. N = 2. C. 134-142.
- 96. Никонов А.К. К стратиграфии истоков р. Катуни в Горном Алтае // ДАН СССР, новая серия. 1937. Т. XVI. №7. С. 385-387.
- 97. Оболенская Р.В. Мезозойский магматизм Алтае-Саянской складчатой области // Препр. №2, ИГиГ СО АН СССР; Новосибирск. 1983. 48 с.
- 98. Обручев В.А. Изменение взглядов на рельеф и строение Центральной Азии от А. Гумбольдта до Э. Зюсса // Центральная Азия: исследование о цепях гор и по сравнительной климатологии. под ред. Д.Н. Анучина. М. 1915. Т. 1. 616 с.
- 99. Плотников А.В., Мороз Е.Н. Ставролитовая изограда в области низких давлений и проблема выделения полиметаморфических комплексов HT/LP-типа (на примере Южно-Чуйского хребта, Горный Алтай) // Доклады РАН. 1999. Т. 368. N = 5. C. 667-670.
- 100. Плотников А.В., Титов А.В., Крук Н.Н., Ота Т., Кабашима Т., Хирата Т. Среднепалеозойский возраст метаморфизма в Южно-Чуйском комплексе Горного Алтая (результаты Ar-Ar, Rb-Sr и U-Pb изотопного датирования) // Геология и геофизика. -2001. Т. 42. № 9. С. 1333-1347.
- 101. Перетяжко И.С. Тетрад-эффекты в спектрах распределения редкоземельных элементов гранитоидных пород как индикатор процессов фторидно-силикатной жидкостной несмесимости в магматических системах // Петрология 2010. V. 18. \mathbb{N} 5 C. 536-566.
- 102. Ротараш И.Л., Самыгин С.Г., Гредюшко Е.А. Девонская активная континентальная окраина на Юго-Западном Алтае // Геотектоника. 1982. № 1. С. 44-59.

- 103. Рублёв А.Г. Изотопно-геохроноогическое изучение интрузивных образований Алтае-Саянской складчатой области в помощь среднемасштабному геологическому картированию. // ОФ ФГУГП "Красноярскгеолсъёмка", СПб. 1995. –102 с.
- 104. Рублёв А.Г., Шергина Ю.П., Шкоробатова Г.С. Девонский магматизм Агульского прогиба // Отечественная геология. 1994. №3. С. 42-48.
- 105. Руднев С.Н., Владимиров А.Г., Пономарчук В.А., Крук Н.Н., Бабин Г.А., Борисов С.М. Раннепалеозойские гранитоидные батолиты Алтае-Саянской складчатой области (латерально-временная зональность, источники) // Доклады РАН. -2004. Т. 396. № 3. С. 369-373.
- 106. Семенов И.В. Механизмы формирования пермо-триасовых габброгранитных серий Горного Алтая (на примере Теранджикского массива) // Квалификационная работа на соискание степени магистра геологии. Новосибирск. 2011. 68 с.
- 107. Семенов И.В., Крук Н.Н., Травин А.В., Куйбида Я.В., Куйбида М.Л. Геологическая позиция, состав и возраст Теранджикского габбро-гранитоидного интрузива (Горный Алтай) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Вып. 8. Иркутск: ИЗК СО РАН. 2010. Т. 2. С. 75–77
- 108. Сенников Н.В., Ивата К., Ермиков В.Д., Обут О.Т., Хлебникова Т.В. Океанические обстановки седиментации и фаунистические сообщества в палеозое южного обрамления Западно-Сибирской плиты // Геология и геофизика.— 2003. Т. 44. № 1-2. С. 156-171.
- 109. Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов // М. Наука. -1977.-289 с.
- 110. Травин А.В., Юдин Д.С., Владимиров А.Г., Хромых С.В., Волкова Н.И., Мехоношин А.С., Колотилина Т.Б. Термохронология Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) // Геохимия. 2009. Т. 50. № 11. с. 1181-1199.

- 111. Третьяков А.А., Дегтярев К.Е., Шатагин К.Н., Котов, А.Б., Сальникова, Е.Б., Анисимова И.В. Неопротерозойская анорогенная риолит-гранитная вулканоплутоническая ассоциация Актау-Моинтинского сиалического массива (Центральный Казахстан): возраст, источники и палеотектоническая позиция // Петрология. 2015. Т. 23. № 1. С. 26–49.
 - 112. Фор Γ . Основы изотопной геохимии // Москва: Мир. -1989.-590 с.
- 113. Ходоревская Л.И. Экспериментальное исследование гранитообразования по породам основного состава // Диссертация на соискание учёной степени доктора геолого-минералогических наук. 2006. Москва. С. 180.
- 114. Хромых С.В., Владимиров А.Г., Изох А.Э., Травин А.В., Прокопьев И.Р., Азимбаев Е., Лобанов С.С. Петрология и геохимия габброидов и пикритоидов Алтайской коллизионной системы герцинид: свидетельства активности Таримского плюма // Геология и геофизика. 2013. Т. 54. № 10. с. 1648-1667.
- 115. Хубанов В.Б., Врублевская Т.Т., Цыренов Б.Ц., Цыганков А.А. Процессы фракционной кристаллизации и смешения магм в формировании трахибазальт-трахитовой бимодальной серии Мало-Хамардабанской вулканотектонической структуры, Юго-Западное Забайкалье // Петрология. 2015. T. 23. N 5. C. 490-520.
- 116. Шокальский С.П. Легенда Алтайской серии государственной геологической карты Российской Федерации масштаба 1:200 000 (второе издание). Пояснительная записка. Новокузнецк. 1999. 176 с.
- 117. Шокальский С.П., Бабин Г.Л., Владимиров А.Г., Морозов А.Ф. Корреляция магматических и метаморфических комплексов западной части Алтае-Саянской складчатой области. Изд-во СО РАН Новосибирск, 2000 г., 187 с.
- 118. Ярмолюк В.В., Коваленко В.И., Котов А.Б., Сальникова Е.Б. Ангаро-Витимский батолит: к проблеме геодинамики батолитообразования в Центрально-Азиатском складчатом поясе // Геотектоника. 1997. Т. 19976. с. 18-32.

- 119. Ярмолюк В.В., Коваленко В.И., Кузьмин М.И. Северо-Азиатский суперплюм в фанерозое: магматизм и глубинная геодинамика // Геотектоника. 2000. Т. 20006. с. 3-29.
- 120. Ясныгина Т.А., Рассказов С.В. Редкоземельные спектры с тетрадэффектом: проявление в палеозойских гранитоидах окинской зоны Восточного Саяна // Геохимия. -2008. -№ 8. С. 877–889.
- 121. Abdel-Rahman A.F.M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas // Journal of Petrology. − 1994. − V. 35. − № 2. − pp. 525-541.
- 122. Ague J.J., Brimhall G.H. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California // Geological Society of America Bulletin. $-1988. V.\ 100. No.\ 6. pp.\ 891-911.$
- 123. Acosta-Vigil A., London D., Burt D.M. Contrasting interactions of sodium and potassium with H_2O in haplogranitic liquids and glasses at 200 MPa from hydration–diffusion experiments // Contributions to Mineralogy and Petrology. 2005. V. 149. pp. 276–287.
- 124. Acosta-Vigil A., London D.,Burt D.M. Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800 °C: compositional variability of melts during the onset of H_2O -saturated crustal anatexis // Contributions to Mineralogy and Petrology. 2006. V. 151. pp. 539-557.
- 125. Allen M.B., Şengör A.M.C., Natal'in B.A. Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia // Journal of the Geological Society of London. 1995. V. 152. P. 327–338.
- 126. Arzi A.A. Fusion kinetics, water pressure, water diffusion and electrical conductivity in melting rock, interrelated // Journal of Petrology. 1978. V. 19. pp. 153–169.
- 127. Ayers J.C., Watson E.B. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry // Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. − 1991. − V. 335. − № 1638. − pp. 365-375.

- 128. Baker D.R. Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers // Contributions to Mineralogy and Petrology. -1990. V. 104. No 4. pp. 407-423.
- 129. Baker D.R. Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves // Contribution to Mineralalogy and Petrology. 1991. V. 106. pp. 462–473.
- 130. Baksi A.K., Archibald D.A., Farrar E. Intercalibration of 40Ar/39Ar dating standarts // Chemical Geology. 1996. V. 129. pp. 307-324.
- 131. Barrière M., Cotten J. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites // Contribution to Mineralogy and Petrology. 1979. V. 70. pp. 183-192.
- 132. Barth T.F.W. The feldspar lattices as solvents of foreign ions // Estudos Geológicos. 1961. V. 1251. № 8. pp. 3-8.
- 133. Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect // Contribution Mineralogy and Petrology. 1996. V. 123. pp. 323–333.
- 134. Beard J.S., Lofgren G.E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9kb // Journal of Petrology. -1991. V. 32. N = 2. pp. 365-401.
- 135. Benard F., Mouyou P., Pichavant M. Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas // Journal of geology. 1985. V. 93. pp. 271-291.
- 136. Berzin N.A. A Kinematic Model for the Formation of Altai-Sayan Fold Region: Structural Constrains // Continental Growth in the Phanerozoic (Evidence from Central Asia): Abstracts of the Third Workshop, Aug. 6-16, 2001. Novosibirsk: Publishing House of SB RAS, Department "GEO", 2001 P. 8-11.
- 137. Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects // Lithos. 2007. V. 97. № 1-2. pp. 1-29.

- 138. Boynton W.V. Cosmochemistry of the rare earth elements: meteorite studies // Rare earth element geochemistry. Amsterdam et al.: Elsevier. 1984. P. 63-114
- 139. Brearley A.J., Rubie D.C. Effects of H2O on the disequilibrium breakdown of muscovite + quartz // Journal of Petrology. 1990. V. 31. pp. 925–956.
- 140. Brown M., Averkin Y.A., McLellan E.L., Sawyer E.W. Mechanisms and consequences of melt segregation from crustal protoliths // Journal Geophysical Research. 1995. V. 100. pp. 15655–15679.
- 141. Burkhard D.J.M. Biotite crystallization temperatures and redox states in granitic-rocks as indicator for tectonic setting // Geologie en Mijnbouw. 1992. V. 71. № 4. pp. 337-349.
- 142. Busch W., Schneider G., Mehnert K.R. Initial melting at grain boundaries. Part II: melting in rocks of granodioritic, quartzdioritic and tonalitic composition // Neues Jahrbuch für Mineralogie. 1974. V. 8. pp. 345–370.
- 143. Buslov M.M., Saphonova I.Y., Watanabe T., Obut O.T., Fujiwara Y., Iwata K., Semakov N.N., Sugai Y., Smirnova L.V., Kazansky A.Y. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwanaderived terranes with the southern marginal part of the Siberian continent // Geosciences Journal. 2001. V. 5. № 3. pp. 203-224.
- 144. Carrington D.P., Harley S.L. Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system // Contributions to Mineralogy and Petrology. 1995. V. 120. pp. 270–291.
- 145. Chakraborty S., Dingwell D.B., Rubie D.C. Multicomponent diffusion in ternary silicate melts in the system $K_2O-A1_2O_3-SiO_2$: II. Mechanisms, systematics, and geological applications // Geochimica et Cosmochimica Acta 1995. V. 59. N_2 2. pp. 265-277.
- 146. Clemens J.D., Holloway J.R., White A.J.R. Origin of an a-type granite experimental constraints // American Mineralogist. 1986. V. 71. № 3-4. pp. 317-324.

- 147. Collins W.J., Beams S.D., White A.J.R., Chappell B.W. Nature and origin of a-type granites with particular reference to southeastern Australia // Contributions to Mineralogy and Petrology. 1982. V. 80. № 2. pp. 189-200.
- 148. Creaser R.A., Price R.C., Wormald R.J. A-type granites revisited assessment of a residual-source model // Geology. -1991. V. 19. N = 2. P. 163-166.
- 149. Czamanske G.K., Mihálik P. Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 1, The opaque oxides // Journal of Petrology. 1972. V. 13. № 3. pp. 493-509.
- 150. Dodge F.C.W., Smith V.C., Mays R.E. Biotites from granitic rocks of the central Sierra Nevada batholith, California // J. Petrol. 1969. V. 10. pp. 250-271.
- 151. Dooley D.F., Patino Douce A.E. Vapor-absent melting of F- and Ti-rich phlogopite + quartz; effect on phlogopite stability and melt compositions // American Mineralogist. 1996. V. 81. pp. 202-212.
- 152. Eby G.N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications // Geology. 1992. V. 20. pp., 641–644.
- 153. Fidelis I., Siekierski S. Regularities or tetrad effect in complex formation by f-electron elements: double-double effect // Journal of Inorganic and Nuclear Chemistry. 1971. V. 33. pp. 3191–3194.
- 154. Finch A.A., Parsons I., Mingard S.C. Biotites as indicators of fluorine fugacities in late-stage magmatic fluids: the Gardar Province of South Greenland // Journal of Petrology. 1995. V. 36. № 6. pp. 1701-1728.
- 155. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. A geochemical classification for granitic rocks // Journal of Petrology. 2001. V. 42. № 11. pp. 2033-2048.
- 156. Gardien V., Thompson A.B., Grujic D., Ulmer P. Experimental melting of biotite +plagioclase + quartz ± muscovite assemblages and implications for crustal melting // Journal of Geophysical Research. 1995. V. 100. pp. 15581–15591.
- 157. Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution // Earth and Planetary Science Letter. 1988. V. 87. P. 249-265.

- 158. Grew E.S., Locock A.J., Mills S.J., Galuskina I.O., Galuskin E.V., Hålenius U. Nomenclature of the garnet supergroup // American Mineralogist 2013. V. 98. № 4 p. 785-811.
- 159. Hacker B. Amphibolite-facies-to-granulite-facies reactions in experimentally deformed, unpowdered amphibolite // American Mineralogist. 1990. V. 75. pp. 1349–1361.
- 160. Harlov D., Tropper P., Seifert W., Nijland T., Förster H.-J. Formation of Alrich titanite (CaTiSiO₄O–CaAlSiO₄OH) reaction rims on ilmenite in metamorphic rocks as a function of fH₂O and fO₂ // Lithos. 2006. V. 88. N 1-4. pp. 72-84.
- 161. Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. Nomenclature of the amphibole supergroup // American Mineralogist. 2012. V. 97. № 11-12. pp. 2031-2048.
- 162. Holness M.B., Dane K., Sides R., Richardson C., Caddick M. Melting and melt segregation in the aureole of the Glenmore Plug, Ardnamurchan // Journal of Metamorphic Geology. 2005. V. 23. pp. 29–43.
- 163. Holtz F., Johannes W. Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kbar and various H2O activities // Journal of Petrology. 1991. V. 32. pp. 935-958.
- 164. Huang W.L., Wyllie P.J. Melting relations of muscovite granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments // Contributions to Mineralogy and Petrology. V. 42. pp. 1-14.
- 165. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochemical and Cosmochemical Acta. 1999. V. 63. pp. 489-508.
- 166. Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites // Earth and Planetary Science Letter. 1984. V. 67. P. 137-150.
- 167. Jahn B., Wu F., Capdevila R., Martineau F., Zhaoc Z., Wang Y. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China // Lithos. 2001. V. 59. № pp. 171-198.

- 168. Jahn B.M., Wu F.Y., Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic // Episodes. -2000.-V.23.-P.82-92.
- 169. Johannes W. Metastable melting in the granite system Qz-Or-Ab-An-H2O // Contribution of Mineralogy and Petrology. 1980. V. 72. pp. 73-80.
- 170. Johannes W., Holtz F. Melting of plagioclase in granite and related systems: composition of coexisting phases and kinetic observations // Transactions of the Royal Society of Edinburgh Earth Sciences. 1992. V. 83. pp. 417–422.
- 171. Kawabe I. Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory // Geochemical Journal. 1992. V. 26. pp. 309-335.
- 172. Keto L.S., Jacobsen S.B., Nd and Sr isotopic variations of early Paleozoic oceans // Earth and Planetary Science Letters. 1987. V. 84. pp. 27–41.
- 173. Khromykh S.V., Kotler P.D., Sokolova E.N. Mantle-crust interaction at the late stage of evolution of hercynian Altai collision system, Western part of CAOB // Geodynamics & Tectonophysics. 2017. V. 8. № 3. pp. 489-493.
- 174. Koester E., Pawley A.R., Fernandes L.A.D., Porcher C.C., Soliani E. Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Perfluminous Granites in Southern Brasil // Journal of petrology. 2002. V. 43. Iss. 8. pp. 1595-1616.
- 175. Kruk N. N., Vladimirov A. G., Rudnev S. N. Nd isotopic composition of granitoids of different geochemical types as the reflection of main continental crust growth mechanisms: Evidence from the western part of Altai-Sayan fold region // Continental growth in the Phanerozoic: Evidence from Central Asia. 2002. C. 69-73.
- 176. Kruk N.N., Rudnev S.N., Vladimirov A.G., Shokalsky S.P., Kovach V.P., Serov P.A., Volkova N.I. Granitoids as a reflection of continental crust structure, composition and temporal evolution: implications from Early-Middle Paleozoic intrusions of Gorny Altay, SW Siberia // International Workshop on Geodynamic Evolution, Tectonics and Magmatism of the Central Asian Orogenic Belt (Novosibirsk, June 29-30, 2010): Abstract Volume. Novosibirsk: Publishing House of SB RAS, 2010.

- 177. Kruk N.N., Rudnev S.N., Vladimirov A.G., Shokalsky S.P., Kovach V.P., Serov P.A., Volkova N.I. Early–Middle Paleozoic granitoids in Gorny Altai, Russia: implications for continental crust history and magma sources // Journal of Asian Earth Sciences. 2011. V. 42. № 5. pp. 928-948.
- 178. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province // Earth-Science Reviews. -2010.-V.102.-P.29-59.
- 179. Lalonde A.E., Bernard P. Composition and color of biotite from granites; two useful properties in characterization of plutonic suites from the Hepburn internal zone of Wopmay Orogen, Northwest Territories // The Canadian Mineralogist. 1993. V. 31. № 1. pp. 203-217.
- 180. Le Breton N., Thompson A.B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis // Contributions to Mineralogy and Petrology. 1988. V. 99. pp. 226–237.
- 181. Le Maitre R.W. A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences, subcommission on the systematics of igneous rocks // Oxford: Blackwell. 1989. 193 p.
- 182. Lesher C. Kinetics of Sr and Nd exchange in silicate liquids: theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas // Journal of Geophysical Research: Solid Earth 1994. V. 99. № B5. pp. 9585-9604.
- 183. Liang Y., Richter F.M., Watson E.B. Diffusion in silicate melts: II. Multicomponent diffusion in CaOAl₂O₃SiO₂ at 1500 C and 1 GPa // Geochimica et Cosmochimica Acta. 1996. V. 60. № 24. pp. 5021-5035.
- 184. Locock A.J. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations // Computers & Geosciences. 2014. V. 62. № pp. 1-11.
- 185. Loiselle M.C., Wones D.R. Characteristics and origin of anorogenic granites // Geological Society of America Abstracts with Programs. 1979. V. 11 p. 468.

- 186. London D., Morgan G.B., Hervig R.V. Vapor-undersaturated experiments with Macusani glass+ H2O at 200 MPa, and the internal differentiation of granitic pegmatites // Contributions to Mineralogy and Petrology. 1989. V. 102. pp. 1-17.
- 187. Malitch K.N., Latypov R.M. Re–Os and S isotope constraints on timing and source heterogeneity of PGE–Cu–Ni sulfide ores: a case study at the Talnakh ore junction, Noril'sk province, Russia // The Canadian Mineralogist. 2011. V. 49. № pp. 1653–1677.
- 188. Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Society of America Bulletin. 1989. V. 101. № 5. pp. 635-643.
- 189. Masuda A., Ikeuchi Y. Lanthanide tetrad effect observed in marine environment // Geochemical Journal. 1979. V. 13. pp. 19-22.
- 190. Masuda A., Kawakami O., Dohmoto Y., Takenaka T. I-anthanide tetrad effects in nature: Two mutually opposite types, W and M // Geochemical Journal. 1987. V. 21. pp. 119-124.
- 191. Morimoto N. Nomenclature of pyroxenes // Mineralogy and Petrology. 1988. V. 39. № 1. pp. 55-76.
- 192. Mungall J.E., Romano C., Dingwell D.B. Multicomponent diffusion in the molten system $K_2O-Na_2O-Al_2O_3-SiO_2-H_2O$ // American Mineralogist. 1998. V. 83. pp. 685–699.
- 193. Nachit H., Ibhi A., Abia E.H., Ohoud M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites // Comptes Rendus Geoscience. 2005. V. 337. № 16. pp. 1415-1420.
- 194. Neiva A.M.R. Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis // Lithos. -1981. V. 14. pp. 149-163.
- 195. Nickel E.H., Mandarino J.A. Procedures involving the IMA Commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature // Mineralogical Journal. 1987. V. 13. № 8. pp. 505-532.
- 196. Nocleberg W.J., Badarch G., Berzin N.A., Diggles M.F., Hwand D.H., Khanchuk A.I., Miller R.J., Naumova V.V., Obolensky A.A., Ogasawara M., Parfenov

- L.M., Prokopiev A.V., Rodionov S.M., Yan H. (eds) Norhteast Asia Geodinamics, Mineral Deposits Location, and Metallogenic maps // USGS Open-File Report 2004-1252.
- 197. Nugent L.J. Theory of the tetrad effect in the lanthanide (III) and actinide (III) series // European Journal of Inorganic Chemistry. 1970. V. 32. pp. 3485-3491.
- 198. Pan Y., Fleet M.E., MacRae N.D. Late alteration in titanite (CaTiSiO5): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal // Geochimica et Cosmochimica Acta. 1993. V. 57. № 2. pp. 355-367.
- 199. Pasero M., Kampf A.R., Ferraris C., Pekov I.V., Rakovan J., White T.J. Nomenclature of the apatite supergroup minerals // European Journal of Mineralogy. 2010. V. 22. № 2. pp. 163-179.
- 200. Patino Douce A.E. Effects of pressure and H20 content on the compositions of primary crustal melts // Transactions of the Royal Society of Edinburgh. Earth Sciences. 1996. V. 87. pp. 11-21.
- 201. Patino Douce A.E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids // Geology. 1997. V. 25. pp. 743-746.
- 202. Patino Douce A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? // 1999. V. 168. N_{\odot} pp. 55-75.
- 203. Patino Douce A.E., Beard J.S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar // Journal of Petrology. 1995. V. 36. pp. 707-738.
- 204. Patino Douce A.E., Beard J.S. Effects of P, f(O₂) and Mg/Fe ratio on dehydration-melting of model metagreywackes // Journal of Petrology. 1996. V. 37. pp. 999-1024.
- 205. Patino Douce A.E., Johnston A. D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites // Contributions to Mineralogy and Petrology. 1991. V. 107. pp. 202-218.

- 206. Patino Douce A.E., McCarthy T.C. Melting of crustal rocks during continental collision and subduction // In: Hacker B.R., Liou J.G. (eds) When continents collide: Geodynamies and Geochemistry of Ultra-high Pressure Rocks. Kluwer Academic Publishers. 1998. pp. 27-55.
- 207. Patino Douce A.E., Harris N.B.W. Experimental constraints on Himalayan anatexis // 1998. V. 39. № pp. 689-710.
- 208. Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // Journal of Petrology. 1984. V. 25. № 4. pp. 956-983.
- 209. Peppard D.F., Mason G.W., Lewey S. A tetrad effect in the liquid–liquid extraction ordering of lanthanide (III) // Journal of Inorganic and Nuclear Chemistry. 1969. V. 31. pp. 339–343.
- 210. Peterson J.W., Newton R.C. Reversed experiments on biotite–quartz–feldspar melting in the system KMASH: implications for crustal anatexis // Journal of Geology. 1989. V. 97. pp. 465–486.
- 211. Peto P. An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system $K_2O-Na_2O-Al_2O_3-SiO_2-H_2O$ to 15 kb total pressure // Progress in Experimental Petrology. 1976. V. 3. pp. 41-45.
- 212. Rapp R.P., Watson E.B. Dehydration Melting of Metabasalts at 8-32 kbar: Implication for Continental Growth and Crust-Mantle Recycling // Journal of Petrology. 1995. V. 36. N 4. pp. 891-931.
- 213. Rapp R.P., Watson E.B., Miller C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites // Precambrian Research. 1991. V. 51. pp. 1-25.
- 214. Reichow M.K., Pringle M.S., Al'Mukhamedov A.I., Allen M.B., Andreichev V.L., Buslov M.M., Davies C.E., Fedoseev G.S., Fitton J.G., Inger S., Medvedev A.Y., Mitchell C., Puchkov V.N., Safonova I.Y., Scott R.A., Saunders A.D. The timing and extent of the eruption of the Siberian Traps large igneous province:

- implications for the end-Permian environmental crisis // Earth and Planetary Science Letters. 2009. V. 277. № pp. 9–20.
- 215. Rickwood P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements // Lithos. 1989. V. 22. № 4. pp. 247-263.
- 216. Rushmer T. An experimental deformation study of partially molten amphibolite: application to low-fraction melt segregation // Journal of Geophysical Research. 1995. V. 100. pp.15681–15696.
- 217. Rushmer T. Melt segregation in the lower crust: how have experiments helped us? // Transactions of the Royal Society of Edinburgh Earth Sciences. 1996. V. 87. pp. 73–83.
- 218. Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions // Contributions to Mineralogy and Petrology. 1991. V. 107. pp. 41-59.
- 219. Rutter E., Neumann D. Experimental deformation of partially molten Westerly granite under fluid-absent conditions with implications for the extraction of granitic magmas // Journal of Geophysical Research. 1995. V. 100. pp. 15697–15715.
- 220. Sawyer E.W. Melt segregation in the continental crust // Geology. 1994. V. 22. pp. 1019–1022.
- 221. Sawyer E.W. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks // Journal of Metomorphic Geology. 2001. V. 19. pp. 291–309.
- 222. Scaillet B., Pichavant M., Roux J. Experimental Crystallization of Leucogranite Magmas // 1995. V. 36. № pp. 663-705.
- 223. Seck H.A. The influence of pressure on the alkali feldspar solvus from peraluminous and persilicic materials // Fortschr. Mineral. 1972. V. 49. № pp. 31-49.
- 224. Sen C., Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites // Contributions to Mineralogy and Petrology. 1994. V. 117. pp. 394-409.

- 225. Şengör A.M.C., Natal'In B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia // Nature. 1993. V. 364. № 6435. pp. 299.
- 226. Shabani A.A., Lalonde A.E., Whalen J.B. Composition of biotite from granitic rocks of the Canadian Appalachian orogen: a potential tectonomagmatic indicator? // The Canadian Mineralogist. 2003. V. 41. № 6. pp. 1381-1396.
- 227. Siekierski S. The shape of lanthanide contraction as reflected in the changes of the unit cell volumes, lanthanide radius and the free energy of complex formation // Journal of Inorganic and Nuclear Chemistry. 1971. V. 33. pp. 377–386.
- 228. Singh J., Johannes W. Dehydratation melting of tonalites. Part II. Composition of melts and solids // Contributions to Mineralogy and Petrology. 1996. V. 125. pp. 25-44.
- 229. Skjerlie K.P., Johnston A.D. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites // Journal of Petrology. 1993. V. 34. pp. 785-815.
- 230. Speer J.A. Micas in igneous rocks. in: Micas (SW Bailey, editor). 1984, pp. 299-356.
- 231. Steiger R.H., Jager E. Subcomission of Geochronology: convension of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett.— 1976. V. 36. Is. 2. P. 359-362.
- 232. Storre B. Dry melting of muscovite + quartz in the range Ps=7 kb to Ps=20 kb // Contributions to Mineralogy and Petrology. 1972. V. 37. pp. 87–89.
- 233. Storre B., Karotke E. Experimental data on melting reactions of muscovite + quartz in the system $K_2O-Al_2O_3-SiO_2-H_2O$ to 20 kb water pressure // Contributions to Mineralogy and Petrology. 1972. V. 36. pp. 343–345.
- 234. Sun S.-S., McDonough W.-S. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society, London, Special Publications. 1989. V. 42. № 1. pp. 313-345.
- 235. Sylvester P.J. Post-collisional strongly peraluminous granites // Lithos. 1998. V. 45. P. 29–44.

- 236. Şengör A.M.C., Natal'in B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia // Nature. 1993. V. 364. P. 299–307.
- 237. Taylor S.R., McLennan S.M. The continental crust: its evolution and composition. London: Blackwell, 1985, p.
- 238. Travin A.V., Vladimirov A.G., Mursintsev N.G., Khromykh S.V., Kotler P.D., Yudin D.S. Thermochronology of granitoide batholithes of the Central Asian fold belt. Granites and Earth's evolution: Granites and continental crust. In: Proceedings of the 2nd International Geological Conference (August 17–20, 2014). Novosibirsk, pp. 201–204.
- 239. van der Laan S.R., Wyllie P.J. Experimental interaction of granitic and basaltic magmas and implications for mafic enclaves // Journal of Petrology. 1993. V. 34. № 3. pp. 491-517.
- 240. Vielzeuf D., Clemens J.D. The fluid-absent melting of phlogopite + quartz: experiments and models // American Mineralogist. 1992. V. 77. pp. 1206-1222.
- 241. Vielzeuf D., Holloway J.R. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation // Contributions to Mineralogy and Petrology. 1988. V. 98. pp. 257-276.
- 242. Vielzeuf D., Montel J.M. Partial melting of metagreywackes. 1. Fluidabsent experiments and phase relationships // Contributions to Mineralogy and Petrology. 1994. V. 117. pp. 375-393.
- 243. von Platen H. Kristallisation granitischer Schmelzen // Beitr Mineral Petrol. 1965. V. 11. P. 334-381.
- 244. Watson E.B. Basalt contamination by continental crust: some experiments and models // Contributions to Mineralogy and Petrology 1982. V. 80. № 1. pp. 73-87.
- 245. Watson E.B., Jurewicz S.R. Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma // The Journal of Geology 1984. V. 92. № 2. pp. 121-131.

- 246. Watson E.B., Harrison T.M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types // Earth and Planetary Science Letters 1983. V. 64. № 2. pp. 295-304.
- 247. Weidner J.R., Martin R.F. Phase equilibria of a fluorine-rich leucogranite from the St. Austell pluton, Cornwall // Geochimica et Cosmochimica Acta. 1987. V. 51. pp. 1591–1597.
- 248. Weill D.F., Kudo A.H. Initial melting in alkali feldspar-plagioclase-quartz systems // Geology Magazine. 1968. V. 105. № 4. pp. 325-337.
- 249. Whalen J.B., Currie K.L., Chappell B.W. A-type granites geochemical characteristics, discrimination and petrogenesis // Contributions to Mineralogy and Petrology. 1987. V. 95. № 4. pp. 407-419.
- 250. Whittington A., Richet P., Behrens H., Holtz F., Scaillet B. Experimental temperature–X(H2O)–viscosity relationship for leucogranites and comparison with synthetic silicic liquids // Transactions of the Royal Society of Edinburgh: Earth Sciences. 2004. V. 95. № 1-2. pp. 59-71.
- 251. Winkler H.G.F. Petrogenesis of metamorphic rocks // Berlin Heidelberg New York: Springer. 1979. 348 pp.
- 252. Winkler H.G.F., Platen H. Bildung anatektischer schmelzen aua metamurphiuierten Grauwaoken // Geochemica cosmochemica acta. 1961. V. 24. pp. 48-69.
- 253. Winkler H.G.F., Platen H. Experimentelle Gesteinsmetamorphose-II. Bildung von anatektischen granitischen Schmelzen bei der Metamorphose von NaClfiihrenden kalkfreien Tonen // Geochemica cosmochemica acta. 1958. V. 15. pp. 91-112.
- 254. Winkler H.G.F., Platen H. Experimentelle Gesteinsmetamorphose-III. Anatektische Ultrametamorphose kalkhaltiger Tone // Geochemica cosmochemica acta. 1960. V. 18. pp. 294-316.
- 255. Wolf M.B., Wyllie P.J. Liquid segregation parameters from amphibolite dehydration melting experiments // Journal of Geophysical Research. 1995. V. 100. pp. 15611–15622.

- 256. Wolf M.P., Wyllie B.J. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time // Contributions to Mineralogy and Petrology. 1994. V. 115. pp. 369-383.
- 257. Wones D.R., Eugster H.P. Stability of biotite-experiment theory and application // American Mineralogist. 1965. V. 50. № 9. pp. 1228-1272.

Табл. 4.1. Содержания петрогенных компонентов (масс. %), редких и редкоземельных элементов (г/т) в представительных пробах пород пермо-триасовых интрузивных серий Алтая.

Массив		1		Айс	кий		I	
Порода	габбро			сиенит			граносі	иенит
Образец	Γ-27	2 - 756a	Γ-12/1	Γ-28/1	2-759a	2-731g	2 - 753a	4-436
SiO ₂	53,35	57,17	57,47	59,66	61,57	63,43	65,28	65,33
TiO ₂	0,92	1,42	0,85	1,11	1,21	0,44	0,45	0,31
Al_2O_3	16,44	17,26	17,05	16,27	17,31	17,49	16,75	18,42
Fe ₂ O ₃ *	7,14	7,05	7,35	7,27	4,54	3,25	3,17	1,55
MnO	0,14	0,16	0,18	0,12	0,10	0,06	0,07	0,04
MgO	6,36	1,49	1,38	2,80	0,62	1,07	1,24	0,57
CaO	9,53	3,50	3,67	5,43	2,05	1,75	2,14	1,29
Na ₂ O	3,13	3,55	3,10	3,66	2,99	4,80	4,83	5,32
K_2O	1,15	7,26	8,01	2,44	8,98	6,69	4,95	6,31
п.п.п.	1,20	0,28	0,00	0,58	0,38	0,51	0,75	0,38
P_2O_5	0,15	0,30	0,33	0,20	0,14	0,16	0,18	0,07
Сумма	99,51	99,44	99,40	99,55	99,89	99,65	99,81	99,59
Li	_	18,8	_	_	4,2	1,8	28,7	13,7
F	0,04	_	_	0,07	_	_	_	_
Sc	-	-	6,3	-	-	-	6,4	_
V	-	-	_	-	-	_	-	-
Cr	-	-	-	-	-	-	-	-
Co	-	-	8,6	-	-	_	-	-
Ni	-	-	_	-	-	-	-	_
Ga	_	-	15,7	_	_	_	-	_
Rb	_	109	103	_	127	128	80,0	100
Sr	_	8750	6275	_	6700	1500	653	3125
Y	_	19,6	36,1	_	_	-	_	_
Zr	_	332	180	_	_	_	_	_
Nb	_	6,3	33,7	_	_	_	_	_
Cs	_	2,2	2,2	_	1,9	1,7	2,3	1,8
Ba	_	1956	3245	_	1629	1741	708	3185
La	_	17,0	96,4	_	-	-	75,0	-
Ce	_	47,0	230	_	_	_	92,0	_
Pr	_	-	29,7	_	_	_	-	_
Nd	_	22,0	113	_	_	_	25,0	_
Sm	_	6,5	17,1	_	_	_	5,2	_
Eu	_	1,6	4,2	_	_	_	1,3	_
Gd	_	6,5	12,5	_	_	_	4,2	_
Tb	_	1,0	1,6	_	_	_	0,6	_
Dy	_	5,1	7,2	_	_	_	2,2	_
Ho	_	-	1,3	_	_	_		_
Er	_	_	3,3	_	_	_	_	_
Tm	_	0,50	0,45	_	_		0,20	_
Yb	_	3,2	2,6	_	<u>-</u>	_	1,3	_
Lu	<u>-</u>	0,50	0,35	<u>-</u>	-	_	0,20	<u>-</u>
Hf		5,0	5,1				6,4	
	-		 	-	-	-	0,4	-
Ta Th	-	0,50	1,8	-	-	-	22.0	_
Th	-	5,9	9,3	-	-	-	22,0	-
${f U}$	_	0,50	3,2	-	-	-	1,8	-

Массив	•	Айский										
Порода		гранос	сиенит			Г1	занит					
Образец	5 - 307	Γ-29	2-730a	2-755a	Γ-26	2 - 742a	2 - 743b	2 - 750v				
SiO ₂	66,69	67,20	67,35	68,50	69,28	70,62	70,73	73,78				
TiO ₂	0,39	0,35	0,39	0,37	0,29	0,28	0,29	0,16				
Al_2O_3	16,52	16,41	15,61	15,58	15,49	15,05	15,13	13,71				
Fe ₂ O ₃ *	2,89	2,50	2,83	2,90	2,10	2,01	2,33	1,51				
MnO	0,03	0,05	0,07	0,06	0,05	0,07	0,07	0,05				
MgO	0,73	0,78	0,64	0,96	0,54	0,73	0,73	0,38				
CaO	0,65	1,46	1,28	1,83	1,10	1,35	1,32	0,48				
Na ₂ O	5,19	4,87	6,08	4,23	4,60	4,36	4,70	4,67				
K ₂ O	5,70	5,16	5,30	4,70	5,21	4,62	4,15	4,73				
п.п.п.	0,96	0,46	0,55	0,78	0,42	0,58	0,54	0,41				
P_2O_5	0,19	0,12	0,15	0,14	0,10	0,11	0,09	0,04				
Сумма	99,94	99,38	100,25	100,05	99,18	99,78	100,08	99,92				
Li	116	_	36,0	25,3	_	26,4	75,8	36,5				
F	_	0,75	_	_	0,17	_	_	_				
Sc	4,0	-	-	5,0	-	4,3	4,2	3,6				
V	<u>-</u>	_	_	-	_		-	-				
Cr	_	-	-	-	-	-	-	-				
Co	_	_	_	-	_	_	_	_				
Ni	-	_	_	_	_	_	_	_				
Ga	_	_	_	_	_	_	_	_				
Rb	177	_	157	83,0	_	118	113	163				
Sr	630	_	750	615	_	500	300	275				
Y	13,4	_	-	-	_	9,0	12,4	8,9				
Zr	240	_	_	258	_	195	168	228				
Nb	88,8	_	_	49,2	_	39,6	86,0	64,4				
Cs	15,0	_	_	3,1	_	7,8	11,5	3,8				
Ba	1100	_	630	917	_	583	350	291				
La	50	_	-	59	_	57	50	77				
Ce	98	_	_	74	_	53	59	100				
Pr	-	_	_	_	_		-	-				
Nd	32	_	_	22	_	15	18	30				
Sm	5,6	_	_	3,3	_	2,2	2,6	5,7				
Eu	1,2	_	_	1,0	_	0,76	0,77	1,35				
Gd	4,2	_	_	2,9	_	3,0	2,2	3,4				
Tb	0,63	_	_	0,42	_	0,21	0,21	0,47				
Dy	-	_	_	2,2	_	1,4	1,5	2,70				
Ho	_	_	_	-	_	-	-	-				
Er		_	_	_	_		_	<u> </u>				
Tm	_	_	<u>-</u>	0,20	_	_	_	0,25				
Yb	1,7	_	_	1,1	_	0,85	1,0	1,7				
Lu	0,26			0,20	_	0,85	0,20	0,2				
Hf	7,0	-		4,8	_	4,3	4,6	6,8				
Ta	3,4		<u>-</u> -	1,6	_	1,3	2,0	2,6				
Th	28		-	30	_	30	30	2,0				
U	3,4	-	-	-	_	1,3	2,0	2,6				

Массив			Ай	ский	Тархатинский				
Порода	гранит	аплит			гранит		монцодиорит		
Образец	4-432	2-743a	2-745a	Γ-13/1	Γ-14/2	2 - 744a	731	c7-5-1	
SiO ₂	74,59	74,92	75,46	75,51	75,96	77,16	57,02	57,27	
TiO ₂	0,14	0,12	0,13	0,13	0,11	0,06	1,8	1,29	
Al_2O_3	13,44	13,84	13,25	13,67	13,38	12,95	12,76	13,00	
Fe ₂ O ₃ *	1,26	1,36	1,51	1,19	1,24	0,73	5,75	6,16	
MnO	0,03	0,03	0,03	0,02	0,03	0,03	0,06	0,09	
MgO	0,47	0,23	0,10	0,12	0,10	0,10	4,02	4,30	
CaO	0,45	0,61	0,42	0,44	0,44	0,40	3,62	2,58	
Na ₂ O	4,44	3,66	3,98	4,15	4,18	4,08	1,58	1,66	
K ₂ O	4,76	4,59	4,86	4,88	4,70	3,88	8,55	7,66	
п.п.п.	0,42	0,55	0,39	0,10	0,30	0,56		4,57	
P_2O_5	0,04	0,03	0,03	0,02	0,02	0,03	0,48	-	
Сумма	100,04	99,94	100,16	100,23	100,45	99,98	95,64	98,59	
Li	36,5	46,0	5,7	_	_	0,80	12	_	
F	-	-	- ,.	0,04	-	-	-	0,2	
Sc	-	-	1,9	1,02	0,99	1,30	13	- ,— -	
V	-	-	- ,-	-,	-,	-,20	-	-	
Cr	-	_	_	_	_	_	8	0,05	
Co	_	_	-	0,85	1,03	-	17	-	
Ni	_	_	_	-	-	_	_	0,03	
Ga	_	_	_	15,1	17,5	_	_	-	
Rb	163	200	108	103	141	172	149	_	
Sr	220	150	100	150	105	7,0	450	<u>-</u>	
Y		-	100	7,8	8,6	-	19	_	
Zr	_	_	265	128	120	_	450		
Nb	_	_	84,6	41,9	63,8	_	22	25	
Cs	3,8	7,3	2,0	1,2	1,58	1,7	8	22	
Ba	282	200	82	142	97	20	780	1 428	
La			72	38,5	27,6	27	150	89	
Ce	_	_	-	61,7	48,3	37	-	188	
Pr	_	_	_	5,5	4,1	- -	_	25	
Nd	_	_	_	14,9	10,7	8,5	_	91	
Sm	_	_	_	1,9	1,4	0,90	_	13,0	
Eu	_	_	_	0,31	0,2	0,11	_	2,4	
Gd	_	_	_	1,4	1,1	0,80	_	7,5	
Tb	_	_	_	0,2	0,17	0,11	_	0,81	
Dy	_			1,1	0,17	-	_	3,7	
Ho	<u>-</u> -			0,23	0,87	-	-	0,63	
Er		<u>-</u>	<u>-</u>	0,23	0,20	<u>-</u> -	_	1,70	
Tm	_		_	0,74	0,79		_	0,24	
Yb	_	-	1,2	1,1	1,3	1,3	2	1,38	
	-	-	1,2	0,16					
Lu	_	-	10		0,20	0,16	-	0,21	
Hf To	-	-	4,8	4,2	4,5	4,5	-	17,6	
Ta	_	-	2,4	2,4	3,5	- 16	-	1,79	
<u>Th</u>	-	-	55	41,7	41, 9	46	-	43	
\mathbf{U}	_	-	-	4,9	15, 9	4,7	-	6,3	

Массив	тродолж	xemme.		Тархатинс	кий			
Порода			монцодис	-			сиенит	
Образец	8015	491	8-07-19	8-07-19/1	490	726	8008	717a
SiO ₂	57,55	57,62	59,17	59,31	59,82	61,15	61,39	61,72
TiO ₂	1,27	1,41	1,31	1,29	1,41	1,36	1,06	1,27
Al_2O_3	12,22	12,58	13,10	13,08	12,71	13,57	13,1	13,1
Fe ₂ O ₃ *	5,58	4,87	6,45	5,69	5,67	5,14	5,54	5,33
MnO	0,09	0,05	0,07	0,08	0,06	0,06	0,07	0,07
MgO	5,76	4,56	5,18	5,75	6,43	4,52	4,25	4,12
CaO	3,94	3,02	3,35	3,42	3,23	2,37	2,41	2,79
Na ₂ O	1,71	1,55	1,79	1,86	1,68	2,49	1,99	2,7
K ₂ O	6,6	8,07	7,55	7,64	6,99	7,65	6,41	6,99
п.п.п.			0,64	0,64				
P ₂ O ₅	0,67	0,59	-	-	0,71	0,46	0,43	0,4
Сумма	95,39	94,32	98,59	98,76	98,71	98,77	96,65	98,49
Li	-	28	-	-	26	31	_	33
F	_	-	0,19	-	-	-	_	-
Sc	12,1	17	-	-	18	9	12,3	16
V	121	-	-	-	-	-	103	_
Cr	295	130	0,042	0,042	500	500	220	110
Co	23	19	-	-	26	15	17,8	19
Ni	209	-	0,03	0,03	-	-	151	_
Ga	-	-	-	-	-	-	_	-
Rb	357	408	_	-	400	394	304	341
Sr	647	450	_	_	470	390	499	440
Y	18,6	26	-	-	22	16	21	22
Zr	640	680	_	_	450	290	522	360
Nb	26	34	25	-	18	11	22	31
Cs	37	57	21	-	28	22	16	18
Ba	1739	1000	1 402	_	1100	810	1210	1000
La	100	250	82	-	220	73	88	100
Ce	213	_	177	-	-	-	173	-
Pr	28	-	24	-	_	-	22	-
Nd	98	-	86	-	_	-	77	-
Sm	13,7	-	12,4	-	-	-	10,8	-
Eu	2,5	-	2,4	-	-	-	1,92	-
Gd	7,7	-	7,6	-	-	-	7,7	-
Tb	0,77	-	0,81	-	-	-	0,84	-
Dy	3,4	-	3,7	-	-	-	3,7	-
Ho	0,51	-	0,69	-	-	-	0,65	-
Er	1,48	-	1,82	-	-	_	1,74	-
Tm	0,2	-	0,27	-	-	-	0,23	-
Yb	1,15	3	1,43	-	2	2	1,42	3
Lu	0,16	-	0,21	-	-	-	0,2	-
Hf	17,3	-	17,0	-	-	-	14,8	-
Ta	1,74	-	1,88	-	-	-	1,61	-
Th	30	_	45	-	-	-	28	_
U	6,9	_	7,3	-	-	-	6,3	_

Массив	Тархатинский сиенит граносие										
Порода											
Образец	8-07-22/1	8-07-22	7-745	718	7-746	721	5-686	8005			
SiO ₂	62,47	62,58	62,70	62,83	63,03	63,35	63,9	64,33			
TiO ₂	1,12	1,22	1,17	1,36	1,06	1,25	1,08	1,05			
Al_2O_3	13,40	13,51	13,42	13,04	13,71	13,11	14,52	13,9			
Fe ₂ O ₃ *	4,46	4,66	4,51	5,33	4,81	5,34	4,17	4,04			
MnO	0,06	0,06	0,06	0,06	0,08	0,06	0,064	0,06			
MgO	3,99	4,26	4,10	3,52	3,96	3,01	3,41	3,42			
CaO	2,09	2,18	2,40	3,06	2,49	2,79	2,32	2,24			
Na ₂ O	2,11	2,02	2,12	2,29	2,34	2,7	1,9	2,25			
K_2O	7,74	7,90	7,73	7,83	6,87	6,99	7,73	6,88			
п.п.п.	1,30	0,64	0,87		0,86						
P_2O_5	_	_	_	0,47	_	0,38	0,376	0,42			
Сумма	98,74	99,03	99,08	99,79	99,21	98,98	99,47	98,59			
Li	-	-	_	35	_	37	-	_			
F	-	0,26	-	_	-	-	-	_			
Sc	-	-	-	12	-	10	7,6	9,5			
V	-	-	-	-	-	-	-	72			
Cr	0,03	0,03	0,03	97	0,03	75	82,0	157			
Co	-	_	-	16	_	15	9,6	10,7			
Ni	-	0,02	-	-	_	-	-	127			
Ga	_	-	_	_	_	_	_	_			
Rb	_	_	_	421	_	366	357	354			
Sr	_	_	_	440	_	360	641	578			
Y	_	-	_	21	_	17	13	14,8			
Zr	_	_	_	320	_	260	423	440			
Nb	_	20	_	20	_	17	21	21			
Cs	_	17,1	_	29	_	30	30,0	31			
Ba	_	1 054	_	950	_	710	1320	1104			
La	_	76	_	120	_	97	114	75			
Ce	_	155	_	-	_	-	173	138			
Pr	_	19,7	_	_	_	_	-	17,4			
Nd		72	_	_	_	_	72,9	56			
Sm		11,0	_	_	_	_	15,1	8			
Eu		1,90	_	_	_	_	2,0	1,49			
Gd		6,4	_	_	_	_	7,2	5,6			
Tb		0,73	<u>-</u>	_	_	_	1,04	0,64			
Dy		3,1	_	_	_	_	-	2,6			
Ho		0,54		_	_	_		0,45			
Er		1,41		_	_	_		1,15			
Tm		0,21		_	_	_		0,16			
Yb		1,23	<u>-</u>	2	_	2	1,7	0,10			
Lu	-	0,17	-					0,9			
	-		-	-	_	-	0,22				
Hf	-	12,8	-	_	_	-	16,2	13,5			
Ta	-	1,50	-	-	_	-	2,2	1,59			
Th	-	38	-	-	-	-	68,5	33			
\mathbf{U}	-	5,6	-	_	_	-	8,3	5,1			

Массив	тродолж			Тархаті	инский			
Порода				гранос				
Образец	8002	720	5-687	719	5-684	5-451	8001	5-451
SiO ₂	64,63	66,21	66,66	66,74	67,29	68,02	68,15	68,23
TiO ₂	0,91	0,76	1,022	0,76	0,624	0,56	0,52	0,591
Al_2O_3	14,05	14,22	14,63	14,48	15,46	14,36	14,23	14,26
Fe ₂ O ₃ *	4,18	3,76	3,51	3,35	3,05	3,01	3,1	2,93
MnO	0,07	0,05	0,056	0,03	0,048	0,04	0,04	0,04
MgO	3,26	1,91	2,14	1,67	2,18	1,85	1,84	2,14
CaO	2,17	2,09	1,72	2,31	1,85	1,88	1,6	1,79
Na ₂ O	2,44	3,37	2,07	3,23	2,5	3,00	3,06	2,34
K_2O	6,32	6,2	7,45	5,78	6,21	5,83	5,82	6,37
п.п.п.						0,44		
P_2O_5	0,39	0,2	0,221	0,21	0,185	-	0,25	0,212
Сумма	98,42	98,77	99,48	98,56	99,40	98,99	98,61	98,90
Li	-	58	-	57	-	-	-	-
F	-	-	-	_	-	-	-	0,19
Sc	10,7	6	9,8	6	-	-	5,4	6,5
${f V}$	75	-	-	-	-	-	29	-
Cr	171	30	148,0	33	-	0,011	67	71
Co	11,7	9	15,4	10	-	-	6,6	9,0
Ni	124	-	-	_	-	0,009	58	-
Ga	_	-	-	_	-	_	-	-
Rb	305	349	398	398	298	_	370	-
Sr	554	370	456	420	590	_	449	_
Y	15,1	14	18	12	16	_	14,4	_
Zr	402	260	592	240	259	-	300	-
Nb	19,6	18	30	15	19	19,8	23	-
Cs	37	59	33,0	49	-	38	81	54
Ba	1099	630	820	910	1000	727	819	830
La	71	97	80,6	62	-	73	71	57,6
Ce	151	-	129	-	-	142	135	90,3
Pr	18,5	-	-	-	-	16,6	16,2	-
Nd	63	-	56,8	-	-	55	51	39,2
Sm	9	-	12,2	-	-	7,2	6,7	8,3
Eu	1,69	-	2,2	-	-	1,19	1,09	1,3
Gd	5,7	-	5,5	-	-	4,8	4,8	4,6
Tb	0,64	-	0,82	-	-	0,51	0,58	0,68
Dy	2,7	-	-	-	-	2,5	2,5	-
Ho	0,45	-	-	-	-	0,45	0,39	_
Er	1,15	-	-	-	-	1,25	1,16	-
Tm	0,16	-	-	-	-	0,19	0,17	_
Yb	1,02	2	1,34	1	-	1,20	1,15	1,19
Lu	0,13	-	0,18	-	-	0,17	0,16	0,16
Hf	12,7	-	12,0	_	-	9,2	10,6	8,6
Ta	1,65	-	1,6	_	-	2,2	2,6	2,0
Th	34	-	45	-	-	61	49	57
U	6,7	-	6,4	_	_	7,0	18,7	6,3

	тродолжение.	U						
Массив	Тархатино	I				джикский		
Порода	граносиенит	гранит		онцогаб	-		монцонит	
Образец	722	8007	9-09-1Б	9-09-3	8-09-102/2	9-09-06	8-09-102/3	8-09-102/1
SiO ₂	68,46	70,16	49,01	50,67	51,66	53,30	54,40	55,02
TiO ₂	0,7	1,46	1,59	1,08	0,89	1,68	1,45	1,45
Al ₂ O ₃	13,72	15,02	14,54	15,83	14,65	14,20	16,65	15,15
Fe ₂ O ₃ *	3,35	0,87	2,67	2,49	3,07	2,45	3,85	2,76
MnO	0,04	0,04	0,21	0,16	0,14	0,14	0,11	0,13
MgO	1,39	0,84	8,33	7,19	7,21	6,24	3,14	4,03
CaO	1,81	1,32	9,78	9,57	8,88	8,18	6,00	6,62
Na ₂ O	3,1	5,73	2,55	3,07	3,67	2,75	4,49	3,79
K ₂ O	5,78	1,42	0,78	1,11	2,19	1,44	2,85	2,43
п.п.п.								
P_2O_5	0,23	0,03	0,19	0,30	0,58	0,21	0,65	0,60
Сумма	98,58	96,89	89,65	91,47	92,94	90,59	93,59	91,98
Li	66	-	-	-	20	-	-	-
F	-	-	-	-	0,16	-	-	-
Sc	5	2,4	-	-	-	-	-	-
V	-	28	-	-	-	-	-	-
Cr	28	114	-	-	-	-	-	-
Co	6	1,23	-	-	-	-	-	<u>-</u>
Ni	-	13,7	-	-	-	-	-	<u>-</u>
Ga	-	-	-	-	-	-	-	-
Rb	411	86	22	21	48	-	-	51
Sr	330	146	172	915	2322	-	_	1142
Y	14	17,2	33,0	23,3	18,0	-	_	28,3
Zr	250	699	108	109	117	-	-	208,2
Nb	19	113	6,4	7,0	9,0	-	-	16,6
Cs	65	5,7	0,7	0,6	1,1	-	-	1,6
Ba	510	325	109	466	1332	-	-	794
La	68	33	7,25	26,8	50,7	-	-	51,80
Ce	-	122	17,3	57,2	104	-	-	104
Pr	-	20	2,69	7,26	13,57	-	-	12,81
Nd	-	76	13,2	29,5	54,6	-	-	48,2
Sm	-	12,2	3,73	5,77	9,07	-	-	8,67
Eu	-	2,5	1,06	1,45	2,48	-	-	1,88
Gd	-	7,3	4,9	5,9	6,8	-	-	7,28
Tb	-	0,77	0,86	0,73	0,75	-	-	0,96
Dy	-	3,7	5,88	3,88	3,59	-	-	5,24
Но	-	0,65	1,23	0,79	0,68	-	-	1,03
Er	-	1,81	3,34	2,16	1,93	-	-	2,97
Tm	-	0,24	0,53	0,35	0,28	-	-	0,44
Yb	1	1,55	3,08	1,97	1,75	-	-	2,59
Lu	-	0,23	0,42	0,32	0,24	-	-	0,40
Hf	-	21	3,0	2,8	3,0	-	-	5,3
Ta	-	2,9	0,4	0,4	0,6	-	-	1,1
Th	-	15,2	1,2	3,1	6,5	-	-	9,2
U	-	4,9	0,2	1,2	2,0	-	-	3,4

Массив	Продолже	родолжение. Теранджикский											
Порода		МОНЦО	ЭНИТ	1			одиорит						
Образец	8-09-104	9-09-5	A-053/1	9-09-4	A-046	8-09-102/7	8-09-102/4	A-045/					
SiO ₂	57,62	57,62	57,62	57,99	58,74	58,88	58,90	59,54					
TiO ₂	0,94	1,22	0,91	0,81	0,79	0,89	1,15	0,72					
Al ₂ O ₃	16,30	15,62	15,51	15,54	15,53	15,95	14,75	15,80					
Fe ₂ O ₃ *	2,36	2,66	3,14	2,64	2,61	2,23	2,99	2,35					
MnO	0,08	0,09	0,09	0,08	0,09	0,09	0,10	0,08					
MgO	3,30	3,51	3,94	3,40	3,34	3,07	3,61	3,26					
CaO	5,28	5,68	5,75	5,50	5,07	4,87	4,79	5,00					
Na ₂ O	4,30	4,05	3,98	3,94	3,96	4,28	4,11	4,00					
K_2O	3,44	3,20	3,58	3,99	4,22	3,96	3,39	3,74					
п.п.п.													
P_2O_5	0,59	0,66	0,61	0,59	0,58	0,68	0,72	0,55					
Сумма	94,21	94,30	95,13	94,48	94,93	94,90	94,51	95,04					
Li	-	-	-	_	-	<u>-</u>	-	-					
F	-	-	-	-	-	_	-	-					
Sc	-	-	-	-	-	_	-	-					
V	-	-	-	-	-	-	-	-					
Cr	-	-	-	_	-	<u>-</u>	-	-					
Co	-	-	-	-	-	-	-	-					
Ni	-	-	-	-	-	-	-	-					
Ga	-	-	-	-	-	<u>-</u>	-	-					
Rb	-	73	-	_	-	75	-	-					
Sr	-	1317	-	-	-	2035	-	-					
Y	-	27,6	_	_	-	18,4	_	-					
Zr	-	296	-	-	-	251	-	-					
Nb	-	24,6	-	-	-	16,2	-	-					
Cs	-	1,6	-	-	-	2,3	-	-					
Ba	-	1253	-	-	-	1589	-	_					
La	-	73,2	-	-	-	85,0	-	-					
Ce	-	144	-	-	-	175	-	-					
Pr	-	16,8	-	-	-	20,5	-	-					
Nd	-	61,1	-	_	-	71,6	-	-					
Sm	-	9,6	-	-	-	10,2	-	-					
Eu	-	2,1	-	-	-	2,3	-	-					
Gd	-	7,4	-	-	-	7,7	-	-					
Tb	-	0,91	-	-	-	0,8	-	-					
Dy	-	5,3	-	-	-	3,6	-	-					
Ho	-	1,01	-	-	-	0,73	-	-					
Er	-	2,9	-	-	-	2,0	-	-					
Tm	-	0,44	-	-	-	0,28	-	-					
Yb	-	2,5	-	-	-	1,5	-	-					
Lu	-	0,36	-	-	-	0,25	-	-					
Hf	-	6,8	-	-	-	6,0	-	-					
Ta	-	1,4	-	-	-	1,0	-	_					
Th	-	10,9	-	-	-	17,0	_	-					
\mathbf{U}	-	3,8	-	_	-	4,5	_	-					

Массив	тродоли	terrine.		Теранджикский						
Порода	MO	нцодиор	мт	1 ep	граносиенит					
Образец	A-052	нцодиој А-049	л A-041	A-048	8-09-103/1	А-045	8-09-102/5	9-09-7		
SiO ₂	59,54	59,96	60,79	62,21	63,99	65,89	67,41	67,97		
TiO ₂	0,94	0,93	0,88	0,90	0,59	0,85	0,54	0,37		
Al ₂ O ₃	15,66	15,72	15,47	16,26	15,38	14,98	15,20	15,85		
Fe ₂ O ₃ *	2,67	2,63	2,10	1,63	1,79	2,25	1,50	1,33		
MnO	0,08	0,08	0,07	0,09	0,05	0,09	0,04	0,03		
MgO	3,45	3,08	2,83	3,89	2,03	3,43	1,25	1,06		
CaO	5,35	5,06	4,64	2,15	3,28	1,34	1,89	2,82		
Na ₂ O	4,04	4,17	4,13	2,09	3,93	1,82	4,15	4,51		
K ₂ O	3,63	3,72	3,97	2,15	4,07	2,34	4,16	3,01		
п.п.п.										
P_2O_5	0,51	0,55	0,48	0,17	0,31	0,15	0,23	0,14		
Сумма	95,87	95,90	95,35	91,54	95,42	93,14	96,37	97,09		
Li	_	_	22	-	-	-	21	_		
F	-	-	0,12	-	-	-	0,071	-		
Sc	-	-	-	-	_	-	_	-		
V	-	-	-	-	-	-	-	_		
Cr	-	-	-	-	-	-	-	-		
Со	-	-	-	-	_	-	-	-		
Ni	-	-	-	-	-	-	-	-		
Ga	-	-	-	-		-	<u>-</u>	-		
Rb	83	-	89	-	-	-	77	111		
Sr	1664	-	1514	-	-	-	1076	821		
Y	19,9	-	19,4	-	-	-	20,5	5,5		
Zr	276	-	270	-	-	-	292	208		
Nb	17,7	-	22,5	-	-	-	19,6	6,6		
Cs	2,3	-	2,2	-	-	-	1,3	2,2		
Ba	1354	-	1309	-	-	-	1737	1668		
La	83,0	-	75,0	-	-	-	54,1	24,7		
Ce	161	-	149	-	-	-	111	45,3		
Pr	19,2	-	16,9	-	-	-	13,4	5,0		
Nd Sm	67,1 10,1	-	60,4 8,6	-	-	-	44,2 6,4	15,8		
Sm Eu	2,1	-	1,8	-	-	-	1,20	2,3 0,62		
Gd	$\frac{2,1}{7,4}$	-	6,6	-		-	5,2	1,8		
Tb	0,77	_	0,75	-	-	-	0,70	0,19		
Dy	3,7	_	3,4	-	- -	_	3,6	0,19		
Ho	0,73	_	0,71	_		_	0,73	0,19		
Er	1,9	_	2,0	_		_	2,1	0,15		
Tm	0,24	_	0,31	_	<u>-</u>	_	0,31	0,08		
Yb	1,6	_	1,8	_	_	-	2,1	0,50		
Lu	0,25	_	0,25	_		_	0,30	0,08		
Hf	6,3	-	6,3	_	_	-	6,9	4,8		
Ta	1,0	-	1,3	-	-	-	1,7	0,5		
Th	16,7	-	16,6	-	-	-	12,3	11,3		
U	5,1	-	4,7	_		-	4,5	2,3		

Массив	Гродолжен Тера	анджикски	й	Саввушинский				
Порода		гранит		монцо,	диорит		анодиори	IT
Образец	8-09-102/6	8-09-103/2	A-021	13-51/4	13-54/2	13-51/1	13-55/2	13-51/2
SiO_2	70,09	70,77	74,02	58,67	60	60,92	65,1	65,26
TiO_2	0,28	0,27	0,08	1,47	1,43	1,26	1,08	1,06
Al_2O_3	15,50	14,54	14,57	15,83	15,86	15,82	14,65	14,71
Fe ₂ O ₃ *	0,81	1,03	0,48	8,57	8	7,49	6,64	6,1
MnO	0,01	< 0,01	<	0,17	0,16	0,2	0,13	0,14
MgO	0,72	0,54	0,13	1,77	1,66	1,68	1,36	1,34
CaO	0,76	1,82	1,06	4,49	4,41	4,69	3,96	3,86
Na ₂ O	4,48	4,04	3,79	4,22	4,23	4,35	3,69	3,75
K_2O	4,10	4,14	3,77	3,03	3,09	2,17	2,59	2,82
п.п.п.								
P_2O_5	0,12	0,08	0,16	0,43	0,41	0,41	0,36	0,35
Сумма	96,87	97,22	98,05	98,65	99,25	98,99	99,56	99,39
Li	18	-	-	15	14	25	17	21
F	0,06	-	-	0,18	0,18	0,29	0,14	0,22
Sc	-	-	-	-	-	-	-	_
V	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-	-	-	-
Co	-	-	-	-	-	-	-	-
Ni	-	-	-	-	-	-	-	-
Ga	-	-	-	-	-	-	-	-
Rb	112	119	-	51	48	68	46	65
Sr	725	608	-	507	539	473	451	416
Y	10,5	8,1	-	81	85	90	87	73
Zr	196	175	-	1206	1237	641	621	672
Nb	14,7	13,1	-	27,4	27,8	29,9	28,1	26,3
Cs	1,9	1,8	-					
Ba	1269	1036	-	1621	1769	863	1269	1059
La	45,0	45,0	-	76,1	78,7	87,2	75,7	74,3
Ce	86,3	78,2	-	166	168	186	178	161
Pr	9,5	8,0	-	19,1	20,9	22,2	22,0	18,9
Nd	29,8	24,9	-	78,1	82,4	84,1	82,4	69,7
Sm	4,9	2,9	-	16,9	18,3	18,0	17,9	14,5
Eu	0,73	0,53	-	3,3	3,9	3,8	3,8	3,3
Gd	3,4	2,4	-	14,9	15,6	15,6	15,1	12,8
Tb	0,38	0,24	-	2,4	2,5	2,6	2,6	1,9
Dy	1,8	1,4	-	14,2	14,6	15,2	15,0	12,4
Но	0,38	0,27	-	2,9	2,9	3,1	3,0	2,6
Er	1,0	0,82	-	7,8	8,2	8,7	8,3	7,0
Tm	0,17	0,13	-	1,2	1,3	1,3	1,4	1,1
Yb	1,06	0,85	-	8,0	8,3	8,8	8,8	7,3
Lu	0,17	0,14	-	1,2	1,3	1,3	1,2	1,1
Hf	5,3	5,1	-	25,4	25,8	14,2	13,9	14,8
Ta	1,4	1,1	-	1	1	1,6	1,7	1,4
Th	28,7	28,5	-	3,3	3,5	8,1	6,9	7,7
\mathbf{U}	6,3	7,8	-	1,1	1,1	2,6	2	2,5

Массив	тродолж	CHHC.		ATVDE	ольский			
Порода	гранол	циорит	Cai	звушинск гранит		лейкогранит		сиенит
Образец	13-54/1	8-378	8-376	8-373/2	13-52/2	13-53/3	9-1/1	Ш-1424
SiO ₂	66,21	66,24	75,28	75,41	76,23	76,64	65,63	65,84
TiO ₂	0,96	1,09	0,22	0,11	0,09	0,12	0,606	0,6
Al_2O_3	15,05	14,50	13,31	13,32	12,11	12,26	15,14	14,53
Fe ₂ O ₃ *	5,74	6,95	1,78	1,09	1,25	0,71	4,44	3,74
MnO	0,12	0,16	0,12	0,15	0,01	0,01	0,084	0,08
MgO	1,18	1,32	0,15	0,06	0,04	0,08	1,03	1,62
CaO	3,61	3,97	1	0,63	0,53	0,54	1,6	2,52
Na ₂ O	3,91	3,01	2,45	2,48	2,17	2,31	3,95	5,52
K ₂ O	2,86	2,81	5,47	6,4	6,73	6,04	7,03	4,54
п.п.п.						·		
P_2O_5	0,31	0,34	0,07	0,05	0,01	0,01	0,146	0,23
Сумма	99,95	100,39	99,85	99,70	99,17	98,72	99,66	99,22
Li	22	_	-	-	3	-	-	_
F	0,15	-	-	-	<0,005	-	-	-
Sc	-	-	-	-	-	-	-	-
V	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-	-	-	-
Co	-	-	-	-	-	-	-	-
Ni	-	-	-	-	-	-	-	-
Ga	-	-	-	-	-	-	-	-
Rb	72	63	211	553	86	93	-	116
Sr	457	380	111	48	27	129	-	662
Y	80	87	40	26	3	14	-	14,3
Zr	621	350	360	141	70	34	-	228
Nb	25,9	28,4	25,8	32,3	2,2	5,2	-	26,4
Cs	-	-	-	-	-	-	-	
Ba	1249	1200	500	190	38	676	-	1105
La	74,6	75	46,5	26,8	16,2	16,2	-	51,8
Ce	166	143,9	64,8	36,7	28,3	29,8	-	86,4
Pr	19,6	0	0	0	2,4	3,4	-	10,9
Nd	73,4	69,6	24	11,5	6,5	12,0	-	37,2
Sm	15,4	16	4,5	1,9	0,84	2,5	-	5,9
Eu	3,6	3,4	0,81	0,34	0,84	0,68	-	1,4
Gd	13,9	13,4	2,6	1,3	0,58	2,1	-	3,3
Tb	2,2	2,3	0,54	0,31	0,08	0,38	-	0,51
Dy	13,3	0	0	0	0,46	2,2	-	2,8
Но	2,7	0	0	0	0,09	0,49	-	0,6
Er	7,5	0	0	0	0,28	1,3	-	1,6
Tm	1,2	0	0	0	0,05	0,2	-	0,27
Yb	7,7	7,7	3,6	4,0	0,41	1,3	-	1,5
Lu	1,2	1,1	0,62	0,75	0,07	0,19	-	0,2
Hf	14,0	0	0	0	2,5	1,1	-	6,9
Ta	1,5	0	0	0	0,1	0,5	-	1,3
Th	8,6	0	0	0	3	1,5	-	16,9
\mathbf{U}	2,5	0	0	0	0,5	0,4	-	3,0

Массив	Продолжение	•		Атурко	ркольский					
Порода	гран	осиенит		71	гранит					
Образец	PA-11/1-2000	Ш-1428	9-1	PA-9-	PA-10-	9-4/1	8-13-	PA-9/1-2000		
SiO ₂	66,47	66,5	66,74	67,31	67,82	67,93	68,09	68,11		
TiO ₂	0,607	0,56	0,481	0,599	0,57	0,48	0,50	0,572		
Al_2O_3	14,74	14,92	15,03	14,43	14,98	15,96	15,04	14,28		
Fe ₂ O ₃ *	3,75	3,11	3,17	4,12	3,65	3,16	3,52	3,89		
MnO	0,067	0,07	0,059	0,07	0,07	0,06	0,07	0,068		
MgO	1,63	1,09	1,03	1,61	1,73	0,99	1,27	1,69		
CaO	2,37	1,9	1,54	2,79	2,14	1,52	2,35	2,72		
Na ₂ O	3,44	5,32	4,76	4,17	3,2	3,16	4,26	3,73		
K ₂ O	5,53	5,3	5,45	3,97	4,21	5,82	3,88	3,51		
п.п.п.										
P ₂ O ₅	0,238	0,18	0,179	0,253	0,2	0,14	0,19	0,218		
Сумма	98,84	98,95	98,44	99,32	98,57	99,22	99,17	98,79		
Li	-	-	_	-	_	-	48	_		
F	-	-	-	-	-	-	0,10	-		
Sc	-	-	-	-	_	-	5,6	-		
V	-	-	-	_	_	-	<u>-</u>	_		
Cr	-	_	_	_	-	-	-	_		
Co	-	_	_	_	_	_	7,3	-		
Ni	-	_	_	_	-	-	-	_		
Ga	-	_	_	-	-	-	19,3	_		
Rb	-	118	-	-	_	-	104	-		
Sr	-	458	-	-	_	-	659	-		
Y	-	12,7	-	-	_	-	14,2	-		
Zr	-	321	-	-	-	-	261	-		
Nb	-	24,1	_	-	-	-	20,3	-		
Cs	-		-	-	-	-	2,1	-		
Ba	-	1178	_	-	-	-	668	-		
La	-	72,1	-	-	-	-	47,6	-		
Ce	-	129	_	-	-	-	102	-		
Pr	-	15,1	-	-	-	-	11,8	-		
Nd	-	47,1	-	-	-	-	39,5	-		
Sm	-	6,4	-	-	-	-	5,6	-		
Eu	-	1,5	-	-	-	-	1,4	-		
Gd	-	3,9	-	-	-	-	3,9	-		
Tb	-	0,62	_	-	-	-	0,5	-		
Dy	-	3,0	-	-	-	-	2,5	-		
Ho	-	0,50	-	-	-	-	0,48	-		
Er	-	1,4	-	-	_	-	1,5	-		
Tm	-	0,26	-	-	-	-	0,23	-		
Yb	-	1,5	-	-	-	-	1,5	-		
Lu	-	0,20	-	-	-	-	0,23	-		
Hf	-	9,3	-	-	_	-	6,6	-		
Ta	-	1,9	_	-	_	-	1,5	-		
Th	-	17,4	-	-	_	-	21,8	_		
U	_	4,6	_	-	_	_	3,3	_		

Массив			Ат	уркольск	ИЙ			
Порода		T T	0.10	гранит				
Образец	PA-9/2-2000	PA-10/1-2000	8-13-	8-13-	9-2/1	9-4	9-2	PA-9/3-200
SiO ₂	68,14	68,46	68,98	69,02	69,56	69,8	69,82	75,19
TiO ₂	0,52	0,621	0,47	0,35	0,51	0,37	0,43	0,09
Al ₂ O ₃	14,42	14,21	14,51	14,94	14,62	15,95	15,87	12,92
Fe ₂ O ₃ *	3,39	3,52	3,31	2,80	3,49	1,92	1,3	1,49
MnO	0,055	0,067	0,06	0,05	0,06	0,04	0,04	0,032
MgO	1,39	1,68	1,12	0,91	1,36	0,9	1,08	0,22
CaO	2,43	2,74	2,03	1,79	2,18	1,3	1,24	1,12
Na ₂ O	3,14	3,42	3,77	3,84	3,46	3,14	3,88	4,11
K_2O	4,76	4	4,48	5,10	3,79	5,81	5,32	4,27
п.п.п.								
P_2O_5	0,198	0,223	0,18	0,13	0,15	0,03	0,03	0,03
Сумма	98,44	98,94	98,91	98,93	99,18	99,26	99,01	99,47
Li	-	-	27	32	-	_	_	-
F	-	-	0,07	0,06	-	-	-	-
Sc	-	-	5,4	5,2	-	_	_	_
V	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-	_	_	-
Co	-	-	6,0	5,7	-	_	_	_
Ni	-	-	-	_	-	_	_	-
Ga	-	-	17,8	17,0	-	_	-	-
Rb	-	-	105	113	-	-	-	-
Sr	-	-	672	633	-	-	-	-
Y	-	-	13,7	8,8	-	_	-	-
Zr	-	-	256	206	-	-	-	-
Nb	-	-	18,4	14,2	-	-	-	-
Cs	-	-	1,6	1,9	_	_	_	_
Ba	-	-	927	862	_	_	_	_
La	_	_	57,2	47,6	_	_	_	_
Ce	-	_	105	78,7	-	-	-	-
Pr	_	_	11,9	8,4	_	_	_	_
Nd	_	_	38,7	27,3	_	_	_	_
Sm	_	_	5,3	3,7	-	_	_	_
Eu	_	_	1,4	0,90	_	_	_	_
Gd		-	3,8	2,5	_	_	_	_
Tb	_	-	0,5	0,3	_	_	_	_
Dy		_	2,4	1,7	_	_	_	_
Ho	_	_	0,5	0,3	_	_	_	_
Er		_	1,3	1,0		<u>-</u>	_	_
Tm	<u>-</u> -	-	0,20	0,14		_	_	-
Yb	<u>-</u> -	-	1,4	0,14		_	_	-
			0,21	0,97				
Lu Hf	-	-	6,2	+	-	_	_	_
	-	-		5,5	-	-	_	_
Ta	-	-	1,3	1,0	-	_	_	_
Th U	-	-	13,7 3,8	11,5 2,3	-	-	-	-

Массив	тродолже	J1111 C .		Синюш	енский			
Порода				гран				
Образец	8-11-02	8-11-05	8-11-05/1	8-11-13	Γ-4/1	8-11-09	8-11-12	Γ-6/1
SiO ₂	73,86	74,57	72,59	76,08	74,60	73,30	75,48	74,77
TiO ₂	0,27	0,26	0,25	0,20	0,23	0,19	0,22	0,08
Al ₂ O ₃	13,70	13,64	13,66	12,75	13,64	13,35	13,04	13,16
Fe ₂ O ₃ *	2,49	2,32	2,52	1,85	1,59	1,62	1,78	1,43
MnO	0,07	0,06	0,06	0,05	0,03	0,06	0,06	0,04
MgO	0,44	0,44	0,43	0,25	0,27	0,25	0,27	0,10
CaO	1,64	1,61	1,57	0,92	0,93	0,96	0,97	0,43
Na ₂ O	3,21	3,11	3,10	2,91	2,94	3,04	2,90	3,30
K ₂ O	4,57	4,44	4,87	4,93	6,13	5,75	5,37	5,78
п.п.п.		,	,		0,23			0,14
P ₂ O ₅	0,08	0,07	0,07	0,05	0,06	0,05	0,06	0,02
Сумма	100,33	100,52	99,12	99,99	100,65	98,57	100,15	99,25
Li	104	98,0	100	106	72,0	109	72,0	35,0
F	0,13	0,1	0,08	0,07	0,06	0,08	0,05	0,01
Sc	8,1	7,6	7,4	6,4	4,1	5,9	5,3	7,0
V	-	-	-	-	_	-	-	-
Cr	-	-	-	-	-	-	-	_
Co	3,2	3,2	3,3	2,2	1,8	1,9	2,1	1,4
Ni	-	-	-	-	-	-	-	-
Ga	17,5	17,9	17,2	17,4	15,8	17,8	16,4	21,0
Rb	259	231	248	311	272	356,0	270	392
Sr	133	131	131	94,0	129	110	99,0	19,0
Y	30	26,0	29,0	14,0	17,0	15,0	28,0	55,0
Zr	219	189	197	156	148	127	179	45,0
Nb	22,1	20,1	21,1	18,1	19,4	20,9	23,8	36,7
Cs	11,4	9,3	10,5	9,6	5,4	12,6	9,7	40,8
Ba	402	378	410	251	353	319	230	51,0
La	50,2	52,9	45,3	48,2	37,7	42,1	56,6	13,1
Ce	93,0	92,8	86,1	74,6	60,0	64,0	83,8	28,4
Pr	9,3	9,0	8,4	6,64	6,5	5,6	7,5	3,8
Nd	30,9	30,1	29,0	20,4	21,1	17,5	23,8	14,0
Sm	6,2	5,8	6,0	3,4	3,1	2,9	4,7	4,0
Eu	0,90	0,88	0,89	0,56	0,67	0,57	0,67	0,18
Gd	4,7	4,7	4,6	2,7	2,9	2,2	3,8	4,3
Tb	0,78	0,73	0,75	0,38	0,43	0,35	0,67	0,83
Dy	4,3	4,0	4,5	2,1	2,6	2,1	4,1	5,5
Ho	0,94	0,81	0,91	0,41	0,54	0,46	0,89	1,18
Er	2,8	2,4	2,7	1,2	1,8	1,4	2,7	4,1
Tm	0,46	0,41	0,46	0,20	0,31	0,26	0,48	0,86
Yb	3,4	2,8	3,4	1,7	2,4	2,0	3,3	7,1
Lu	0,55	0,46	0,54	0,30	0,40	0,35	0,54	1,2
Hf	6,2	5,2	5,5	4,6	4,7	3,7	5,2	4,6
Ta	2,2	2,0	2,0	1,3	1,8	1,6	2,0	7,3
Th	31,1	29,8	26,7	35,1	41,8	32,2	53,8	15,3
U	12,1	8,7	11,0	9,6	10,9	13,2	10,6	12,6

<u> Массир</u>	Тродолж	JIMC.	т	- CHCYN	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Массив Порода			1	Белокурих Вt гра				
Образец	Γ-24/1	C-3/1	10037/1	12216	10617	2347/1	12211	5184
SiO ₂	68,90	69,42	70,60	70,78	71,10	71,29	71,74	71,96
TiO ₂	0,61	0,49	0,43	0,38	0,50	0,40	0,33	0,38
Al ₂ O ₃	14,30	14,91	14,16	13,62	14,16	14,29	13,98	14,34
Fe ₂ O ₃ *	4,03	2,64	1,57	1,42	1,31	1,16	1,10	1,47
MnO	0,08	0,13	0,04	0,06	0,06	0,04	0,04	0,03
MgO	0,89	0,76	0,73	0,97	0,73	0,45	0,48	0,32
CaO	2,17	2	1,62	1,80	1,79	1,67	1,46	1,57
Na ₂ O	3,02	2,52	2,86	3,16	3,34	2,82	3,01	3,28
K ₂ O	4,92	5,9	4,90	4,98	4,30	4,60	5,61	4,62
п.п.п.	0,36	0,24	0,60	0,48	0,39	0,58	0,60	0,64
P ₂ O ₅	0,18	0,18	0,35	0,13	-	0,12	0,12	-
Сумма	99,48	99,19	97,86	97,78	97,68	97,42	98,47	98,61
Li	-	48	-	-	-	-	-	-
F	0,17	-	_	-	_	_	_	-
Sc	-	-	_	-	_	_	-	_
V	_	-	_	-	_	_	-	_
Cr	-	-	-	-	-	-	-	-
Co	-	-	-	-	_	_	-	_
Ni	-	-	-	-	-	_	-	_
Ga	-	-	-	-	-	-	-	_
Rb	-	165	-	-	-	-	-	-
Sr	_	340	_	-	-	_	_	_
Y	_	-	_	-	-	_	-	-
Zr	-	-	-	-	-	-	-	-
Nb	18,3	-	-	-	_	_	-	_
Cs	6,6	4,4	-	-	-	_	-	_
Ba	686	714	-	_	_	_	-	_
La	52	54	-	-	-	_	-	_
Ce	104	86,3	-	-	-	-	-	-
Pr	13,0	-	-	-	-	-	-	-
Nd	48	37,2	-	-	-	-	-	-
Sm	7,8	6,5	-	-	-	_	-	_
Eu	1,25	1,6	-	-	-	-	-	-
Gd	6,8	-	-	-	-	-	-	-
Tb	0,89	0,6	-	-	-	-	-	_
Dy	5,3	-	-	-	-	-	-	-
Ho	1,10	-	-	-	-	-	-	-
Er	3,3	-	-	-	-	-	-	-
Tm	0,51	-	-	-	-	-	-	-
Yb	3,0	1,7	-	-	-	-	-	-
Lu	0,48	0,3	-	-	-	-	-	-
Hf	7,0	6,1	-	-	-	-	-	-
Ta	1,58	0,8	-	-	-	-	-	-
Th	17,7	23	-	-	-	-	-	_
${f U}$	3,6	2,3	-	_	_	-	-	-

1 a0,11. 4.1. 1	Тродолж	CITIC.		г		<u>.</u>		
Массив					рихински	ІИ		
Порода	10140	10157	10022		гранит	10621	10040/1	10610
Образец	10149	10157	10832	Γ-8/1	10736	10621	10040/1	10619
SiO ₂	71,97	72,22	72,62	72,74	72,80	72,95	73,14	73,19
TiO ₂	0,41	0,38	0,30	0,26	0,40	0,41	0,26	0,46
Al ₂ O ₃	14,14	13,98	13,39	13,80	13,45	13,45	13,99	13,27
Fe ₂ O ₃ *	1,43	1,19	0,73	2,35	1,21	1,26	0,90	0,76
MnO	0,06	0,04	0,07	0,10	0,04	0,05	0,03	0,04
MgO	0,44	0,36	0,54	0,40	0,49	0,77	0,65	0,61
CaO	1,39	0,33	1,96	1,07	1,74	1,62	1,34	1,51
Na ₂ O	2,57	2,57	2,96	3,03	3,04	3,16	3,34	3,16
K ₂ O	5,05	4,82	5,48	5,17	4,70	4,00	4,80	4,50
п.п.п.	0,45	0,57	0,69	0,57	0,52	0,41	0,43	0,46
P ₂ O ₅	0,14	0,15	- 00.74	0,11	- 00.20	-	-	07.06
Сумма	98,05	96,61	98,74	99,60	98,39	98,08	98,88	97,96
Li	-	-	-	-	-	-	-	-
F	-	-	-	2.0	-	-	<u>-</u>	-
Sc	-	-	-	3,9	-	-	-	-
V	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-	-	-	-
Co	-	-	-	2,5	-	-	-	-
Ni	-	-	-	-	-	-	-	-
Ga	-	-	-	18	-	-	-	-
Rb	-	-	-	305	-	-	-	-
Sr	-	-	-	115	<u>-</u>	-	-	-
Y	-	-	-	20	-	-	-	-
Zr	-	-	-	154	-	-	-	-
Nb	-	-	-	23	-	-	-	-
Cs	-	-	-	22	-	-	-	-
Ba	-	-	-	279	-	-	-	-
La	-	-	-	40	-	-	-	-
Ce	-	-	-	85	-	-	-	-
Pr	-	-	-	10	-	-	-	-
Nd	-	-	-	34	-	-	-	-
Sm	-	-	-	6,5	-	-	-	-
Eu	-	-	-	0,56	-	-	-	-
Gd	-	-	-	5,0	-	-	-	-
Tb	-	-	-	0,71	-	-	-	-
Dy	-	-	-	3,8	-	-	-	-
Ho	-	-	-	0,68	-	-	-	-
Er	-	-	-	1,81	-	-	-	-
Tm	-	-	-	0,28	-	-	-	-
Yb	-	-	-	1,78	-	-	-	-
Lu	-	-	-	0,28	-	-	-	-
Hf	-	-	-	5,1	-	-	-	-
Ta	-	-	-	2,8	-	-	-	-
Th	-	-	-	24	-	-	-	-
${f U}$	-	-	-	6,2	-	-	-	-

Массив	тродолже	JIIIIC.		Белокупі	ихинский			
Порода					анит			
Образец	10509	10505	5182	Γ-8/7	Γ-8/5	8-311	Γ-8/3	3480
SiO ₂	73,33	73,48	73,04	73,06	73,40	73,68	73,71	73,83
TiO ₂	0,34	0,29	0,33	0,20	0,18	0,23	0,24	0,30
Al_2O_3	13,27	13,63	13,45	14,54	14,54	14,4	14,13	13,09
Fe ₂ O ₃ *	1,07	1,04	1,37	1,68	1,57	1,74	2,04	0,96
MnO	0,04	0,04	0,03	0,05	0,04	0,13	0,04	0,03
MgO	0,69	0,36	0,40	0,24	0,28	0,27	0,39	0,56
CaO	1,40	1,74	1,46	1,03	1,19	0,14	1,28	1,46
Na ₂ O	2,76	3,04	3,18	2,99	3,20	2,3	3,15	3,16
K ₂ O	4,70	4,60	4,54	5,79	5,13	5,51	5,00	4,00
п.п.п.	0,42	0,52	0,50	0,49	0,50		0,38	0,58
P_2O_5	-	0,52	-	0,10	0,06	0,55	0,08	_
Сумма	98,02	99,26	98,30	100,17	100,09	98,95	100,44	97,97
Li	-	_	-	-	_	133	-	_
F	-	-	-	-	-	-	-	-
Sc	-	-	-	3,1	2,7	-	3,3	_
V	-	-	-	<u>-</u>	_	-	-	_
Cr	-	-	-	-	-	-	-	_
Co	-	-	-	1,57	1,58	-	2,0	_
Ni	-	-	-	-	-	-	-	_
Ga	-	-	-	17	16	-	17	_
Rb	-	-	-	252	195	431	177	_
Sr	-	-	-	121	143	119	160	_
Y	-	-	-	15	13	20,7	14	_
Zr	-	-	-	121	105	137	150	-
Nb	-	-	-	15	12	27,1	13	_
Cs	-	-	-	12	13	17	9,8	_
Ba	-	-	-	285	392	250	404	_
La	-	-	-	31	25	32	35	_
Ce	-	-	-	64	54	71	74	-
Pr	-	-	_	7,7	6,1	-	8,4	_
Nd	-	-	-	27	20	29	30	-
Sm	-	-	-	5,0	3,8	5,75	5,0	_
Eu	-	-	-	0,47	0,37	0,53	0,46	_
Gd	-	-	-	3,7	2,9	4,5	3,7	_
Tb	-	-	-	0,51	0,42	0,67	0,48	_
Dy	-	-	-	2,6	2,2	-	2,4	-
Ho	-	-	-	0,45	0,38	-	0,45	-
Er	-	-	-	1,30	1,10	-	1,22	-
Tm	-	-	-	0,20	0,17	-	0,17	-
Yb	-	-	-	1,27	1,13	1,45	1,05	-
Lu	-	-	-	0,19	0,17	0,22	0,17	_
Hf	-	-	-	3,9	3,4	4,4	4,8	_
Ta	-	-	-	1,93	1,44	2,2	1,56	-
Th	-	-	-	18	15	20	20	-
U	-	-	-	2,1	2,7	2,5	2,5	-

Массив	тродолж	CITALC.		Белокури	хинский			
Порода			-	Bt лейко				
Образец	3478	10615	3484/2	5221	Γ-25/3	5218	5200	5220
SiO ₂	74,27	74,62	74,65	75,67	75,77	75,92	76,56	77,38
TiO ₂	0,28	0,36	0,30	0,10	0,14	0,10	0,03	0,09
Al ₂ O ₃	13,09	12,28	13,09	13,09	13,25	12,37	12,55	11,82
Fe ₂ O ₃ *	0,91	0,57	0,78	0,85	1,04	1,23	1,12	0,79
MnO	0,03	0,05	0,04	0,02	0,04	0,02	0,03	0,02
MgO	0,40	0,36	0,56	0,16	0,20	0,16	0,12	0,32
CaO	1,46	1,74	1,34	0,79	0,77	0,90	0,45	0,45
Na ₂ O	3,18	2,96	2,86	2,92	3,11	2,92	3,46	2,68
K ₂ O	4,54	4,10	4,00	4,20	5,22	5,00	5,00	5,37
п.п.п.	0,50	0,39	0,43	0,62	0,23	0,15	0,16	0,36
P ₂ O ₅	-	_	-	-	0,05	-	-	0,08
Сумма	98,66	97,43	98,05	98,42	99,81	98,77	99,48	99,36
Li	-	-	-	-	_	_	-	-
F	-	-	_	-	0,12	-	_	_
Sc	-	-	-	-	-	-	-	_
V	-	-	_	-	-	-	-	_
Cr	-	_	_	-	_	-	-	_
Co	-	_	_	-	_	_	_	_
Ni	-	_	_	_	_	_	-	_
Ga	-	-	_	-	_	-	-	_
Rb	-	_	_	-	_	_	_	_
Sr	-	_	_	-	_	-	_	_
Y	-	-	_	-	_	-	-	_
Zr	-	-	-	-	-	-	-	-
Nb	-	-	_	-	16,5	-	-	_
Cs	-	_	_	-	7,0	-	-	_
Ba	-	-	-	-	144	-	-	-
La	-	-	_	_	24	-	-	_
Ce	-	-	_	_	51	-	_	_
Pr	-	-	_	_	6,5	-	_	_
Nd	-	_	_	_	23	_	_	_
Sm	-	-	-	-	5,2	-	_	_
Eu	-	-	-	-	0,37	-	_	_
Gd	-	-	-	-	5,3	-	_	_
Tb	-	-	-	-	0,94	-	_	_
Dy	-	-	-	-	6,5	-	-	_
Ho	-	-	-	-	1,47	-	-	-
Er	-	-	-	-	4,5	-	-	_
Tm	-	-	-	-	0,74	-	-	-
Yb	-	-	-	-	4,7	-	-	_
Lu	-	-	-	-	0,66	-	_	_
Hf	-	-	-	-	3,1	-	-	-
Ta	-	-	-	-	2,0	-	_	_
Th	-	-	-	-	20	-	-	-
U	-	-	-	_	6,1	-	-	-

Табл. 4.1. Окончание.

Массив	Белокурихи		Точильненский	Осокинс			Курановск	
Порода	Втлейкогранит	аплит	лейкогранит	лейкогранит	аплит		лейкогран	
Образец	10555	8-302a-	8-1007/4	4-400	8-316	454	Ал-4	Γ-22/1
SiO ₂	77,55	77,24	77,18	74,66	79,64	72,66	73,56	75,17
TiO ₂	0,29	0,04	0,09	0,17	0,02	0,25	0,26	0,06
Al ₂ O ₃	10,76	13,28	12,56	14,11	12,44	13,66	14,17	14,31
Fe ₂ O ₃ *	0,97	0,57	0,99	1,5	0,28	2,2	1,83	0,89
MnO	0,00	0,11	0,03	0,05	0,14	0,05	0,12	0,04
MgO	0,52	0,01	0,13	0,17	0,01	0,4	0,39	0,10
CaO	0,28	0,55	0,45	0,67	0,36	1,25	1,27	0,53
Na ₂ O	3,24	3,13	2,08	2,71	2,83	2,76	2,23	3,98
K ₂ O	3,90	4,83	5,84	5,23	3,98	5,47	5,4	3,84
п.п.п.	0,47							0,65
P_2O_5	-	0,19	0,54	0,68	0,27	0,67	0,67	0,12
Сумма	97,98	99,95	99,89	99,95	99,97	99,37	99,90	99,69
Li	-	16	60,5	82	13	135,0	133	
F	-	-	-	<u>-</u>	-	_	-	-
Sc	-	-	-	-	-	-	-	-
V	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-	-	-	_
Co	-	-	-	<u>-</u>	-	-	-	-
Ni	-	-	-	-	-	-	-	_
Ga	-	-	-	-	-	-	-	_
Rb	-	528	240	300	517	271,0	220	-
Sr	-	3	15	89	13	152,0	71	_
Y	-	47	4,7	10	116	-	20	_
Zr	-	63	44	105	39	-	151	-
Nb	-	75	15	2,3	166,5	-	21	39
Cs	-	21	6,3	13	5	15,6	19,6	17,0
Ba	-	20	5,5	233	20	370,0	360	10,3
La	-	6,4	4,4	41	7,3	37,8	43	3,4
Ce	-	16	11	66	17,4	83,0	91	7,1
Pr	-	-	1	-	-	-	-	1,02
Nd	-	7,8	4,4	27	11,5	30,3	35	3,6
Sm	-	1,9	0,95	5,6	3,46	4,5	6,5	1,28
Eu	_	0,08	0,47	0,5	0,07	0,8	0,67	0,058
Gd	-	2,3	0,82	3,4	4,8	4,7	4,8	1,24
Tb	-	0,43	0,14	0,7	1,01	0,7	0,66	0,27
Dy	_	_	0,9	-	-	-	-	1,73
Ho	_	_	0,19	-	-	-	-	0,33
Er	-	-	0,67	-	-	-	-	0,99
Tm	-	-	0,12	-	-	-	-	0,15
Yb	-	3,6	1	1,7	7,22	1,3	1,5	1,00
Lu	_	0,65	0,17	0,2	1,22	0,2	0,22	0,15
Hf	-	6	2,6	3,9	5,4	5,4	4,4	0,82
Ta	_	4,9	2,2	1,6	20	2	1,8	6,0
Th	_	21		25	13	23,5	25,5	4,5
U	_	6,8		2,5	22,7	10	4,1	1,97

Примечание: $Fe_2O_3^*$ - суммарное содержание железа в форме Fe_2O_3 ; прочерк — содержание элемента не определялось; 0 или <0,... содержание элемента ниже предела обнаружения.

Табл. 4.2 Результаты Rb-Sr изотопных исследований пермо-триасовых интрузивных пород Алтая.

Массив Образец Порода Rb, ppm Sr, ppm 87Rb/ 86Si	Образец	Порода	Rb, ppm	Sr, ppm	87Rb/ 86Sr	$^{87}\mathrm{Sr/^{86}Sr}$	$ ho_{87}^{87} ho_{77}^{86} ho_{77}^{86}$
	Γ-28/1	Оп сиенит	72	349	0,6013	$0,70762\pm3$	0,70548
	2-756a*	сиенит	104	9532	0,0317	$0,70642\pm12$	0,7063
	2-759a*	сиенит	134	4934	0,079	$0,70648\pm12$	0,70620
	2-753a*	граносиенит	175	1170	0,4363	$0,70664\pm10$	0,70509
	2-755a*	граносиенит	124	782	0,4617	$0,7073\pm10$	0,70566
	2-778a*	граносиенит	131	791	0,482	$0,70739\pm 8$	0,70568
	2-742a*	гранит	135	589	0,6673	$0,70803\pm6$	0,70566
Айский	2-7436*	гранит	118	502	0,682	$0,70926\pm13$	0,70683
	$2-750B^*$	гранит	110	965	0,331	$0,70711\pm 5$	0,70593
	2-748a*	лейкогранит	126	696	0,379	$0,70723\pm5$	0,70588
	2-743a*	аплит	71	669	0,295	$0,70686\pm6$	0,70581
	2-745/1*	лейкогранит	117	148	2,295	$0,71382\pm13$	0,70566
	2-745a*	лейкогранит	125	134	2,7	0.71506 ± 10	0,70546
	2-746a*	лейкогранит	157	77	6,24	$0,7276\pm12$	0,70541
	2-744a*	лейкогранит	175	9	57,84	$0,90644\pm11$	0,70074
	8-09-102/2**	монцога66ро	51	2537	0,05832	$0,70471\pm3$	0,7045
Теранжикский	A-041**	монцодиорит	96	1599	0,1741	$0,70558\pm4$	0,70497
	8-09-105/2**	граносиенит	109	1160	0,2723	$0,7053\pm5$	0,70434
	8-07-19	лифоидодном ти	340	962	1,2382	$0,71220\pm5$	0,70773
	5-451	граносиенит	329	477	1,9966	0.71465 ± 3	0,70744
тархатинскии	8-07-22	сиенит	359	662	1,5689	$0,71377\pm 2$	0,7081
	8002**	граносиенит	319	641	1,4388	$0,713571\pm11$	0,70837
	8-13-51/4	тифоидодном	51	486	0,3069	0.70623 ± 2	0,70516
	8-13-54/2	Ои диорит	47	511	0,2667	$0,70598\pm3$	0,70505
	8-13-55/2	гранодиорит	49	442	0,3195	$0,70622\pm2$	0,70511
Саввушинскии	***96-Ⅲ	гранодиорит	49	457	0,3117	$0,70633\pm5$	0,70522
	8-376	гранит	211	111	4,1166	0.72019 ± 8	0,7059
	8-13-52/2	лейкогранит	82	25	9,5157	$0,73848\pm3$	0,70546

Табл. 4.2. Продолжение.

Массив	Образец	Порода	Rb, ppm	Sr, ppm	⁸⁷ Rb/ ⁸⁶ Sr	$^{87}\mathrm{Sr/^{86}Sr}$	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}_{\mathrm{(T)}}$
Саввушинский	III-92***	лейкогранит	69	45	4,449	$0,72075\pm9$	0,70493
Атуркольский	8-13-88/1	меланогранит	105	634	0,4774	$0,70652\pm6$	0,70486
	6239***	гранит	264	151	5,07	$0,72255\pm 5$	0,70452
5	8-11-13	гранит	300	95	9,2028	$0,73720\pm5$	0,70447
Синюшенскии	149***	гранит	291	138	6,114	$0,72615\pm 5$	0,70441
	6246***	лейкогранит	297	40	21,3	$0,77822\pm5$	0,70247
	Γ-24/1	Вt гранит	199	367	1,5678	$0,71138\pm2$	0,70581
	Γ-25/3	Вt гранит	282	74	11,1447	$0,74691\pm4$	0,70727
3)	***\$9-III	гранит	200	183	3,181	$0,71771\pm6$	0,70640
ьелокурихинскии	III-64***	лейкогранит	275	40	19,79	$0,77618\pm12$	0,70580
	III-63***	гранит	212	162	3,343	$0,71833\pm12$	0,70644
	452***	лейкогранит	260	111	6,81	$0,73062\pm15$	0,70640
							•

* – из Крук и др., 1998 ** – из Крупчатников и др., 2015 *** – из Владимиров и др., 1997

Табл. 4.3. Резльтаты Sm-Nd изотопных исследований пермо-триасовых интрузивных пород Алтая.

			•	•	•			٠	٠	
Массив	Образец	Порода	Sm, ppm	Nd, ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Sm/ ¹⁴⁴ Nd	$\mathbf{E}_{\mathrm{Nd}(0)}$	E _{Nd}	T _{Nd}	Tnd (DM-2)
	Γ -28/1	Оп сиенит	3,9	23,1	0,1014	0.512588 ± 12	-1	2,1	765	867
	2-756a*	сиенит	31,1	162,5	0,1155	0.512617 ± 7	-0,4	2,2	830	858
	5-307*	граносиенит	4,7	30,8	0,0917	0.512607 ± 6	-0,60	2,75	681	811
Айский	2-755a*	граносиенит	3,9	25,8	0,0905	0.512618 ± 8	-0,4	3	099	790
	2-742a*	гранит	2,9	19,5	0,09	0.512596 ± 8	-0,8	2,6	685	824
	$2-748a^*$	лейкогранит	6,2	40,8	0,092	0.512619 ± 7	-0,4	3	699	793
	2-745a*	лейкогранит	1,9	14,4	0,0792	0.512600 ± 8	-0,7	3	626	789
	**7/201-60-8	монцога66ро	9,3	56,8	0,0989	0.512637 ± 2	0	3,1	684	782
Теранжикский	A-041**	монцодиорит	8,0	54,2	0,0887	0.512606 ± 3	-0,6	2,8	999	805
	8-09-105/2**	граносиенит	6,4	43,6	0,0889	0.512631 ± 4	-0,1	3,3	636	765
	61-20-8	монцодиорит	13,5	6,98	0,0936	0.512342 ± 5	-5,8	-2,4	1027	1245
	5-451	граносиенит	7,2	47,0	0,0924	0.512287 ± 8	-6,8	-3,5	1086	1331
гархатинскии	8-07-22	сиенит	11,3	72,6	0,0938	0.512361 ± 9	-5,4	-2,1	1005	1214
	8002**	граносиенит	9,7	63,1	0,0926	0.512332 ± 2	-6	-2,6	1031	1258
	8-13-51/4	монцодиорит	19,4	100,7	0,1162	$0,512696\pm18$	1,1	3,6	712	731
	8-13-54/2	Ои диорит	18,1	91,2	0,1203	0.512675 ± 7	0,7	3,1	778	922
Саввушинский	8-13-55/2	гранодиорит	18,0	92,5	0,1174	0.512662 ± 14	0,5	2,9	775	790
	8-376	гранит	3,4	20,7	0,0992	0.512591 ± 7	-0,9	2,1	747	858
	8-13-52/2	лейкогранит	0,8	7,0	0,0712	$0,512576\pm13$	-1,2	2,7	616	810
Атуркольский	8-13-88/1	меланогранит	5,4	37,1	0,0887	0.512564 ± 2	-1,4	1,9	717	875
Синюшенский	8-11-13	гранит	3,4	22,3	0,0924	0.512540 ± 2	-1,92	1,38	692	923
	Γ -24/1	Bt гранит	8,556	48,403	0,1068	0.512628 ± 8	-0,19	2,68	747	817
Белокурихинский	Γ -25/3	Вt гранит	1,892	8,368	0,1367	0.512715 ± 11	1,50	3,42	864	755
	III-65***	гранит	46,7	8,5	0,1106	0.512565 ± 8	-1,42	1,33	867	929

| Ш-65* *- из Крук и др., 1998 **

**-из Крупчатников и др., 2015

*** – из Владимиров и др., 1997

Табл. 5.3. Состав калиевых полевых шпатов из пород пермо-триасовых интрузивных серий Алтая.

Массив						Айский					
Порода		габбро					сие	нит			
Обр.		Γ-27					Γ-1	2/1			
SiO ₂	64,7	64,6	65,0	64,3	64,3	64,3	64,4	63,8	64,1	64,5	64,6
Al_2O_3	18,2	18,3	18,4	18,4	18,6	18,5	18,7	18,7	18,5	18,9	19,1
FeO	0,03	0,03	0,04	0,09	0,08	0,06	0,13	0,06	0,07	0,06	0,22
MgO	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	н.п.о.	н.п.о.	н.п.о.	0,03	н.п.о.	н.п.о.	0,04	н.п.о.	н.п.о.	0,07	0,09
Na ₂ O	0,77	0,85	1,02	1,37	1,37	1,30	1,57	0,95	1,21	2,48	2,63
K ₂ O	15,3	15,0	15,0	14,4	14,2	14,4	13,9	14,8	14,5	12,5	12,1
SrO	н.п.о.	н.п.о.	н.п.о.	0,67	0,87	0,78	0,82	1,05	0,85	1,08	0,93
BaO	0,50	0,71	0,33	0,04	0,06	0,07	0,06	0,09	0,08	0,06	0,10
Сумма	99,6	99,6	99,8	99,5	99,6	99,6	99,8	99,6	99,5	99,8	99,9
Формулы	ные едиі	ницы. Ра	счёт на	8 атомог	з О.						
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01
Mg	0,00	-	-	-	-	-	-	-	-	-	-
Mn	-	-	-	-	-	0,00	-	-	-	-	-
Ca	-	-	-	0,00	-	-	0,00	-	-	0,00	0,00
Na	0,07	0,08	0,09	0,12	0,12	0,12	0,14	0,09	0,11	0,22	0,24
K	0,91	0,89	0,88	0,86	0,84	0,85	0,82	0,88	0,87	0,74	0,71
Sr	-	-	-	0,02	0,02	0,02	0,02	0,03	0,02	0,03	0,02
<u>Ba</u>	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Or	0,929	0,921	0,906	0,873	0,872	0,880	0,852	0,911	0,888	0,765	0,748
An	0,000	0,001	0,000	0,002	0,000	0,000	0,002	0,000	0,000	0,003	0,005
Ab	0,071	0,079	0,094	0,125	0,128	0,120	0,146	0,089	0,112	0,231	0,247

Табл. 5.3. Продолжение.

Массив					_	Айский					
Порода		сиенит			Qu cı	иенит			гранос	сиенит	
Обр.		Γ-12/1			Γ-2	28/1			Γ-	29	
SiO ₂	64,5	64,2	64,8	65,2	65,3	64,9	65,0	65,3	65,3	65,2	64,8
Al_2O_3	19,1	18,7	18,8	18,4	18,0	18,1	18,5	18,0	18,1	18,1	18,1
FeO	0,13	0,20	0,18	0,06	0,08	0,06	0,05	0,14	0,10	0,10	0,16
MgO	0,08	н.п.о.	н.п.о.	0,03	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	0,02	н.п.о.
MnO	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	0,21	0,08	0,21	0,05	н.п.о.						
Na ₂ O	3,45	2,26	2,81	1,81	0,86	0,64	0,63	0,54	0,95	1,24	0,24
K_2O	11,4	12,6	12,0	14,0	15,2	15,5	15,4	15,5	14,9	14,8	15,9
SrO	0,84	1,14	0,74	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	0,03	0,11	0,07	0,44	0,08	0,40	0,32	0,08	0,09	0,13	0,36
Сумма	99,9	99,5	99,8	99,9	99,6	99,5	99,9	99,6	99,6	99,7	99,7
Формульн	ные един	ицы. Ра	счёт на	8 атомо	в О.						
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01
Mg	0,01	-	_	0,00	-	_	-	-	0,00	0,00	-
Mn	-	0,00	-	-	-	_	-	-	_	-	-
Ca	0,01	0,00	0,01	0,00	-	-	-	-	-	-	-
Na	0,31	0,20	0,25	0,16	0,08	0,06	0,06	0,05	0,09	0,11	0,02
K	0,67	0,75	0,71	0,82	0,90	0,92	0,91	0,91	0,88	0,87	0,94
Sr	0,02	0,03	0,02	-	-	-	-	-	-	-	-
Ba	0,00	0,00	0,00	0,01	0,00	0,01	0,01	0,00	0,00	0,00	0,01
Or	0,678	0,782	0,730	0,833	0,921	0,941	0,941	0,949	0,912	0,887	0,978
An	0,010	0,004	0,011	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ab	0,312	0,213	0,259	0,164	0,079	0,059	0,059	0,051	0,088	0,113	0,022

Табл. 5.3. Продолжение.

Массив				Айс	кий				
Порода	граносиенит		Bt-	Атр гра	нит		I	Зt грани	Т
Обр.	Γ-29			Γ-26				Γ-13/1	
SiO ₂	65,1	66,0	65,1	64,9	65,4	65,3	65,0	65,4	65,2
Al_2O_3	18,1	18,6	18,1	18,3	18,3	18,2	18,1	18,0	18,0
FeO	0,17	0,12	0,12	0,12	0,07	0,14	0,13	0,09	0,13
MgO	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	0,06	0,06
Na_2O	0,20	2,61	0,91	0,94	0,54	1,52	0,69	0,91	1,11
K ₂ O	16,1	12,8	15,1	15,0	15,6	14,4	15,9	15,5	15,3
BaO	0,13	0,11	0,10	0,18	0,07	0,04	н.п.о.	0,02	0,03
Сумма	99,9	100,3	99,7	99,6	100,1	99,6	100,1	100,2	100,0
	ые единицы. Рас	чёт на 8	атомов ().				,	
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01
Mg	0,00	_	_	-	_	_	_	-	-
Mn	-	_	_	_	_	_	_	-	-
Ca	-	-	_	_	_	_	0,00	0,00	0,00
Na	0,02	0,23	0,08	0,08	0,05	0,14	0,06	0,08	0,10
K	0,95	0,74	0,89	0,89	0,92	0,85	0,93	0,91	0,90
Ba	0,00	0,00	0,00	0,00	0,00	0,00	_	0,00	0,00
Or	0,981	0,764	0,916	0,914	0,950	0,862	0,937	0,915	0,898
An	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,003	0,003
Ab	0,019	0,236	0,084	0,086	0,050	0,138	0,062	0,082	0,099

Табл. 5.3. Продолжение.

Массив		Айс	кий				Tap	хатинс	кий		
Порода		лейког	ранит			монцод	циорит			сиенит	
Обр.		Г-1	4/1			8-07	7-19			7-745	
SiO ₂	65,2	64,3	65,0	65,1	65,2	64,9	64,9	65,5	64,1	65,0	64,6
Al_2O_3	18,0	18,4	18,2	18,3	19,2	19,2	19,5	18,8	18,3	18,2	18,3
FeO	0,12	0,09	0,09	0,12	0,13	0,17	0,15	0,19	0,08	0,11	0,06
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.
CaO	0,02	н.п.о.	н.п.о.	н.п.о.	0,49	0,51	0,76	0,13	н.п.о.	0,03	н.п.о.
Na ₂ O	0,62	0,17	0,80	0,84	3,37	3,44	3,50	2,55	0,97	1,84	1,30
K ₂ O	16,0	16,7	15,6	15,7	11,3	11,2	11,0	12,9	15,4	14,4	15,0
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,25	0,19	0,17	0,16	0,14	н.п.о.	н.п.о.
BaO	0,02	н.п.о.	0,02	0,04	0,23	0,27	0,27	0,20	0,40	0,14	0,18
Сумма	100,1	99,9	99,9	100,3	100,3	100,0	100,4	100,4	99,6	99,9	99,6
Формулы	ные един	ницы. Ра	счёт на	8 атомс	ов О.						_
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,005	0,006	0,006	0,007	0,00	0,00	0,00
Mg	-	-	_	_	-	_	_	0,001	_	_	-
Mn	-	-	-	-	-	0,001	-	0,001	_	-	-
Ca	0,00	-	-	-	0,02	0,02	0,04	0,01	-	0,00	-
Na	0,06	0,02	0,07	0,08	0,30	0,30	0,31	0,23	0,09	0,16	0,12
K	0,94	0,99	0,92	0,93	0,66	0,65	0,64	0,75	0,92	0,85	0,89
Sr	0,00	0,00	-	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Ba	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00
	T		T	ı	Т	T	ı		Т		
Or	0,943	0,985	0,928	0,924	0,672	0,665	0,649	0,764	0,913	0,836	0,883
An	0,001	0,000	0,000	0,001	0,024	0,025	0,038	0,006	0,001	0,001	0,001
Ab	0,056	0,015	0,072	0,075	0,304	0,310	0,313	0,230	0,087	0,163	0,116

Табл. 5.3. Продолжение.

Массив				Taj	рхатинсь	сий			
Порода			сиенит				гранос	сиенит	
Обр.			7-745				5-4	15 1	
SiO ₂	64,0	65,2	64,6	64,6	64,8	65,5	65,1	65,2	65,6
Al_2O_3	18,5	18,5	18,5	18,3	18,7	18,9	19,0	18,7	18,9
FeO	0,10	0,13	0,13	0,16	0,09	0,15	0,16	0,09	0,17
MgO	0,04	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	0,07	0,04	н.п.о.	0,02	0,04	0,16	0,30	0,02	0,13
Na ₂ O	0,80	1,27	1,27	1,61	2,29	2,91	3,23	1,46	2,53
K ₂ O	15,2	14,9	14,7	14,4	13,5	12,2	11,6	14,4	12,7
SrO	н.п.о.	н.п.о.	0,21	н.п.о.	0,17	н.п.о.	0,26	н.п.о.	н.п.о.
BaO	1,24	0,15	0,58	0,35	0,50	0,35	0,62	0,50	0,24
Сумма	100,1	100,5	100,1	99,7	100,2	100,3	100,3	100,5	100,3
Формульн	ње едині	ицы. Расч	нёт на 8 а	томов О.					
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,01	0,00	0,01	0,00	0,006	0,006	0,003	0,006
Mg	0,00	0,00	_	-	-	-	-	-	-
Mn	-	-	-	-	-	-	-	-	-
Ca	0,00	0,00	-	0,00	0,00	0,01	0,01	0,00	0,01
Na	0,07	0,11	0,11	0,14	0,20	0,26	0,29	0,13	0,22
K	0,90	0,88	0,87	0,85	0,80	0,71	0,68	0,85	0,74
Sr	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00
Ba	0,02	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,00
	ī	3	ē	E		T	1	1	
Or	0,922	0,884	0,884	0,854	0,794	0,729	0,693	0,866	0,763
An	0,004	0,002	0,000	0,001	0,002	0,008	0,015	0,001	0,006
Ab	0,074	0,114	0,116	0,145	0,204	0,263	0,292	0,133	0,231

Табл. 5.3. Продолжение.

Массив					Tepa	нджикс	кий				
Порода			монцо	габбро			M	онцони	IT	монцо	диорит
Обр.	9-09-3		8	3-09-102	/2			9-09-5		8-09-	102/7
SiO ₂	65,8	65,4	67,2	64,8	64,8	65,3	65,2	65,4	64,8	63,8	65,7
Al_2O_3	20,0	18,4	18,7	18,8	18,6	18,4	18,4	18,4	18,8	18,3	18,1
FeO	0,2	0,12	0,08	0,17	0,17	0,14	0,07	0,13	0,09	0,24	0,13
MgO	-	-	-	-	-	-	-	-	-	-	-
MnO	-	_	-	-	-	-	-	-	-	-	-
CaO	0,45	0,04	0,04	0,15	0,02	0,06	0,2	0,14	0,67	0,17	0,07
Na ₂ O	2,14	1,48	1,05	1,67	1,22	1,82	2,34	2,63	2,75	2,34	1,86
K ₂ O	11,0	14,1	11,6	13,2	14,3	13,4	12,7	12,6	11,7	13,7	13,6
SrO	н.п.о.	0,28	0,25	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,22	0,37	0,28
BaO	н.п.о.	0,64	0,72	0,96	0,52	0,44	0,67	0,58	0,77	0,61	0,5
Сумма	99,7	100,5	99,5	99,8	99,6	99,6	99,6	99,9	99,9	99,6	100,2
Формуль	ные един	ицы. Ра	счёт на	8 атомо	в О.						
Si	3,0	3,0	3,1	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,01	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,00	0,01	0,00
Mg	_	-	-	-	-	_	_	-	-	-	-
Mn	_	-	-	-	-	-	_	-	-	-	-
Ca	0,02	0,00	0,00	0,01	0,00	0,00	0,01	0,01	0,03	0,01	0,00
Na	0,19	0,13	0,09	0,15	0,11	0,16	0,21	0,23	0,25	0,21	0,17
K	0,64	0,83	0,67	0,78	0,85	0,79	0,75	0,74	0,69	0,81	0,79
Sr	-	0,01	0,01	-	-	-	-	0,00	0,01	0,01	0,01
Ba	-	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01
	T	1		E		E				1	
Or	0,752	0,861	0,876	0,832	0,885	0,826	0,774	0,754	0,712	0,787	0,824
An	0,026	0,002	0,003	0,008	0,001	0,003	0,010	0,007	0,034	0,008	0,004
Ab	0,222	0,137	0,121	0,160	0,114	0,171	0,216	0,239	0,254	0,205	0,172

Табл. 5.3. Продолжение.

Массив				Теранда	кикский			
Порода		гр	аносиен	ИТ			гранит	
Обр.	8	3-09-102/	5	A-0	48/1	8	B-09-103/	2
SiO ₂	65,6	65,7	65,6	64,2	65,0	65,5	64,0	64,9
Al_2O_3	18,2	18,1	18,7	19,1	18,8	19,3	19,9	19,1
FeO	0,16	0,13	0,13	0,09	0,08	0,12	0,14	0,08
MgO	_	-	_	_	_	_	-	-
MnO	-	-	-	-	-	-	-	-
CaO	н.п.о.	0,03	0,06	0,09	н.п.о.	0,08	0,06	н.п.о.
Na ₂ O	2,2	2,31	2,42	2,57	1,74	3,31	2,84	1,64
K ₂ O	13,4	12,8	12,5	12,8	13,8	10,6	10,7	13,3
SrO	н.п.о.	н.п.о.	н.п.о.	0,35	0,21	н.п.о.	0,14	н.п.о.
BaO	0,59	0,63	0,97	0,65	0,36	1,33	2,16	0,92
Сумма	100,1	99,9	100,4	99,8	100,0	100,2	99,9	99,9
Формулы	ные едині	ицы. Расч	нёт на 8 а	томов О				_
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,1	1,0
Fe	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00
Mg	_	-	-	_	-	_	-	-
Mn	_	-	-	-	-	-	_	-
Ca	_	0,00	0,00	0,00	-	0,00	0,00	-
Na	0,20	0,21	0,21	0,23	0,16	0,29	0,25	0,15
K	0,78	0,75	0,73	0,75	0,81	0,62	0,63	0,78
Sr	_	0,00	-	0,01	0,01	_	0,00	-
Ba	0,01	0,01	0,02	0,01	0,01	0,02	0,04	0,02
Or	0,800	0,784	0,771	0,762	0,839	0,675	0,709	0,842
An	0,001	0,002	0,003	0,005	0,000	0,004	0,003	0,000
Ab	0,200	0,215	0,226	0,233	0,161	0,321	0,287	0,158

Табл. 5.3. Продолжение.

Массив					Сав	вушинс	кий				
Порода		гранод	циорит					гранит			
Обр.	Γ-2/8		Γ-2/9			Γ-3/2		Γ-3	3/1	8-1.	3-57
SiO ₂	64,2	64,5	64,5	64,4	64,5	64,6	64,6	64,9	65,1	64,5	64,0
Al_2O_3	18,8	18,6	18,5	18,4	18,5	18,7	18,3	18,4	18,3	18,2	18,2
FeO	0,07	0,06	0,06	0,08	0,08	0,09	0,06	0,06	0,12	0,08	0,02
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.
CaO	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Na ₂ O	0,63	0,56	0,49	0,40	0,56	1,29	0,49	1,11	0,48	0,60	0,54
K ₂ O	15,7	15,9	15,9	16,1	16,0	14,9	16,1	15,1	16,4	16,0	16,0
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	0,95	0,54	0,76	0,51	0,61	0,67	0,44	0,05	0,05	0,17	0,67
Сумма	100,4	100,2	100,4	100,0	100,3	100,3	100,1	99,7	100,4	99,7	99,6
Формуль	ные един	ницы. Ра	счёт на	8 атомон	3 O.						
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,003	0,002	0,002	0,003	0,003	0,004	0,002	0,002	0,005	0,00	0,00
Mg	-	-	-	-	-	-	-	-	-	-	-
Mn	-	-	-	0,001	-	-	-	0,001	-	-	-
Ca	0,00	-	-	-	-	0,00	-	-	-	-	-
Na	0,06	0,05	0,04	0,04	0,05	0,12	0,04	0,10	0,04	0,05	0,05
K	0,930	0,943	0,942	0,954	0,944	0,877	0,955	0,893	0,962	0,95	0,95
Sr	-	0,00	-	-	-	0,00	-	-	-	-	-
Ba	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,01
Or	0,941	0,949	0,956	0,963	0,949	0,882	0,956	0,900	0,958	0,946	0,951
An	0,001	0,000	0,000	0,000	0,000	0,002	0,000	0,000	0,000	0,001	0,000
Ab	0,058	0,051	0,044	0,037	0,051	0,116	0,044	0,100	0,042	0,053	0,049

Табл. 5.3. Продолжение.

Массив						Атурко	льский	İ				
Порода						монцо	гранит					
Обр.						8-13	-88/1					
SiO_2	64,5	64,5	63,9	63,9	64,3	64,1	64,2	64,4	64,2	63,9	64,0	63,9
Al ₂ O ₃	18,9	18,5	18,5	18,4	18,3	18,5	18,4	18,4	18,6	18,4	18,8	18,7
FeO	0,126	0,083	0,097	0,119	0,110	0,088	0,092	0,081	0,136	0,089	0,129	0,136
MgO	н.п.о.	0,005	0,016	0,050	0,004	0,010	0,001	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,011
MnO	0,015	0,003	0,035	0,005	0,018	н.п.о.	0,001	0,003	0,025	н.п.о.	н.п.о.	0,013
CaO	0,065	0,038	0,069	0,085	0,055	0,036	0,087	0,019	0,026	0,015	0,136	0,113
Na ₂ O	1,74	1,71	1,95	1,76	1,54	1,36	1,30	1,30	1,56	1,58	2,39	1,91
K ₂ O	13,4	14,7	14,2	14,6	14,8	15,2	15,1	15,3	14,8	14,8	13,5	14,1
SrO	н.п.о.	н.п.о.	0,16	н.п.о.	н.п.о.	0,19	н.п.о.	н.п.о.	0,17	0,22	н.п.о.	0,21
BaO	0,242	0,088	0,527	0,142	0,112	0,214	0,030	0,084	0,204	0,198	0,505	0,484
Сумма	99,2	99,7	99,5	99,2	99,3	99,7	99,3	99,6	99,7	99,2	99,7	99,7
Формули	ные еді	иницы.	Расчёт і	на 8 ато	мов О.							
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,01
Mg	-	0,00	0,00	0,00	0,00	0,00	0,00	_	_	-	-	0,00
Mn	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	-	-	0,00
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01
Na	0,16	0,15	0,18	0,16	0,14	0,12	0,12	0,12	0,14	0,14	0,22	0,17
K	0,79	0,87	0,84	0,87	0,88	0,90	0,90	0,91	0,88	0,88	0,80	0,84
Sr	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,01
Ba	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01
	Г	<u> </u>	<u> </u>	<u> </u>	I	I	<u> </u>	T	1	1		
Or	0,833	0,848	0,824	0,842	0,862	0,879	0,880	0,885	0,861	0,860	0,783	0,825
An	0,003	0,002	0,003	0,004	0,003	0,002	0,004	0,001	0,001	0,001	0,007	0,006
Ab	0,164	0,150	0,172	0,154	0,136	0,119	0,116	0,114	0,138	0,140	0,211	0,170

Табл. 5.3. Продолжение.

Массив						Атурко	льский	Ì				
Порода						монцо	гранит					
Обр.						9.	-4					
SiO_2	64,1	64,3	63,5	62,8	63,9	63,8	63,3	63,6	64,6	64,3	63,7	63,7
Al_2O_3	18,7	18,7	18,6	18,9	18,7	18,7	18,7	18,6	18,7	18,7	18,6	18,6
FeO	0,108	0,112	0,127	0,108	0,125	0,111	0,100	0,112	0,086	0,057	0,089	0,042
MgO	н.п.о.	0,005	н.п.о.	0,024	0,005	0,005	н.п.о.	0,006	н.п.о.	0,004	н.п.о.	0,009
MnO	н.п.о.	н.п.о.	н.п.о.	0,010	н.п.о.	н.п.о.	н.п.о.	0,001	0,010	0,009	н.п.о.	н.п.о.
CaO	0,041	0,033	0,062	0,130	0,066	0,006	0,031	0,025	0,040	0,013	0,023	н.п.о.
Na ₂ O	1,94	1,42	1,61	2,04	1,44	1,38	1,16	1,06	1,86	1,34	1,16	0,38
K_2O	14,6	14,9	14,4	13,9	14,9	14,9	15,3	15,5	14,6	15,3	15,3	16,3
SrO	н.п.о.	0,17	0,35	0,32	0,25	0,20	0,18	н.п.о.	0,15	н.п.о.	0,28	н.п.о.
BaO	0,295	0,488	0,717	0,707	0,389	0,464	0,572	0,158	0,062	0,070	0,380	0,268
Сумма	100,0	100,2	99,4	99,0	99,9	99,5	99,3	99,2	100,1	99,9	99,7	99,3
Формули	ные еді	иницы.	Расчёт і	на 8 ато	мов О.							
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	-	0,00	0,00	0,00	-	0,00	-	0,00	-	0,00
Mn	_	-	-	0,00	-	-	-	0,00	0,00	0,00	-	-
Ca	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-
Na	0,17	0,13	0,15	0,19	0,13	0,12	0,11	0,10	0,17	0,12	0,10	0,03
K	0,86	0,88	0,86	0,83	0,89	0,89	0,91	0,93	0,86	0,90	0,91	0,97
Sr	0,00	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00
Ba	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,01	0,00
				1		1						
Or	0,830	0,872	0,852	0,812	0,869	0,876	0,895	0,905	0,836	0,882	0,896	0,966
An	0,002	0,002	0,003	0,006	0,003	0,000	0,002	0,001	0,002	0,001	0,001	0,000
Ab	0,168	0,126	0,145	0,181	0,128	0,123	0,104	0,094	0,162	0,118	0,103	0,034

Табл. 5.3. Продолжение.

Массив					Cı	інюшен	ский				
Порода					c	р.з. гра	нит				
Обр.					8-1 1	1-02					8-11-05
SiO ₂	64,6	64,6	64,8	64,2	64,3	64,7	65,0	64,8	65,1	64,4	65,0
Al_2O_3	18,0	18,0	18,0	18,1	18,0	17,9	18,2	18,2	18,3	18,1	18,1
FeO	0,052	0,071	0,107	0,133	0,088	0,084	0,067	0,105	0,061	0,081	0,082
MgO	0,018	0,010	0,001	0,000	н.п.о.	н.п.о.	0,003	0,006	0,011	0,020	н.п.о.
MnO	н.п.о.	0,002	0,002	0,019	н.п.о.	0,002	н.п.о.	0,002	н.п.о.	0,010	0,008
CaO	0,087	0,029	0,055	0,089	0,024	0,073	0,088	0,026	н.п.о.	0,025	0,036
Na ₂ O	1,23	1,04	1,32	1,81	0,35	1,31	1,53	1,18	1,21	1,00	1,18
K ₂ O	15,2	15,7	15,3	14,6	16,4	14,9	14,8	15,3	15,4	15,7	15,5
BaO	0,205	0,000	0,027	0,067	0,083	0,034	0,159	0,093	0,056	0,162	0,064
Сумма	99,6	99,5	99,7	99,0	99,3	99,0	99,9	99,8	100,1	99,6	100,1
Формуль	ные еди	ницы. Ра	асчёт на	8 атомо	в О.						
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	-	-	0,00	0,00	0,00	0,00	-
Mn	-	0,00	0,00	0,00	_	0,00	_	0,00	_	0,00	0,00
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	0,00	0,00
Na	0,11	0,09	0,12	0,16	0,03	0,12	0,14	0,11	0,11	0,09	0,11
K	0,90	0,93	0,90	0,87	0,98	0,89	0,87	0,90	0,90	0,93	0,91
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	T	ī	I	I	I	Ī	ī	ī	Ī	I	1
Or	0,887	0,907	0,882	0,838	0,968	0,879	0,860	0,894	0,893	0,910	0,895
An	0,004	0,001	0,003	0,004	0,001	0,004	0,004	0,001	0,000	0,001	0,002
Ab	0,109	0,092	0,115	0,158	0,031	0,117	0,135	0,105	0,107	0,088	0,103

Табл. 5.3. Продолжение.

Массив	Синюшенский											
Порода					ср	.з. гран	ИТ					
Обр.						8-11-05						
SiO ₂	65,0	64,8	64,8	65,1	64,6	64,8	64,9	64,6	64,2	64,4	64,3	
Al_2O_3	18,2	18,2	18,1	18,3	17,9	18,3	18,2	18,1	18,0	18,4	18,2	
FeO	0,068	0,066	0,046	0,053	0,091	0,129	0,084	0,073	0,060	0,084	0,052	
MgO	н.п.о.	0,010	н.п.о.	0,013	н.п.о.	0,009	н.п.о.	н.п.о.	0,013	0,001	0,018	
MnO	0,010	0,014	н.п.о.	0,006	0,003	н.п.о.	0,010	н.п.о.	н.п.о.	0,005	н.п.о.	
CaO	0,055	0,015	0,012	0,016	0,032	0,099	0,030	0,037	0,060	0,090	0,060	
Na ₂ O	1,24	1,46	1,20	1,39	0,63	1,66	1,26	1,09	1,17	1,41	1,44	
K_2O	15,4	15,2	15,6	15,3	15,6	14,3	15,4	15,5	15,2	14,8	14,8	
BaO	0,102	0,242	0,093	0,000	0,000	0,034	0,042	0,049	0,180	0,544	0,273	
Сумма	100,2	100,1	99,9	100,1	99,0	99,5	99,9	99,5	98,9	99,9	99,2	
Формуль	ные едиг	ницы. Ра	счёт на	8 атомов	з O.							
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Mg	-	0,00	-	0,00	-	0,00	-	-	0,00	0,00	0,00	
Mn	0,00	0,00	_	0,00	0,00	-	0,00	-	-	0,00	-	
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Na	0,11	0,13	0,11	0,12	0,06	0,15	0,11	0,10	0,11	0,13	0,13	
K	0,91	0,90	0,92	0,90	0,93	0,85	0,91	0,92	0,91	0,88	0,88	
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	
	ı	ı		ı		ı	ı			ı		
Or	0,888	0,872	0,895	0,878	0,941	0,847	0,888	0,902	0,893	0,870	0,868	
An	0,003	0,001	0,001	0,001	0,002	0,005	0,001	0,002	0,003	0,004	0,003	
Ab	0,109	0,127	0,105	0,121	0,057	0,148	0,110	0,097	0,104	0,126	0,129	

Табл. 5.3. Продолжение.

Массив					Синюш	енский				
Порода		ср.з. г	ранит				кр.з. г	ранит		
Обр.		8-11	-05/1				8-1 2	1-09		
SiO ₂	64,3	64,5	64,9	64,5	64,7	64,7	64,5	65,0	64,4	64,3
Al_2O_3	18,2	18,4	18,4	18,3	18,5	18,3	18,3	18,4	18,5	18,3
FeO	0,084	0,051	0,090	0,077	0,076	0,044	0,071	0,080	0,084	0,101
MgO	0,020	0,007	0,006	0,010	0,014	0,026	0,001	0,004	0,004	н.п.о.
MnO	0,003	н.п.о.	0,005	0,016	н.п.о.	0,005	н.п.о.	н.п.о.	0,019	н.п.о.
CaO	0,102	0,035	0,087	0,024	0,022	н.п.о.	0,072	0,030	0,045	0,054
Na ₂ O	0,90	1,41	1,73	1,53	1,32	0,77	0,94	1,04	1,24	1,48
K_2O	15,6	15,2	14,6	14,8	15,1	15,9	15,5	15,3	15,2	15,2
BaO	0,003	0,049	0,069	0,250	0,109	0,034	0,110	0,070	0,373	0,160
Сумма	99,2	99,7	99,9	99,6	99,9	100,0	99,6	100,0	100,0	99,8
Формулы	ные един	ицы. Рас	чёт на 8 а	томов О	•					
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-
Mn	0,00	-	0,00	0,00	_	0,00	_	-	0,00	-
Ca	0,01	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00
Na	0,08	0,13	0,15	0,14	0,12	0,07	0,08	0,09	0,11	0,13
K	0,92	0,90	0,86	0,88	0,89	0,94	0,92	0,90	0,90	0,90
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
	I				ı					
Or	0,915	0,875	0,844	0,863	0,882	0,931	0,912	0,905	0,887	0,869
An	0,005	0,002	0,004	0,001	0,001	0,000	0,004	0,001	0,002	0,003
Ab	0,080	0,124	0,152	0,136	0,117	0,069	0,084	0,094	0,110	0,128

Табл. 5.3. Продолжение.

Массив					Синюш	іенский				
Порода			кј	р.з. гран і	ит				аплит	
Обр.	8-12	1-09			Γ-4/1				Γ-6/1	
SiO ₂	64,4	64,2	64,9	65,3	65,1	65,1	65,4	65,4	65,3	65,4
Al_2O_3	18,4	18,4	17,7	18,2	17,8	17,8	17,9	17,9	17,7	17,8
FeO	0,081	0,045	0,047	0,166	0,065	0,124	0,133	0,019	0,074	0,055
MgO	0,014	0,018	0,004	н.п.о.	0,010	0,010	н.п.о.	н.п.о.	н.п.о.	0,007
MnO	н.п.о.	н.п.о.	н.п.о.	0,013	0,223	0,009	0,004	н.п.о.	0,005	н.п.о.
CaO	0,057	0,014	0,007	0,025	0,004	0,019	0,026	н.п.о.	0,047	0,017
Na ₂ O	1,40	0,99	0,28	1,20	0,17	1,03	1,24	1,40	1,62	1,12
K_2O	15,2	15,7	16,0	14,7	16,1	15,1	14,6	14,9	14,5	15,4
BaO	0,046	0,060	0,012	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,014	0,001
Сумма	99,7	99,5	99,3	99,9	99,7	99,5	99,6	99,9	99,5	100,1
Формулы	ные един	ицы. Рас	чёт на 8 а	томов О	•					
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,00
Mg	0,00	0,00	0,00	-	0,00	0,00	-	-	-	0,00
Mn	_	-	-	0,00	0,01	0,00	0,00	-	0,00	-
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00
Na	0,13	0,09	0,03	0,11	0,02	0,09	0,11	0,12	0,14	0,10
K	0,90	0,93	0,95	0,87	0,95	0,89	0,86	0,87	0,85	0,91
Ba	0,00	0,00	0,00	-	-	-	-	_	0,00	0,00
Or	0,875	0,912	0,974	0,889	0,984	0,905	0,885	0,125	0,145	0,100
An	0,003	0,001	0,000	0,001	0,000	0,001	0,001	0,000	0,002	0,001
Ab	0,123	0,087	0,026	0,110	0,016	0,094	0,114	0,875	0,853	0,899

Табл. 5.3. Продолжение.

Массив	Белокурихинский										
Порода	Вt гр	анит (1	фаза)			В	t гранит	г (2 фаза	a)		
Обр.		Γ-24/1			Γ-8	8/1			Г-8	8/3	
SiO ₂	65,0	64,9	65,4	64,8	65,1	65,3	65,5	65,4	65,1	65,0	65,5
Al_2O_3	18,2	18,3	18,1	18,0	18,3	18,2	18,1	18,1	18,2	17,9	18,2
FeO	0,062	0,113	0,089	0,019	н.п.о.	0,011	0,037	0,008	0,007	0,025	0,018
MgO	0,006	0,01	0,021	0,001	0,005	н.п.о.	0,001	0,001	0,001	0,017	0,005
MnO	0,004	0,003	0,012	0,003	н.п.о.	0,020	н.п.о.	0,007	0,001	0,005	0,002
CaO	н.п.о.	0,018	н.п.о.	0,016	0,084	0,021	0,035	0,016	0,040	0,038	0,007
Na ₂ O	0,456	0,619	1,1	1,08	1,26	0,84	1,53	1,02	1,29	0,69	1,45
K ₂ O	15,6	15,4	14,9	15,3	14,7	15,2	14,6	15,1	14,7	15,7	14,9
P_2O_5	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,095	0,254	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	0,225	0,215	0,07	0,000	0,054	н.п.о.	0,011	н.п.о.	0,056	0,026	0,036
Сумма	99,5	99,5	99,7	99,5	99,8	100,0	100,0	100,0	99,6	99,6	100,4
Формуль	ные един	ницы. Ра	счёт на	8 атомов	O.						
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00
Mn	0,00	0,00	0,00	0,00	-	0,00	-	0,00	0,00	0,00	0,00
Ca	_	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,04	0,06	0,10	0,10	0,11	0,07	0,14	0,09	0,12	0,06	0,13
K	0,92	0,91	0,87	0,91	0,87	0,89	0,86	0,89	0,86	0,93	0,87
P	_	-	-	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
Ba	0,00	0,00	0,00	0,00	0,00	_	0,00	-	0,00	0,00	0,00
Or	0,958	0,942	0,899	0,902	0,881	0,922	0,861	0,906	0,880	0,935	0,871
An	0,000	0,001	0,000	0,001	0,004	0,001	0,002	0,001	0,002	0,002	0,000
Ab	0,042	0,058	0,101	0,097	0,115	0,077	0,137	0,093	0,118	0,063	0,129

Табл. 5.3. Продолжение.

Массив]	Белокурі	іхинскиі	й			
Порода]	Bt грани	т (2 фаза	.)		2N	Ііса гран	ит (3 фа	за)	
Обр.		Γ-	8/3			Γ-8/5			Γ-8/7	_
SiO ₂	65,1	65,3	65,0	65,2	65,0	65,0	64,8	64,8	64,7	64,6
Al ₂ O ₃	18,1	17,8	17,9	17,8	18,0	18,0	18,0	17,9	18,1	18,0
FeO	0,008	0,006	0,041	0,022	0,010	0,011	0,018	0,028	0,017	0,027
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,001	0,001	0,007	н.п.о.	н.п.о.	н.п.о.
MnO	0,008	н.п.о.	0,012	0,011	0,016	0,019	0,025	н.п.о.	0,002	н.п.о.
CaO	0,027	0,015	0,015	0,039	0,009	н.п.о.	0,009	0,041	0,025	0,025
Na ₂ O	0,95	1,04	0,81	0,48	0,80	0,56	0,86	0,75	0,40	0,67
K ₂ O	15,4	15,5	15,7	16,0	16,0	16,2	15,7	15,7	16,2	15,8
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,073	н.п.о.	0,196
BaO	0,031	0,016	0,012	0,038	0,044	0,010	0,041	0,000	0,028	0,021
Сумма	99,9	100,0	99,9	99,9	100,1	100,0	99,8	99,5	99,9	99,5
Формулы	ные един	ицы. Рас	чёт на 8 а	томов О	•					
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	-	-	-	0,00	0,00	0,00	-	-	-
Mn	0,00	-	0,00	0,00	0,00	0,00	0,00	-	0,00	-
Ca	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00
Na	0,09	0,09	0,07	0,04	0,07	0,05	0,08	0,07	0,04	0,06
K	0,91	0,91	0,93	0,95	0,94	0,95	0,93	0,93	0,96	0,94
P	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00	0,01	0,01
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Or	0,913	0,907	0,927	0,955	0,929	0,950	0,923	0,931	0,963	0,939
An	0,001	0,001	0,001	0,002	0,000	0,000	0,000	0,002	0,001	0,001
Ab	0,085	0,093	0,072	0,044	0,071	0,050	0,077	0,067	0,036	0,060

Табл. 5.3. Продолжение.

Массив	Осокинский шток		Курановский шток			Точильненский шток					
Порода	E	Вt грани	T	M	Іи грані	ИТ			гранит		
Обр.		Γ-25/3			Γ-22/1			;	8-1006/5		
SiO ₂	64,9	65,2	65,2	65,0	64,6	64,9	64,9	64,3	64,8	64,6	64,7
Al_2O_3	18,0	18,2	18,3	18,0	18,2	18,1	18,0	18,0	18,0	17,7	17,9
FeO	0,117	0,012	0,059	0,01	0,018	н.п.о.	0,025	0,088	0,057	0,083	0,074
MgO	0,021	0,009	0,017	н.п.о.	н.п.о.	0,006	0,009	0,005	0,018	0,011	0,007
MnO	0,011	н.п.о.	н.п.о.	н.п.о.	0,009	0,004	0,005	0,017	н.п.о.	н.п.о.	0,025
CaO	0,154	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,084	н.п.о.	0,014	0,022	0,037
Na ₂ O	0,293	0,984	0,441	0,322	0,35	0,263	1,30	0,73	1,62	1,10	1,25
K ₂ O	16,0	15,1	15,8	16,0	16,1	16,2	15,7	16,2	14,9	15,8	15,4
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,16	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	0,009	0,016	0,062	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,111	0,147	0,072	0,066
Сумма	99,5	99,7	99,9	99,5	99,6	99,6	100,2	99,6	99,6	99,6	99,6
Формулы	ные едиі	ницы. Ра	счёт на	8 атомо	в О.						
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	_	-	0,00	0,00	0,00	0,00	0,00	0,00
Mn	0,00	-	-	-	0,00	0,00	0,00	0,00	-	-	0,00
Ca	0,01	-	-	_	-	-	0,00	-	0,00	0,00	0,00
Na	0,03	0,09	0,04	0,03	0,03	0,02	0,12	0,07	0,15	0,10	0,11
K	0,95	0,89	0,93	0,95	0,95	0,96	0,93	0,96	0,88	0,94	0,91
P	0,00	0,00	0,00	-	0,01	-	-	0,00	-	0,00	0,00
Ba	0,00	0,00	0,00	-	_	-	-	0,00	0,00	0,00	0,00
Or	0,965	0,910	0,959	0,970	0,968	0,976	0,885	0,936	0,858	0,903	0,888
An	0,008	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,001	0,001	0,002
Ab	0,027	0,090	0,041	0,030	0,032	0,024	0,112	0,064	0,142	0,096	0,110

Табл. 5.3. Окончание.

Массив	Точильненский шток											
Порода		гра	нит					пегм	атит			
Обр.		8-10	06/5					8-10	10/1			
SiO ₂	64,4	63,8	64,2	64,8	64,1	64,5	64,7	64,2	63,9	64,5	64,1	64,8
Al_2O_3	17,9	18,1	17,8	18,1	18,0	17,8	17,9	18,1	17,8	17,9	17,6	17,9
FeO	0,051	0,077	0,087	0,066	0,029	0,019	0,003	0,016	0,021	0,017	0,021	0,020
MgO	0,011	0,002	0,009	н.п.о.	н.п.о.	0,009	0,004	0,023	н.п.о.	0,003	н.п.о.	н.п.о.
MnO	0,003	н.п.о.	0,015	н.п.о.	0,011	н.п.о.	0,005	0,001	н.п.о.	0,002	0,002	н.п.о.
CaO	0,016	0,017	0,049	0,013	0,019	0,033	0,027	0,004	0,007	0,017	0,004	0,040
Na ₂ O	0,89	0,88	1,13	1,13	0,47	0,39	0,38	0,45	0,39	0,86	0,33	0,34
K ₂ O	15,8	15,7	15,4	15,5	16,6	16,6	16,6	16,5	16,7	16,0	16,6	16,5
P_2O_5	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,19	н.п.о.	н.п.о.	0,10	н.п.о.	0,09	0,11	0,09
BaO	0,042	0,034	0,031	0,050	0,001	н.п.о.	н.п.о.	0,016	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,3	98,8	98,9	99,7	99,6	99,6	99,8	99,5	99,0	99,5	98,9	99,9
Формуль	ные еди	ницы. Р	асчёт н	а 8 атом	юв О.							
Si	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Al	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	-	_	0,00	0,00	0,00	-	0,00	-	-
Mn	0,00	-	0,00	-	0,00	-	0,00	0,00	-	0,00	0,00	-
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,08	0,08	0,10	0,10	0,04	0,03	0,03	0,04	0,04	0,08	0,03	0,03
K	0,94	0,94	0,92	0,92	0,99	0,99	0,99	0,98	1,00	0,95	0,99	0,98
P	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ba	0,00	0,00	0,00	0,00	0,00	_	-	0,00	-	_	-	-
	1				I	ı		ı		1		
Or	0,920	0,921	0,897	0,900	0,958	0,964	0,965	0,960	0,965	0,924	0,971	0,968
An	0,001	0,001	0,002	0,001	0,001	0,002	0,001	0,000	0,000	0,001	0,000	0,002
Ab	0,079	0,078	0,100	0,099	0,041	0,034	0,034	0,040	0,035	0,076	0,029	0,030

Примечание. Данные электронно-зондового анализа (мас. %). н.п.о. - ниже предела обнаружения, прочерк – не определялся.

Табл. 5.4. Состав плагиоклазов из пород пермо-триасовых интрузивных серий Алтая.

Массив				•		Айский	İ		•		
Порода		габбро					сие	нит			
Обр.		Γ-27					Г-1	2/1			
SiO ₂	60,4	60,1	60,0	68,1	67,1	67,3	62,9	64,7	61,8	67,8	65,5
Al_2O_3	24,5	25,0	25,1	19,5	20,4	20,0	22,5	21,3	23,6	19,7	21,3
FeO	0,07	0,09	0,10	0,03	0,06	0,04	0,14	0,07	0,16	0,07	0,08
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	6,56	6,97	6,98	0,38	0,91	0,53	3,63	2,15	4,72	0,38	2,10
Na ₂ O	7,88	7,45	7,55	11,37	10,38	10,60	9,09	9,94	8,41	10,82	9,80
K ₂ O	0,16	0,16	0,21	0,14	0,25	0,17	0,33	0,26	0,23	0,21	0,19
P ₂ O ₅	0,04	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	0,26	0,66	0,67	0,97	1,12	0,97	0,36	0,77
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,7	99,8	100,0	100,0	100,0	99,6	99,7	99,7	100,2	99,5	100,0
Формульн	ые един	ицы. Ра	асчёт на	8 атомо	ов О.						
Si	2,70	2,68	2,67	2,99	2,96	2,97	2,82	2,89	2,76	2,99	2,90
Al	1,29	1,31	1,32	1,01	1,06	1,04	1,19	1,12	1,24	1,02	1,11
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00
Mg	-	_	-	-	-	-	-	-	-	-	-
Mn	-	_	_	-	-	_	-	-	-	-	-
Ca	0,31	0,33	0,33	0,02	0,04	0,03	0,17	0,10	0,23	0,02	0,10
Na	0,68	0,64	0,65	0,97	0,89	0,91	0,79	0,86	0,73	0,92	0,84
K	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01
P	0,00	-	-	-	-	-	-	-	-	-	-
Sr	_	-	-	0,01	0,02	0,02	0,03	0,03	0,03	0,01	0,02
Ba	-	_	-	-	_	_	-	-	-	-	_
Or	0,009	0,009	0,012	0,008	0,015	0,010	0,019	0,015	0,013	0,012	0,011
An	0,312	0,338	0,334	0,018	0,045	0,027	0,177	0,105	0,234	0,019	0,105
Ab	0,679	0,653	0,654	0,974	0,940	0,963	0,803	0,880	0,753	0,969	0,884

Табл. 5.4. Продолжение.

Массив	Айский											
Порода			сие	нит				Qu cı	иенит			
Обр.			Γ-1	2/1				Γ-2	28/1			
SiO ₂	62,3	68,4	67,4	59,4	67,4	67,9	57,5	62,1	63,3	61,9		
Al_2O_3	22,8	20,2	19,9	24,9	20,3	20,0	26,4	23,3	22,7	23,8		
FeO	0,14	0,12	0,05	0,08	0,07	0,02	0,25	0,16	0,09	0,03		
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
CaO	3,89	0,68	0,58	6,35	0,65	0,18	8,77	4,93	4,32	5,36		
Na ₂ O	9,07	10,21	11,14	7,56	10,53	10,91	6,62	8,65	8,89	8,51		
K_2O	0,27	0,17	0,15	0,16	0,13	0,19	0,28	0,30	0,29	0,12		
P_2O_5	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
SrO	0,85	0,44	0,54	1,09	0,74	0,88	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
Сумма	99,5	100,5	99,9	99,8	99,9	100,2	99,8	99,5	99,6	99,8		
Формулі	ьные еді	иницы.	Расчёт і	на 8 ато	мов О.							
Si	2,80	2,98	2,97	2,68	2,97	2,98	2,59	2,77	2,81	2,75		
Al	1,21	1,04	1,03	1,32	1,05	1,04	1,40	1,22	1,19	1,25		
Fe	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00		
Mg	-	-	-	-	-	-	-	-	-	-		
Mn	-	-	-	-	-	-	-	-	-	-		
Ca	0,19	0,03	0,03	0,31	0,03	0,01	0,42	0,24	0,21	0,26		
Na	0,79	0,86	0,95	0,66	0,90	0,93	0,58	0,75	0,76	0,73		
K	0,02	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,01		
P	-	-	-	-	-	-	-	-	-	-		
Sr	0,02	0,01	0,01	0,03	0,02	0,02	-	-	-	-		
Ba	-	_	_	_	-	-	-	0,00	_	-		
Or	0,016	0,011	0,008	0,010	0,008	0,011	0,016	0,017	0,016	0,007		
An	0,189	0,035	0,028	0,314	0,032	0,009	0,416	0,235	0,208	0,256		
Ab	0,796	0,954	0,964	0,676	0,960	0,980	0,568	0,748	0,775	0,737		

Табл. 5.4. Продолжение.

Массив	Айский										
Порода	Qu cı	иенит				гра	аносиен	ІИТ			
Обр.	Γ-2	28/1					Г-29				
SiO ₂	63,4	62,7	66,1	65,5	64,8	66,7	67,8	68,2	68,4	68,1	68,5
Al_2O_3	22,8	23,3	20,9	21,1	21,7	20,5	19,9	19,7	19,8	19,8	19,5
FeO	0,09	0,06	0,14	0,16	0,16	0,15	0,02	0,04	0,11	0,09	0
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	н.п.о.	0,03	н.п.о.	0,04	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	4,44	4,90	1,91	2,32	2,89	1,53	0,76	0,32	0,28	0,54	0,19
Na ₂ O	8,65	8,78	10,24	10,16	9,86	10,74	10,94	11,41	11,12	11,38	11,34
K_2O	0,49	0,13	0,24	0,29	0,20	0,28	0,14	0,12	0,10	0,08	0,12
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,9	99,8	99,5	99,6	99,6	100,0	99,7	99,8	99,8	100,1	99,7
Формули	ьные еді	иницы.	Расчёт	на 8 ато	мов О.	:	:		:		
Si	2,81	2,78	2,92	2,90	2,87	2,93	2,97	2,99	2,99	2,98	3,00
Al	1,19	1,22	1,09	1,10	1,13	1,06	1,03	1,01	1,02	1,02	1,00
Fe	0,00	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00
Mg	-	-	-	-	0,00	-	0,00	-	0,00	-	-
Mn	_	-	_	_	-	-	-	-	-	-	-
Ca	0,21	0,23	0,09	0,11	0,14	0,07	0,04	0,01	0,01	0,03	0,01
Na	0,74	0,76	0,88	0,87	0,85	0,92	0,93	0,97	0,94	0,96	0,96
K	0,03	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,00	0,01
P	_	-	_	-	-	-	-	-	-	-	-
Sr	_	-	_	_	_	-	-	-	-	-	-
Ba	-	_	-	_	_	_	_	-	_	-	-
Or	0,028	0,008	0,014	0,016	0,011	0,016	0,008	0,007	0,006	0,005	0,007
An	0,215	0,234	0,092	0,110	0,138	0,072	0,037	0,015	0,014	0,025	0,009
Ab	0,757	0,759	0,894	0,874	0,851	0,913	0,955	0,978	0,981	0,970	0,984

Табл. 5.4. Продолжение.

Массив	Айский										
Порода					Bt-A	\тр гра	анит				
Обр.						Γ-26					
SiO ₂	66,9	66,9	68,0	66,4	66,7	67,5	66,4	66,4	64,1	66,5	66,4
Al_2O_3	20,3	20,5	19,9	20,6	20,6	20,0	20,8	20,8	22,1	20,7	20,9
FeO	0,17	0,15	0,09	0,13	0,07	0,10	0,14	0,15	0,22	0,15	0,13
MgO	0,05	0,05	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	1,22	1,46	0,77	1,77	1,40	0,98	1,67	1,78	3,47	1,71	1,99
Na ₂ O	10,89	10,57	10,74	10,40	11,00	11,28	10,79	10,57	9,42	10,66	10,32
K_2O	0,24	0,10	0,15	0,19	0,11	0,13	0,27	0,32	0,23	0,24	0,31
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,8	99,7	99,6	99,5	100,0	100,0	100,1	100,1	99,6	99,9	100,1
Формули	ьные еді	иницы.	Расчёт	на 8 ато	мов О.						
Si	2,94	2,94	2,98	2,93	2,93	2,96	2,92	2,92	2,84	2,92	2,91
Al	1,05	1,06	1,03	1,07	1,07	1,03	1,08	1,08	1,15	1,07	1,08
Fe	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,00
Mg	0,00	0,00	-	-	-	-	-	-	-	-	-
Mn	-	-	-	-	-	-	-	-	-	-	-
Ca	0,06	0,07	0,04	0,08	0,07	0,05	0,08	0,08	0,16	0,08	0,09
Na	0,93	0,90	0,91	0,89	0,94	0,96	0,92	0,90	0,81	0,91	0,88
K	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,02
P	-	-	-	-	-	-	-	-	-	-	-
Sr	-	-	-	-	-	-	-	-	-	-	-
Ba	-	-	-	_	_	_	0,00	-	_	_	-
Or	0,013	0,006	0,009	0,011	0,006	0,007	0,015	0,018	0,013	0,014	0,018
An	0,058	0,070	0,038	0,085	0,065	0,045	0,078	0,084	0,167	0,080	0,094
Ab	0,929	0,924	0,954	0,905	0,929	0,947	0,908	0,899	0,820	0,906	0,888

Табл. 5.4. Продолжение.

Массив					Айс	кий				
Порода		Bt-Amp	гранит	ſ			Вt гр	анит		
Обр.		Γ-	26				Г-1	3/1		
SiO ₂	67,2	67,1	66,1	65,0	68,4	67,5	68,2	67,0	67,7	66,7
Al_2O_3	20,6	20,4	21,0	21,8	19,3	20,0	19,9	20,5	19,9	20,8
FeO	0,11	0,16	0,15	0,10	0,03	0,10	0,03	0,15	0,13	0,15
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,02	н.п.о.
CaO	1,27	1,44	1,81	2,70	0,26	0,84	0,40	1,42	0,78	1,62
Na ₂ O	10,84	10,58	10,45	10,00	11,47	10,74	10,63	10,37	10,92	10,12
K_2O	0,14	0,36	0,27	0,12	0,16	0,18	0,17	0,33	0,20	0,21
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	100,2	100,1	99,9	99,8	99,9	99,6	99,6	99,9	99,9	99,9
Формулн	ные еди	иницы. І	Расчёт н	а 8 атом	ов О.					
Si	2,94	2,94	2,91	2,87	3,00	2,97	2,99	2,94	2,97	2,93
Al	1,06	1,06	1,09	1,13	1,00	1,04	1,03	1,06	1,03	1,08
Fe	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,01
Mg	-	-	-	-	-	-	-	-	-	-
Mn	_	-	0,00	-	_	0,00	-	-	0,00	-
Ca	0,06	0,07	0,09	0,13	0,01	0,04	0,02	0,07	0,04	0,08
Na	0,92	0,90	0,89	0,85	0,97	0,92	0,90	0,88	0,93	0,86
K	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,01
P	-	-	-	-	-	-	-	-	-	-
Sr	-	_	-	-	0,00	-	-	-	-	0,00
Ba	-	_	_	-	_	-	-	_	_	-
Or	0,008	0,020	0,015	0,007	0,009	0,011	0,010	0,019	0,012	0,013
An	0,060	0,069	0,086	0,129	0,012	0,041	0,020	0,069	0,038	0,080
Ab	0,932	0,911	0,899	0,864	0,979	0,949	0,970	0,912	0,951	0,907

Табл. 5.4. Продолжение.

_	. 1 "		•							
Массив	Айс	ский				Тархат	инский			
Порода	лейко	гранит				монцо,	диорит			
Обр.	Γ-1	14/1				8-0'	7-19			
SiO ₂	67,5	66,9	58,8	60,0	62,0	61,5	58,6	59,3	59,7	59,0
Al ₂ O ₃	20,4	20,5	25,8	25,2	24,2	24,4	25,9	25,7	25,2	25,9
FeO	0,18	0,16	0,38	0,33	0,19	0,22	0,31	0,28	0,38	0,35
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,06	0,03
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	н.п.о.	н.п.о.	н.п.о.
CaO	1,13	1,38	7,61	6,80	5,38	5,73	7,43	7,53	7,14	7,65
Na_2O	10,05	10,82	7,02	7,47	8,20	8,05	6,66	7,11	7,12	6,84
K ₂ O	0,21	0,32	0,24	0,25	0,26	0,34	0,53	0,25	0,63	0,36
P ₂ O ₅	н.п.о.	н.п.о.	0,04	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,04	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	0,17	н.п.о.	0,16	н.п.о.	0,17	0,18	0,14
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,7	100,2	99,9	100,1	100,4	100,4	99,6	100,4	100,5	100,3
Формуль	ные един	ицы. Рас	чёт на 8 а	атомов О						
Si	2,96	2,93	2,63	2,67	2,74	2,72	2,63	2,64	2,66	2,63
Al	1,06	1,06	1,36	1,32	1,26	1,28	1,37	1,35	1,32	1,36
Fe	0,01	0,01	0,014	0,012	0,007	0,008	0,012	0,011	0,014	0,013
Mg	-	-	-	-	-	0,001	-	-	0,004	0,002
Mn	-	-	-	_	_	_	0,001	-	_	-
Ca	0,05	0,06	0,37	0,32	0,25	0,27	0,36	0,36	0,34	0,37
Na	0,85	0,92	0,61	0,65	0,70	0,69	0,58	0,61	0,62	0,59
K	0,01	0,02	0,014	0,014	0,015	0,019	0,031	0,014	0,036	0,020
P	_	-	0,001	-	-	-	-	_	0,001	-
Sr	_	-	0,002	0,004	0,002	0,004	0,003	0,004	0,005	0,004
Ba	_	-	-	_	_	_	0,001	_	_	-
Or	0,013	0,018	0,014	0,014	0,015	0,020	0,032	0,014	0,036	0,021
An	0,058	0,064	0,369	0,330	0,262	0,277	0,369	0,364	0,344	0,374
Ab	0,930	0,918	0,617	0,656	0,723	0,704	0,599	0,622	0,620	0,605

Табл. 5.4. Продолжение.

Массив	Тархатинский									
Порода	монцо	диорит	сие	нит			гранос	сиенит		
Обр.	8-0'	7-19	7-7	745			5-4	I 51		
SiO ₂	62,2	59,3	68,4	65,5	64,9	64,6	67,5	60,0	67,9	66,6
Al_2O_3	23,9	25,4	19,6	21,0	21,7	22,3	20,3	24,6	19,9	21,2
FeO	0,23	0,32	0,11	0,07	0,21	0,15	0,12	0,34	0,05	0,08
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.
CaO	5,28	7,32	0,12	2,23	2,71	3,33	0,81	6,58	0,42	1,75
Na ₂ O	8,30	6,89	11,39	10,87	9,53	9,35	10,84	7,45	11,22	10,40
K ₂ O	0,30	0,54	0,68	0,23	0,33	0,31	0,21	0,48	0,20	0,31
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
SrO	0,17	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,18	0,15	0,25	н.п.о.	0,14
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	100,5	99,9	100,4	100,0	99,6	100,2	100,0	99,8	99,9	100,5
Формуль	ные един	ицы. Рас	чёт на 8 а	томов О.						
Si	2,75	2,65	2,99	2,89	2,87	2,84	2,96	2,69	2,97	2,91
Al	1,25	1,34	1,01	1,09	1,13	1,16	1,05	1,30	1,03	1,09
Fe	0,008	0,012	0,00	0,00	0,008	0,005	0,005	0,013	0,002	0,003
Mg	_	-	_	-	-	_	-	-	-	-
Mn	_	_	_	-	-	-	0,001	-	-	-
Ca	0,25	0,35	0,01	0,11	0,13	0,16	0,04	0,32	0,02	0,08
Na	0,71	0,60	0,97	0,93	0,82	0,80	0,92	0,65	0,95	0,88
K	0,017	0,031	0,04	0,01	0,019	0,017	0,012	0,027	0,011	0,017
P	_	-	-	-	-	-	-	-	-	-
Sr	0,004	0,003	0,00	0,00	0,003	0,005	0,004	0,007	0,001	0,004
Ba	-	_	-	_	0,002	_	0,001	-	-	-
Or	0,017	0,032	0,038	0,012	0,020	0,018	0,012	0,028	0,011	0,018
An	0,255	0,358	0,006	0,101	0,133	0,162	0,039	0,319	0,020	0,084
Ab	0,727	0,610	0,957	0,887	0,847	0,820	0,949	0,654	0,969	0,899

Табл. 5.4. Продолжение.

Массив	Теранджиксий											
Порода					MO	нцогабб	po					
Обр.					9-09-3					8-09-	102/2	
SiO ₂	58,6	54,9	54,8	57,1	54,8	53,6	54,2	56,2	54,2	55,8	54,5	
Al_2O_3	25,3	28,0	28,7	26,5	28,1	29,0	28,7	27,8	28,9	28,1	28,5	
FeO	0,63	0,3	0,15	0,08	0,39	0,29	0,49	0,27	0,45	0,24	0,42	
MgO	_	-	-	-	-	-	-	-	-	-	-	
MnO	_	-	-	-	-	-	-	-	_	-	_	
CaO	7,27	10,47	10,83	9,42	10,45	11,43	11,24	9,86	11,15	10,34	10,87	
Na_2O	7,3	5,46	5,62	6,64	5,25	4,78	4,97	5,75	5,06	5,6	5,14	
K ₂ O	0,40	0,31	0,07	0,04	0,39	0,28	0,33	0,32	0,32	0,32	0,41	
P ₂ O ₅	_	-	-	_	-	-	-	-	_	-	_	
SrO	0,17	0,24	н.п.о.	н.п.о.	0,14	0,23	н.п.о.	н.п.о.	0,18	н.п.о.	н.п.о.	
BaO	0,15	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	99,8	99,8	100,2	99,7	99,5	99,6	100,0	100,4	100,3	100,5	100,0	
Формуль	ные едиі	ницы. Ра	счёт на	8 атомов	s O.							
Si	2,64	2,49	2,47	2,57	2,49	2,44	2,46	2,52	2,45	2,51	2,47	
Al	1,34	1,50	1,52	1,40	1,50	1,56	1,53	1,47	1,54	1,49	1,52	
Fe	0,02	0,01	0,01	0,00	0,01	0,01	0,02	0,01	0,02	0,01	0,02	
Mg	_	-	-	-	-	-	-	-	-	-	-	
Mn	_	-	-	-	-	-	-	-	-	-	-	
Ca	0,35	0,51	0,52	0,45	0,51	0,56	0,55	0,47	0,54	0,50	0,53	
Na	0,64	0,48	0,49	0,58	0,46	0,42	0,44	0,50	0,44	0,49	0,45	
K	0,02	0,02	0,00	0,00	0,02	0,02	0,02	0,02	0,02	0,02	0,02	
P	_	-	-	-	-	-	-	-	-	-	-	
Sr	0,00	0,01	-	-	0,00	0,01	0,00	0,00	0,00	0,00	0,00	
Ba	0,00	0,00	-	_	0,00	-	-	0,00	0,00	0,00	0,00	
Or	0,023	0,018	0,004	0,002	0,023	0,016	0,019	0,018	0,018	0,018	0,024	
An	0,347	0,505	0,514	0,438	0,512	0,560	0,545	0,478	0,539	0,496	0,526	
Ab	0,630	0,477	0,482	0,559	0,465	0,424	0,436	0,504	0,443	0,486	0,450	

Табл. 5.4. Продолжение.

Массив	Теранджиксий											
Порода		монцо	габбро				M	онцони	T			
Обр.		8-09-	102/2					9-09-6				
SiO ₂	55,5	61,1	58,0	59,4	59,7	59,1	59,4	55,6	57,4	59,1	58,1	
Al_2O_3	27,8	23,9	25,9	25,1	24,8	26,3	25,2	28,0	27,1	25,7	26,0	
FeO	0,24	0,29	0,34	0,29	0,1	0,1	0,02	0,17	0,06	0,05	0,03	
MgO	-	-	-	-	-	-	-	-	-	-	-	
MnO	_	-	-	_	-	-	-	_	_	_	-	
CaO	9,94	5,55	7,86	7,15	7,14	7,67	7,55	9,73	8,96	7,25	7,95	
Na_2O	5,84	7,96	6,94	7,08	7,67	7,28	7,56	5,88	6,7	7,63	7,52	
K_2O	0,31	0,57	0,45	0,53	0,11	0,06	0,09	0,16	0,06	0,09	0,07	
P ₂ O ₅	_	-	_	_	_	_	-	_	_	_	_	
SrO	н.п.о.	0,47	0,43	0,5	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
BaO	н.п.о.	н.п.о.	0,13	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	99,9	99,9	100,1	100,1	99,6	100,4	99,8	99,5	100,3	99,8	99,7	
Формулы	ные еди	ницы. Ра	счёт на	8 атомо	в О.							
Si	2,51	2,74	2,61	2,66	2,68	2,63	2,66	2,51	2,57	2,64	2,61	
Al	1,48	1,26	1,38	1,33	1,31	1,38	1,33	1,49	1,43	1,36	1,38	
Fe	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	
Mg	-	-	-	-	-	-	-	-	-	-	-	
Mn	-	-	-	-	-	-	-	-	-	-	-	
Ca	0,48	0,27	0,38	0,34	0,34	0,37	0,36	0,47	0,43	0,35	0,38	
Na	0,51	0,69	0,61	0,62	0,67	0,63	0,66	0,52	0,58	0,66	0,66	
K	0,02	0,03	0,03	0,03	0,01	0,00	0,01	0,01	0,00	0,01	0,00	
P	_	-	-	-	-	-	-	-	-	-	-	
Sr	0,00	0,01	0,01	0,01	-	-	-	-	-	-	-	
Ba	0,00	0,00	0,00	0,00	0,00	-	0,00	-	-	_	-	
Or	0,018	0,033	0,026	0,031	0,006	0,003	0,005	0,009	0,003	0,005	0,004	
An	0,476	0,269	0,375	0,347	0,338	0,367	0,354	0,473	0,424	0,343	0,367	
Ab	0,506	0,698	0,599	0,622	0,656	0,630	0,641	0,518	0,573	0,652	0,629	

Табл. 5.4. Продолжение.

Массив	Теранджиксий											
Порода					M	онцони	Т					
Обр.	9-0	9-6			8	3-09-102 /	' 1			9-0	9-5	
SiO ₂	59,7	59,8	58,1	56,8	56,9	61,1	56,4	62,2	60,7	59,0	62,7	
Al ₂ O ₃	25,8	26,1	26,0	26,5	26,6	24,1	27,0	23,2	24,1	25,2	22,7	
FeO	0,02	0,08	0,47	0,46	0,39	0,19	0,39	0,2	0,21	0,24	0,61	
MgO	_	-	-	-	-	-	-	-	-	-	-	
MnO	_	-	_	_	-	-	-	-	-	_	-	
CaO	7,1	7,17	8,34	8,97	9,07	6,07	9,63	5,31	5,85	6,97	4,53	
Na_2O	7,64	6,84	6,61	6,24	6,25	7,38	5,87	8,12	7,74	7,27	8,51	
K ₂ O	0,11	0,11	0,44	0,39	0,37	0,62	0,35	0,54	0,63	0,47	0,57	
P ₂ O ₅	_	-	_	_	-	_	-	-	_	_	-	
SrO	н.п.о.	н.п.о.	0,15	0,21	0,14	н.п.о.	0,11	0,2	0,2	0,25	0,22	
BaO	н.п.о.	н.п.о.	н.п.о.	0,18	0,18	н.п.о.	0,17	н.п.о.	0,2	0,22	н.п.о.	
Сумма	100,4	100,0	100,1	99,7	99,9	99,5	99,9	99,7	99,6	99,6	99,8	
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	О.							
Si	2,65	2,65	2,61	2,57	2,57	2,73	2,55	2,77	2,72	2,66	2,80	
Al	1,35	1,37	1,37	1,41	1,41	1,27	1,44	1,22	1,27	1,34	1,19	
Fe	0,00	0,00	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,02	
Mg	_	-	_	-	-	-	-	-	-	-	-	
Mn	_	-	-	-	-	-	-	-	-	-	-	
Ca	0,34	0,34	0,40	0,44	0,44	0,29	0,47	0,25	0,28	0,34	0,22	
Na	0,66	0,59	0,58	0,55	0,55	0,64	0,51	0,70	0,67	0,64	0,74	
K	0,01	0,01	0,03	0,02	0,02	0,04	0,02	0,03	0,04	0,03	0,03	
P	_	-	-	-	-	-	-	-	-	-	-	
Sr	-	-	0,00	0,01	0,00	0,00	0,00	0,01	0,01	0,01	0,01	
Ba	0,00	_	_	0,00	0,00	_	0,00	-	0,00	0,00	0,00	
Or	0,006	0,007	0,025	0,022	0,021	0,037	0,020	0,031	0,036	0,027	0,033	
An	0,337	0,364	0,400	0,433	0,436	0,301	0,466	0,257	0,284	0,337	0,220	
Ab	0,657	0,629	0,574	0,545	0,543	0,662	0,514	0,712	0,680	0,636	0,747	

Табл. 5.4. Продолжение.

Массив	Теранджиксий										
Порода				MOHI	тинор				МО	нцодиој	ОИТ
Обр.				9-0	9-5					A-041	
SiO ₂	57,0	56,3	61,2	63,1	52,6	55,8	56,4	55,9	59,0	59,2	62,7
Al_2O_3	27,1	27,2	23,9	23,0	29,8	27,9	27,4	28,0	25,5	25,7	23,5
FeO	0,2	0,26	0,22	0,29	0,36	0,26	0,28	0,2	0,3	0,25	0,27
MgO	-	_	-	-	-	-	-	-	-	-	-
MnO	-	-	-	-	-	-	-	-	-	-	-
CaO	8,76	9,25	5,8	4,43	12,15	9,77	8,96	9,67	7,38	7,44	4,91
Na ₂ O	6,66	6,09	8,35	8,75	4,44	5,94	6,36	5,88	7,01	7,04	8,37
K_2O	0,23	0,27	0,40	0,46	0,24	0,27	0,32	0,32	0,50	0,43	0,45
P ₂ O ₅	_	_	-	_	_	_	-	-	_	-	-
SrO	0,18	0,25	н.п.о.	н.п.о.	0,28	0,2	0,3	0,29	0,34	0,33	0,22
BaO	0,17	0,13	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,21	0,13	0,13	н.п.о.	н.п.о.
Сумма	100,3	99,7	100,0	100,2	99,8	100,3	100,2	100,3	100,2	100,5	100,4
Формулы	ные едиі	ницы. Ра	счёт на	8 атомої	з О.						
Si	2,56	2,55	2,73	2,79	2,40	2,52	2,54	2,52	2,65	2,64	2,77
Al	1,43	1,45	1,26	1,20	1,60	1,48	1,46	1,48	1,35	1,35	1,22
Fe	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Mg	-	-	-	-	-	-	-	-	-	-	-
Mn	_	-	-	-	-	-	-	-	_	-	-
Ca	0,42	0,45	0,28	0,21	0,59	0,47	0,43	0,47	0,35	0,36	0,23
Na	0,58	0,53	0,72	0,75	0,39	0,52	0,56	0,51	0,61	0,61	0,72
K	0,01	0,02	0,02	0,03	0,01	0,02	0,02	0,02	0,03	0,02	0,03
P	-	-	-	-	-	-	-	-	-	-	-
Sr	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Ba	0,00	0,00	0,00	0,00	_	0,00	0,00	0,00	0,00	0,00	-
Or	0,013	0,016	0,022	0,026	0,014	0,015	0,018	0,018	0,029	0,025	0,026
An	0,415	0,449	0,271	0,213	0,594	0,469	0,430	0,467	0,357	0,360	0,238
Ab	0,572	0,535	0,707	0,761	0,392	0,516	0,552	0,514	0,614	0,616	0,736

Табл. 5.4. Продолжение.

Массив	Теранджиксий											
Порода					МО	нцодиој	рит					
Обр.								8	-09-102/	7		
SiO ₂	58,8	59,4	58,9	61,4	59,1	62,4	59,5	62,5	62,2	58,8	61,4	
Al_2O_3	25,7	25,1	25,7	23,9	25,4	23,5	25,5	23,1	23,6	25,9	24,1	
FeO	0,2	0,28	0,24	0,24	0,28	0,24	0,22	0,28	0,21	0,25	0,24	
MgO	_	_	_	-	-	-	-	_	-	-	-	
MnO	-	-	-	-	-	-	-	-	-	-	-	
CaO	7,86	7,13	7,68	5,61	7,27	4,97	7,16	5,08	5,03	7,78	5,64	
Na ₂ O	7,07	7,22	6,64	8,1	7,3	8,4	7,39	8,31	8,62	7,03	8,11	
K_2O	0,29	0,56	0,46	0,40	0,58	0,44	0,32	0,36	0,37	0,35	0,18	
P ₂ O ₅	_	_	_	_	_	_	_	_	_	_	_	
SrO	н.п.о.	0,27	0,26	0,32	0,27	0,15	0,26	0,3	0,23	0,37	0,29	
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	100,1	100,1	100,0	100,0	100,2	100,0	100,3	99,9	100,3	100,5	99,9	
Формуль	ные един	ницы. Ра	счёт на	8 атомої	з О.							
Si	2,63	2,66	2,64	2,74	2,65	2,77	2,66	2,78	2,76	2,63	2,74	
Al	1,36	1,33	1,36	1,26	1,34	1,23	1,34	1,21	1,24	1,36	1,26	
Fe	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Mg	_	_	-	-	-	-	-	-	-	-	-	
Mn	_	_	-	-	-	-	-	-	-	_	-	
Ca	0,38	0,34	0,37	0,27	0,35	0,24	0,34	0,24	0,24	0,37	0,27	
Na	0,61	0,63	0,58	0,70	0,63	0,72	0,64	0,72	0,74	0,61	0,70	
K	0,02	0,03	0,03	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,01	
P	_	-	-	-	-	-	-	-	-	-	-	
Sr	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	
Ba	-	0,00	0,00	-	0,00	-	_	-	-	0,00	-	
Or	0,016	0,032	0,027	0,023	0,033	0,025	0,018	0,021	0,021	0,020	0,010	
An	0,374	0,342	0,379	0,270	0,343	0,240	0,342	0,247	0,239	0,372	0,275	
Ab	0,609	0,626	0,594	0,707	0,624	0,735	0,639	0,732	0,740	0,608	0,715	

Табл. 5.4. Продолжение.

Массив	Теранджиксий											
Порода		MO	нцодиор	рит				грано	сиенит			
Обр.								A -0	048			
SiO ₂	62,1	62,6	58,2	57,8	61,8	58,5	58,5	58,3	62,7	59,4	62,2	
Al_2O_3	23,7	23,1	25,8	26,0	23,4	25,6	25,7	25,9	23,3	25,2	23,5	
FeO	0,25	0,17	0,26	0,23	0,21	0,37	0,35	0,28	0,18	0,33	0,2	
MgO	-	-	-	-	-	_	-	-	-	-	-	
MnO	_	-	_	-	-	_	-	-	-	-	-	
CaO	5,05	4,5	7,85	8,04	5,01	7,4	7,5	7,74	4,57	6,95	4,94	
Na_2O	8,68	9,03	6,76	6,75	8,85	7,01	6,96	6,88	9,02	7,53	8,53	
K_2O	0,34	0,52	0,43	0,36	0,22	0,55	0,46	0,42	0,35	0,43	0,51	
P ₂ O ₅	_	_	_	-	_	_	_	_	_	_	_	
SrO	0,35	0,23	0,41	0,34	0,28	0,46	0,62	0,54	0,35	0,43	0,34	
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	100,4	100,2	99,8	99,6	99,8	100,0	100,2	100,2	100,5	100,3	100,3	
Формулы	ные един	ницы. Ра	счёт на	8 атомов	О.							
Si	2,76	2,78	2,62	2,61	2,76	2,64	2,63	2,62	2,78	2,66	2,76	
Al	1,24	1,21	1,37	1,38	1,23	1,36	1,36	1,37	1,22	1,33	1,23	
Fe	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Mg	-	-	-	-	-	_	-	-	-	-	-	
Mn	_	-	-	-	-	_	-	-	-	-	-	
Ca	0,24	0,21	0,38	0,39	0,24	0,36	0,36	0,37	0,22	0,33	0,24	
Na	0,75	0,78	0,59	0,59	0,77	0,61	0,61	0,60	0,77	0,65	0,73	
K	0,02	0,03	0,02	0,02	0,01	0,03	0,03	0,02	0,02	0,02	0,03	
P	_	-	-	-	-	_	-	-	-	-	-	
Sr	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	
Ba	-	_	0,00	0,00	-	0,00	0,00	0,00	-	0,00	0,00	
Or	0,019	0,029	0,025	0,021	0,012	0,032	0,027	0,024	0,020	0,024	0,029	
An	0,239	0,210	0,381	0,389	0,235	0,357	0,363	0,374	0,214	0,330	0,235	
Ab	0,742	0,761	0,594	0,591	0,752	0,612	0,610	0,602	0,766	0,646	0,736	

Табл. 5.4. Продолжение.

Массив	Теранджиксий											
Порода			гранос	сиенит					гранит			
Обр.			8-09-	102/5				8	-09-103/	2		
SiO ₂	57,0	60,6	60,6	56,8	58,7	57,9	60,9	61,0	59,7	60,0	59,6	
Al_2O_3	26,6	24,0	24,1	27,0	25,7	26,5	24,8	25,0	24,9	25,1	25,2	
FeO	0,25	0,38	0,22	0,31	0,21	0,16	0,25	0,27	0,2	0,28	0,27	
MgO	_	-	_	-	_	-	-	-	_	-	-	
MnO	-	-	-	-	-	-	-	-	-	-	-	
CaO	8,86	6	5,82	8,89	7,22	8,01	6,3	5,9	6,84	6,5	7,19	
Na ₂ O	6,23	7,49	7,77	5,83	6,88	6,67	7,1	6,86	7,49	7,27	7,28	
K ₂ O	0,31	0,53	0,62	0,44	0,37	0,27	0,61	0,59	0,64	0,51	0,52	
P_2O_5	_	_	_	-	_	_	-	_	_	_	-	
SrO	0,35	0,31	0,32	0,67	0,53	0,36	0,21	0,25	0,14	0,2	0,22	
BaO	0,18	0,34	0,18	0,18	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	99,7	99,6	99,7	100,0	99,7	99,9	100,3	100,0	99,9	99,9	100,4	
Формуль	ные един	ницы. Ра	счёт на	8 атомов	3 O.							
Si	2,58	2,72	2,72	2,57	2,64	2,60	2,71	2,71	2,67	2,68	2,66	
Al	1,42	1,27	1,27	1,44	1,36	1,40	1,30	1,31	1,31	1,32	1,33	
Fe	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Mg	-	-	-	-	-	-	-	-	-	-	-	
Mn	-	-	-	-	-	-	-	-	-	-	-	
Ca	0,43	0,29	0,28	0,43	0,35	0,39	0,30	0,28	0,33	0,31	0,34	
Na	0,55	0,65	0,68	0,51	0,60	0,58	0,61	0,59	0,65	0,63	0,63	
K	0,02	0,03	0,04	0,03	0,02	0,02	0,03	0,03	0,04	0,03	0,03	
P	-	-	-	-	-	-	-	-	-	-	-	
Sr	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,00	0,01	0,01	
Ba	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Or	0,018	0,031	0,036	0,026	0,022	0,016	0,037	0,037	0,036	0,030	0,030	
An	0,432	0,297	0,282	0,445	0,359	0,393	0,317	0,310	0,323	0,321	0,343	
Ab	0,550	0,671	0,682	0,528	0,619	0,592	0,646	0,653	0,641	0,649	0,628	

Табл. 5.4. Продолжение.

Массив	Саввушинский										
Порода					Q	и диори	łТ				
Обр.				Γ-3/4					Γ-	3/3	
SiO ₂	62,1	62,1	61,9	58,4	61,9	66,1	61,7	61,1	61,6	61,3	61,9
Al_2O_3	23,6	23,8	23,5	26,2	23,8	21,1	23,5	24,2	23,8	24,1	23,7
FeO	0,13	0,09	0,17	0,19	0,15	0,02	0,09	0,17	0,13	0,13	0,13
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,04	н.п.о.	н.п.о.	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.
CaO	4,97	5,13	4,95	8,01	5,16	2,00	5,09	5,62	5,20	5,49	5,13
Na ₂ O	8,98	8,91	8,78	7,05	8,79	10,68	8,91	8,47	8,77	8,59	8,98
K_2O	0,24	0,11	0,27	0,26	0,33	0,10	0,21	0,18	0,29	0,16	0,11
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,18	0,14	н.п.о.	0,11	0,14	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	0,05	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,08	н.п.о.
Сумма	100,2	100,1	99,7	100,3	100,3	100,2	99,7	99,9	99,9	100,0	100,1
Формулы	ные едиі	ницы. Ра	счёт на	8 атомов	з O.						
Si	2,76	2,75	2,76	2,61	2,75	2,90	2,75	2,72	2,74	2,73	2,75
Al	1,24	1,24	1,24	1,38	1,25	1,09	1,23	1,27	1,25	1,26	1,24
Fe	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,00
Mg	-	-	-	-	-	-	0,00	-	-	-	-
Mn	-	-	-	0,00	-	-	0,00	-	-	-	-
Ca	0,24	0,24	0,24	0,38	0,25	0,09	0,24	0,27	0,25	0,26	0,24
Na	0,77	0,77	0,76	0,61	0,76	0,91	0,77	0,73	0,76	0,74	0,77
K	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,02	0,01	0,01
P	-	-	-	-	-	-	-	-	-	-	-
Sr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ba	-	_	-	0,00	_	-	_	-	-	0,00	-
Or	0,013	0,006	0,015	0,015	0,018	0,006	0,012	0,010	0,016	0,009	0,006
An	0,013	0,000	0,013	0,380	0,018	0,000	0,012	0,010	0,010	0,009	0,000
Ab	0,755	0,754	0,234	0,580	0,741	0,093	0,237	0,200	0,243	0,239	0,239
AU	0,733	0,734	0,751	0,000	0,741	0,501	0,731	0,724	0,741	0,133	0,133

Табл. 5.4. Продолжение.

Массив	Саввушинский											
Порода	(Ди диори	IT			гр	анодиор	ИТ				
Обр.		Γ-3/3					Γ-2/8					
SiO ₂	61,0	61,1	61,6	61,9	60,8	61,3	60,8	67,8	61,7	62,9		
Al_2O_3	24,1	24,0	23,7	23,5	24,6	24,2	23,9	19,6	23,5	23,0		
FeO	0,11	0,16	0,18	0,13	0,12	0,09	0,26	0,06	0,12	0,14		
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.		
CaO	5,83	5,85	5,13	5,11	5,98	5,55	5,55	0,28	5,09	4,28		
Na ₂ O	8,47	8,31	8,72	8,90	8,31	8,65	8,63	11,83	8,80	9,01		
K_2O	0,20	0,16	0,35	0,22	0,14	0,13	0,42	0,06	0,20	0,20		
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,15	н.п.о.	н.п.о.	н.п.о.		
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,05	н.п.о.	0,08	н.п.о.	н.п.о.	н.п.о.		
Сумма	99,9	99,7	99,8	99,9	100,1	100,0	99,8	99,7	99,5	99,7		
Формулы	ные един	ицы. Рас	чёт на 8 а	томов О.								
Si	2,72	2,73	2,75	2,76	2,71	2,73	2,72	2,98	2,75	2,80		
Al	1,27	1,26	1,24	1,23	1,29	1,27	1,26	1,01	1,24	1,20		
Fe	0,00	0,01	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,01		
Mg	-	-	-	-	-	-	-	-	-	-		
Mn	-	-	-	-	-	-	-	0,00	-	-		
Ca	0,28	0,28	0,25	0,24	0,29	0,26	0,27	0,01	0,24	0,20		
Na	0,73	0,72	0,75	0,77	0,72	0,75	0,75	1,01	0,76	0,78		
K	0,01	0,01	0,02	0,01	0,01	0,01	0,02	0,00	0,01	0,01		
P	-	-	-	-	-	-	-	-	-	-		
Sr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00		
Ba	-	_	_	-	0,00	-	0,00	_	-	-		
Or	0,011	0,009	0,019	0,012	0,008	0,007	0,023	0,003	0,011	0,011		
An	0,273	0,277	0,241	0,238	0,282	0,260	0,256	0,013	0,240	0,205		
Ab	0,716	0,714	0,740	0,750	0,710	0,733	0,721	0,984	0,749	0,783		

Табл. 5.4. Продолжение.

Массив	Саввушинский													
Порода					гра	анодиор	ИТ							
Обр.						Γ-2/9								
SiO ₂	61,8	62,6	61,4	63,4	62,0	62,7	63,0	66,3	61,5	62,1	58,4			
Al_2O_3	24,0	22,9	23,9	22,7	23,6	23,0	23,0	20,7	23,8	23,6	26,1			
FeO	0,08	0,15	0,22	0,14	0,12	0,13	0,18	0,01	0,14	0,16	0,11			
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
MnO	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
CaO	5,41	4,42	5,58	3,77	5,08	4,38	4,30	1,56	5,23	5,16	7,85			
Na ₂ O	8,78	9,02	8,44	9,68	8,99	9,22	9,35	11,05	8,72	8,82	7,23			
K_2O	0,07	0,33	0,32	0,11	0,14	0,27	0,17	0,07	0,27	0,10	0,10			
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
SrO	н.п.о.	н.п.о.	0,17	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
Сумма	100,2	99,6	100,0	100,0	100,1	99,8	100,1	99,8	99,8	100,1	100,0			
Формулы	ные едиі	ные единицы. Расчёт на 8 атомов О.												
Si	2,74	2,79	2,74	2,81	2,75	2,79	2,79	2,92	2,74	2,75	2,62			
Al	1,25	1,20	1,25	1,19	1,24	1,20	1,20	1,08	1,25	1,24	1,38			
Fe	0,00	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,01	0,01	0,00			
Mg	-	-	-	-	-	-	-	-	-	-	-			
Mn	-	_	-	0,00	-	-	-	-	-	-	-			
Ca	0,26	0,21	0,27	0,18	0,24	0,21	0,20	0,07	0,25	0,25	0,38			
Na	0,75	0,78	0,73	0,83	0,77	0,79	0,80	0,94	0,75	0,76	0,63			
K	0,00	0,02	0,02	0,01	0,01	0,02	0,01	0,00	0,02	0,01	0,01			
P	-	-	-	-	-	-	-	-	-	-	-			
Sr	0,00	-	0,00	0,00	0,00	0,00	-	0,00	0,00	-	0,00			
Ba	-	_	_	_	_	_	_	-	-	_	0,00			
Or	0,004	0,018	0,018	0,006	0,008	0,015	0,009	0,004	0,015	0,005	0,005			
An	0,253	0,209	0,263	0,176	0,236	0,205	0,201	0,072	0,245	0,243	0,373			
Ab	0,743	0,772	0,719	0,818	0,756	0,780	0,790	0,924	0,740	0,752	0,622			

Табл. 5.4. Продолжение.

Массив	•													
Порода				гранод	циорит					гранит				
Обр.				Γ-2	2/9					Γ-3/2				
SiO ₂	63,5	66,8	63,7	68,0	62,8	61,6	62,9	61,9	61,8	61,6	61,5			
Al_2O_3	22,9	20,7	23,0	19,6	22,9	23,7	23,1	23,7	23,8	23,6	23,9			
FeO	0,01	0,00	0,07	0,03	0,13	0,20	0,06	0,11	0,11	0,13	0,10			
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
MnO	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.			
CaO	3,96	1,35	4,04	0,27	4,39	5,33	4,39	5,19	5,35	5,16	5,32			
Na_2O	9,40	11,14	9,59	11,70	9,22	8,73	9,24	8,69	8,73	8,76	8,67			
K_2O	0,14	0,05	0,07	0,05	0,23	0,19	0,07	0,15	0,18	0,22	0,19			
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.							
SrO	0,15	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,15	н.п.о.							
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
Сумма	100,0	100,1	100,5	99,6	99,8	100,0	99,8	99,8	100,1	99,7	99,8			
Формуль	ные един	ые единицы. Расчёт на 8 атомов О.												
Si	2,81	2,93	2,80	2,98	2,79	2,74	2,79	2,75	2,74	2,75	2,74			
Al	1,19	1,07	1,19	1,01	1,20	1,24	1,21	1,24	1,25	1,24	1,25			
Fe	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00			
Mg	-	-	-	-	-	-	-	-	-	-	-			
Mn	-	0,00	-	-	-	-	-	0,00	-	-	-			
Ca	0,19	0,06	0,19	0,01	0,21	0,25	0,21	0,25	0,25	0,25	0,25			
Na	0,81	0,95	0,82	1,00	0,79	0,75	0,79	0,75	0,75	0,76	0,75			
K	0,01	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,01			
P	-	-	-	-	-	-	-	-	-	-	-			
Sr	0,00	-	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Ba	-	_	_	-	_	0,00	_	-	-	_	-			
Or	0,008	0,003	0,004	0,003	0,013	0,010	0,004	0,009	0,010	0,012	0,011			
An	0,187	0,062	0,188	0,012	0,205	0,250	0,207	0,246	0,250	0,242	0,251			
Ab	0,805	0,935	0,808	0,985	0,782	0,740	0,789	0,745	0,739	0,745	0,739			

Табл. 5.4. Продолжение.

Массив	Саввушинский												
Порода				гранит	ı				леі	йкогран	нит		
Обр.	Γ-3/2			Γ-3	3/1					8-13-57			
SiO ₂	66,5	64,3	64,2	68,0	65,6	64,7	64,5	63,2	63,9	67,5	65,9	66,1	
Al_2O_3	21,0	22,0	22,0	19,6	21,4	21,6	22,1	22,1	22,1	19,9	20,6	20,3	
FeO	0,02	0,08	0,07	0,05	0,09	0,07	0,08	0,10	0,10	0,01	0,06	0,02	
MgO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
CaO	1,64	3,14	3,17	0,21	2,18	2,70	3,20	3,47	3,14	0,37	1,63	1,22	
Na ₂ O	10,96	9,94	9,97	11,75	10,66	10,27	9,95	10,28	10,40	12,20	11,25	11,83	
K_2O	0,05	0,27	0,17	0,06	0,26	0,16	0,19	0,24	0,21	0,13	0,21	0,08	
P_2O_5	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	100,3	99,9	99,6	99,7	100,3	99,6	100,3	99,5	99,9	100,3	99,8	99,8	
Формулы	ные еди	ые единицы. Расчёт на 8 атомов О.											
Si	2,91	2,84	2,84	2,98	2,88	2,86	2,85	2,82	2,83	2,96	2,91	2,92	
Al	1,08	1,15	1,15	1,01	1,11	1,13	1,15	1,16	1,15	1,03	1,07	1,05	
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Mg	_	-	-	-	-	-	-	-	-	-	-	-	
Mn	_	-	-	-	-	-	-	-	-	-	-	-	
Ca	0,08	0,15	0,15	0,01	0,10	0,13	0,15	0,17	0,15	0,02	0,08	0,06	
Na	0,93	0,85	0,86	1,00	0,91	0,88	0,85	0,89	0,89	1,04	0,96	1,01	
K	0,00	0,02	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	
P	-	-	-	-	-	-	-	-	-	-	-	-	
Sr	0,00	-	-	-	-	-	0,00	-	0,00	0,00	0,00	-	
Ba	-	_	_	-	-	-	-	-	-	-	-	0,00	
Or	0,003	0,015	0,009	0,004	0,014	0,009	0,011	0,013	0,011	0,007	0,011	0,004	
An	0,076	0,146	0,148	0,010	0,100	0,126	0,149	0,155	0,142	0,016	0,073	0,054	
Ab	0,921	0,839	0,842	0,987	0,885	0,865	0,840	0,832	0,847	0,977	0,916	0,942	

Табл. 5.4. Продолжение.

Массив	В Атуркольский													
Порода					MO	нцогран	шт							
Обр.		8-13-88/1	1				9.	-4						
SiO ₂	61,8	62,1	61,0	61,7	61,8	62,1	62,3	62,3	63,0	64,6	63,6			
Al_2O_3	23,1	22,8	23,5	23,3	23,1	22,9	23,0	22,9	22,2	21,4	22,1			
FeO	0,234	0,148	0,210	0,203	0,205	0,175	0,210	0,142	0,084	0,147	0,114			
MgO	0,011	н.п.о.	0,009	н.п.о.	0,001	0,002	н.п.о.	0,017	0,013	0,009	0,008			
MnO	0,002	н.п.о.	н.п.о.	н.п.о.	0,026	н.п.о.	0,007	н.п.о.	0,010	н.п.о.	н.п.о.			
CaO	4,304	4,231	4,911	4,346	4,297	4,069	3,976	3,933	3,217	2,205	2,938			
Na ₂ O	9,08	10,22	9,05	10,18	10,38	10,28	10,39	10,35	10,97	11,14	11,45			
K_2O	0,37	0,24	0,43	0,31	0,32	0,42	0,28	0,17	0,13	0,22	0,19			
P ₂ O ₅	н.п.о.	н.п.о.	0,022	н.п.о.	0,012	0,020	н.п.о.	0,000	0,015	0,010	0,007			
SrO	0,31	н.п.о.	н.п.о.	0,18	0,22	н.п.о.	0,22	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.			
Сумма	99,3	99,8	99,3	100,3	100,5	100,1	100,4	99,9	99,8	99,8	100,4			
Формуль	ные един	ницы. Ра	счёт на	8 атомов	9 O.									
Si	2,77	2,77	2,74	2,75	2,75	2,77	2,77	2,78	2,81	2,86	2,82			
Al	1,22	1,20	1,24	1,23	1,21	1,20	1,21	1,20	1,17	1,12	1,15			
Fe	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,00			
Mg	0,00	-	0,00	-	0,00	0,00	-	0,00	0,00	0,00	0,00			
Mn	0,00	-	-	-	0,00	-	0,00	-	0,00	-	-			
Ca	0,21	0,20	0,24	0,21	0,21	0,19	0,19	0,19	0,15	0,10	0,14			
Na	0,79	0,88	0,79	0,88	0,90	0,89	0,90	0,89	0,95	0,96	0,98			
K	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01			
P	-	-	0,00	-	0,00	0,00	-	0,00	0,00	0,00	0,00			
Sr	0,01	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00			
Ba	0,00	_	0,00	_	0,00	-	-	-	0,00	-	-			
Or	0,021	0,012	0,023	0,016	0,016	0,021	0,014	0,009	0,007	0,012	0,009			
An	0,203	0,184	0,225	0,188	0,183	0,176	0,172	0,172	0,139	0,097	0,123			
Ab	0,776	0,804	0,751	0,796	0,801	0,803	0,814	0,819	0,855	0,891	0,868			

Табл. 5.4. Продолжение.

Массив	1 *	ркольс	кий				Синюш	енский			
Порода	МО	нцогран	нит				ср.з. г	ранит			
Обр.		9-4				8-11	1-02			8-1	1-05
SiO ₂	62,2	61,5	62,5	61,7	61,4	61,7	61,5	62,7	63,6	62,6	62,9
Al ₂ O ₃	22,9	23,4	22,9	23,0	22,9	23,1	23,4	22,8	21,8	22,3	22,4
FeO	0,169	0,206	0,191	0,19	0,16	0,13	0,08	0,09	0,05	0,05	0,14
MgO	н.п.о.	н.п.о.	0,002	0,008	н.п.о.	0,008	н.п.о.	н.п.о.	0,006	0,001	0,009
MnO	н.п.о.	0,003	н.п.о.	н.п.о.	0,021	н.п.о.	0,002	н.п.о.	0,006	н.п.о.	0,006
CaO	3,998	4,357	3,697	4,98	5,12	4,95	5,09	4,09	3,25	3,90	3,71
Na ₂ O	10,34	10,32	10,68	8,95	9,00	9,23	9,25	10,11	10,44	9,58	10,33
K ₂ O	0,15	0,27	0,23	0,32	0,47	0,27	0,25	0,22	0,19	0,20	0,39
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	0,01	н.п.о.	0,02	0,02	0,01	0,03	0,02	0,01
SrO	н.п.о.	0,15	0,15	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,8	100,3	100,5	99,3	99,2	99,5	99,7	100,1	99,5	98,8	99,9
Формуль	ные едиі	ницы. Ра	счёт на	8 атомон	з О.						
Si	2,77	2,74	2,78	2,77	2,76	2,76	2,75	2,78	2,83	2,81	2,80
Al	1,21	1,23	1,20	1,21	1,22	1,22	1,23	1,19	1,14	1,18	1,17
Fe	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,01
Mg	-	-	0,00	0,00	-	0,00	-	-	0,00	0,00	0,00
Mn	-	0,00	-	-	0,00	-	0,00	-	0,00	-	0,00
Ca	0,19	0,21	0,18	0,24	0,25	0,24	0,24	0,19	0,15	0,19	0,18
Na	0,89	0,89	0,92	0,78	0,78	0,80	0,80	0,87	0,90	0,83	0,89
K	0,01	0,02	0,01	0,02	0,03	0,02	0,01	0,01	0,01	0,01	0,02
P	-	-	-	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00
Sr	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00
Ba	-	_	0,00	0,00	0,00	0,00	0,00	0,00	_	0,00	0,00
Or	0,008	0,014	0,012	0,018	0,026	0,014	0,013	0,011	0,010	0,011	0,020
An	0,175	0,186	0,159	0,231	0,233	0,225	0,230	0,180	0,145	0,182	0,162
Ab	0,818	0,800	0,830	0,751	0,741	0,760	0,757	0,808	0,845	0,807	0,817

Табл. 5.4. Продолжение.

Массив														
Порода				-		ср.з.г	ранит			-				
Обр.	8-11	1-05					8-11-	-05/1						
SiO ₂	59,8	59,5	60,1	60,4	61,0	64,1	60,5	60,6	59,8	61,0	58,8	63,2		
Al_2O_3	24,4	24,6	24,2	24,2	23,9	22,0	24,0	24,6	24,5	23,9	25,4	22,9		
FeO	0,12	0,16	0,23	0,22	0,15	0,10	0,24	0,25	0,11	0,07	0,11	0,09		
MgO	0,002	0,001	н.п.о.	н.п.о.	0,013	0,019	0,018	н.п.о.	н.п.о.	0,014	н.п.о.	н.п.о.		
MnO	н.п.о.	0,004	0,003	0,003	0,002	н.п.о.	0,009	0,012	0,011	0,008	н.п.о.	н.п.о.		
CaO	6,20	6,52	6,11	6,02	5,33	3,17	5,73	5,89	6,32	5,32	7,00	3,95		
Na ₂ O	8,5	8,2	8,4	8,2	8,9	10,4	8,6	8,4	8,6	9,2	8,1	10,2		
K ₂ O	0,34	0,41	0,47	0,71	0,29	0,28	0,53	0,51	0,21	0,21	0,17	0,27		
P ₂ O ₅	0,01	0,00	н.п.о.	0,03	0,05	0,02	н.п.о.	н.п.о.	0,01	0,01	н.п.о.	н.п.о.		
SrO	н.п.о.	0,19	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,14	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
Сумма	99,4	99,6	99,7	99,8	99,7	100,1	99,9	100,4	99,6	99,8	99,8	100,7		
Формульн	ые един	е единицы. Расчёт на 8 атомов О.												
Si	2,69	2,68	2,70	2,71	2,73	2,84	2,71	2,70	2,68	2,72	2,64	2,79		
Al	1,29	1,30	1,28	1,28	1,26	1,14	1,27	1,29	1,30	1,26	1,34	1,19		
Fe	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,00	0,00	0,00	0,00		
Mg	0,00	0,00	-	-	0,00	0,00	0,00	-	-	0,00	-	-		
Mn	_	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	-	-		
Ca	0,30	0,31	0,29	0,29	0,26	0,15	0,28	0,28	0,30	0,25	0,34	0,19		
Na	0,74	0,71	0,73	0,71	0,77	0,89	0,75	0,72	0,75	0,80	0,71	0,87		
K	0,02	0,02	0,03	0,04	0,02	0,02	0,03	0,03	0,01	0,01	0,01	0,01		
P	0,00	0,00	-	0,00	0,00	0,00	-	-	0,00	0,00	-	-		
Sr	0,00	0,01	0,00	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Ba	-	-	-	-	0,00	_	0,00	0,00	0,00	0,00	0,00	0,00		
Or	0,018	0,022	0,025	0,039	0,016	0,015	0,028	0,028	0,011	0,011	0,009	0,014		
An	0,283	0,298	0,279	0,278	0,244	0,142	0,260	0,272	0,286	0,239	0,320	0,175		
Ab	0,699	0,679	0,696	0,683	0,740	0,843	0,711	0,701	0,703	0,750	0,671	0,812		

Табл. 5.4. Продолжение.

Массив	<u> </u>													
Порода	ср.з.г	ранит					кр.з. г	ранит						
Обр.	8-11	-05/1			8-11	1-09				Γ	4/1			
SiO ₂	60,4	59,9	61,1	64,6	64,2	63,6	61,3	65,5	64,6	65,7	67,7	68,7		
Al_2O_3	24,2	24,4	23,6	22,1	21,7	22,4	23,6	21,6	21,2	20,9	19,4	19,5		
FeO	0,21	0,24	0,18	0,06	0,08	0,13	0,10	0,05	0,16	0,10	0,04	0,03		
MgO	0,013	н.п.о.	0,002	0,011	0,018	н.п.о.	0,006	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,013		
MnO	0,001	0,001	0,016	0,020	н.п.о.	0,009	н.п.о.	0,003	н.п.о.	0,002	н.п.о.	н.п.о.		
CaO	5,92	5,99	5,07	2,96	2,87	3,59	4,95	2,33	2,95	2,40	0,59	0,42		
Na ₂ O	8,9	8,4	9,2	10,4	10,2	10,1	9,4	11,0	9,6	10,0	10,8	11,2		
K_2O	0,37	0,63	0,41	0,31	0,53	0,52	0,21	0,15	0,27	0,29	0,20	0,15		
P ₂ O ₅	0,01	0,02	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,01	н.п.о.	0,01	0,02	0,01		
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
Сумма	100,1	99,8	99,6	100,5	99,8	100,6	99,6	100,8	99,1	99,8	99,1	100,3		
Формуль	ные еди	ницы. І	асчёт на 8 атомов О.											
Si	2,70	2,69	2,74	2,84	2,85	2,81	2,74	2,87	2,88	2,90	2,99	3,00		
Al	1,27	1,29	1,24	1,15	1,14	1,17	1,24	1,12	1,11	1,09	1,01	1,00		
Fe	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00		
Mg	0,00	-	0,00	0,00	0,00	-	0,00	-	-	-	-	0,00		
Mn	0,00	0,00	0,00	0,00	-	0,00	-	0,00	-	0,00	-	-		
Ca	0,28	0,29	0,24	0,14	0,14	0,17	0,24	0,11	0,14	0,11	0,03	0,02		
Na	0,77	0,74	0,80	0,88	0,88	0,86	0,81	0,93	0,83	0,86	0,92	0,95		
K	0,02	0,04	0,02	0,02	0,03	0,03	0,01	0,01	0,02	0,02	0,01	0,01		
P	0,00	0,00	0,00	-	-	-	-	0,00	-	0,00	0,00	0,00		
Sr	0,00	0,00	0,00	-	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00		
Ba	0,00	0,00	-	_	0,00	0,00	-	0,00	0,00	0,00	-	_		
Or	0,019	0,034	0,022	0,017	0,029	0,028	0,011	0,008	0,016	0,016	0,012	0,008		
An	0,263	0,272	0,229	0,134	0,130	0,160	0,223	0,104	0,143	0,115	0,029	0,020		
Ab	0,717	0,694	0,749	0,849	0,841	0,813	0,765	0,888	0,842	0,869	0,959	0,971		

Табл. 5.4. Продолжение.

Массив	Синюшенский												
Порода		кр.з.г	ранит					апл	пит				
Обр.		Γ-	4/1					Γ-	6/1				
SiO ₂	67,6	66,8	66,4	65,5	68,0	67,8	68,3	68,0	66,9	68,3	66,1	68,6	
Al_2O_3	19,2	20,4	20,3	21,1	19,4	19,5	19,6	19,6	20,4	19,6	20,7	19,5	
FeO	0,06	0,06	0,02	0,10	н.п.о.	0,02	0,02	0,01	0,02	0,03	0,02	0,01	
MgO	0,009	н.п.о.	н.п.о.	0,018	н.п.о.	0,016	0,011	н.п.о.	0,006	0,002	0,005	0,004	
MnO	0,006	н.п.о.	0,010	0,005	н.п.о.	н.п.о.	0,005	0,001	0,010	н.п.о.	0,009	0,002	
CaO	0,55	1,33	1,50	2,57	0,45	0,72	0,57	0,83	1,63	0,65	2,11	0,51	
Na ₂ O	11,3	10,8	10,5	9,9	11,7	11,2	11,4	10,6	10,6	11,3	10,6	11,6	
K ₂ O	0,11	0,17	0,08	0,17	0,17	0,23	0,16	0,27	0,24	0,21	0,23	0,09	
P ₂ O ₅	н.п.о.	0,01	0,02	0,02	н.п.о.	0,02	0,01	0,01	0,02	0,01	н.п.о.	0,01	
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	99,1	99,9	99,0	99,6	100,0	99,9	100,4	99,5	100,1	100,3	100,0	100,5	
Формуль	ные еди	ницы. І	Расчёт н	іа 8 атог	мов О.							 	
Si	2,99	2,94	2,94	2,90	2,98	2,98	2,98	2,99	2,94	2,98	2,91	2,99	
Al	1,00	1,06	1,06	1,10	1,00	1,01	1,01	1,02	1,06	1,01	1,08	1,00	
Fe	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Mg	0,00	-	-	0,00	-	0,00	0,00	-	0,00	0,00	0,00	0,00	
Mn	0,00	-	0,00	0,00	-	-	0,00	0,00	0,00	-	0,00	0,00	
Ca	0,03	0,06	0,07	0,12	0,02	0,03	0,03	0,04	0,08	0,03	0,10	0,02	
Na	0,97	0,92	0,90	0,85	0,99	0,96	0,97	0,90	0,90	0,96	0,90	0,98	
K	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	
P	-	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00	-	0,00	
Sr	0,00	0,00	0,00	-	0,00	0,00	-	-	-	-	0,00	-	
Ba	-	-	_	-	-	_	0,00	_	0,00	0,00	-	0,00	
Or	0,006	0,010	0,004	0,010	0,009	0,013	0,009	0,016	0,013	0,011	0,012	0,005	
An	0,026	0,063	0,073	0,124	0,021	0,034	0,027	0,041	0,077	0,030	0,098	0,024	
Ab	0,968	0,927	0,922	0,866	0,970	0,954	0,964	0,944	0,910	0,958	0,890	0,971	

Табл. 5.4. Продолжение.

Массив																
Порода				B	t грани	г (1 фаз	a)									
Обр.					Γ-2	24/1										
SiO_2	62,0	58,9	67,9	62,6	68,6	61,1	66,9	60,9	61,8	58,5						
Al_2O_3	23,6	25,5	19,8	23,2	19,5	24,1	20,5	24,6	23,6	25,9						
FeO	0,13	0,15	0,05	0,07	0,01	0,16	0,03	0,16	0,14	0,10						
MgO	н.п.о.	н.п.о.	н.п.о.	0,008	0,014	0,001	н.п.о.	0,042	0,018	н.п.о.						
MnO	н.п.о.	0,009	0,006	н.п.о.	0,007	н.п.о.	0,006	н.п.о.	0,007	0,004						
CaO	5,29	7,55	0,76	4,78	0,25	5,86	1,50	6,41	5,42	7,96						
Na ₂ O	8,7	7,2	11,1	8,8	11,5	8,1	10,6	7,8	8,4	7,0						
K ₂ O	0,15	0,15 0,15 0,13 0,12 0,14 0,21 0,08 0,14 0,21 0,11														
P ₂ O ₅	0,01	01 0,03 0,00 0,02 0,01 0,03 0,01 0,01 0,00 0,00														
SrO	н.п.о.	.п.о. н.п.о. н.п.о. н.п.о. н.п.о. н.п.о. н.п.о. н.п.о. н.п.о. н.п.о.														
BaO	н.п.о.	П.О. Н.П.О.														
Сумма	99,9															
Формуль	ные еди	99,9 99,5 99,8 99,6 100,0 99,5 99,6 100,0 99,6 99,7 99,7														
Si	2,75	2,64	2,98	2,78	3,00	2,73	2,94	2,71	2,75	2,62						
Al	1,24	1,35	1,02	1,22	1,00	1,27	1,06	1,29	1,24	1,37						
Fe	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,01	0,01	0,00						
Mg	-	-	-	0,00	0,00	0,00	-	0,00	0,00	-						
Mn	_	0,00	0,00	-	0,00	-	0,00	-	0,00	0,00						
Ca	0,25	0,36	0,04	0,23	0,01	0,28	0,07	0,31	0,26	0,38						
Na	0,75	0,63	0,94	0,75	0,97	0,70	0,90	0,67	0,72	0,61						
K	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01						
P	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00						
Sr	-	-	-	-	-	-	-	-	-	-						
Ba	-	_	0,00	0,00	0,00	0,00	0,00	0,00	_	0,00						
Or	0,009	0,009	0,007	0,007	0,008	0,012	0,005	0,008	0,012	0,006						
An	0,249	0,363	0,036	0,230	0,012	0,282	0,072	0,310	0,260	0,383						
Ab	0,742	0,628	0,957	0,763	0,980	0,705	0,923	0,682	0,728	0,611						

Табл. 5.4. Продолжение.

Массив														
Порода					Bı	t грани	г (2 фаз	a)						
Обр.		Γ-8	8/1					Γ-8	8/3					
SiO ₂	65,7	61,8	64,2	65,3	67,2	64,1	64,9	68,1	64,8	65,4	64,8	64,9		
Al_2O_3	21,1	23,4	21,7	21,1	20,1	21,9	21,0	18,8	22,0	21,6	21,6	21,4		
FeO	0,02	0,03	0,03	0,01	0,01	0,01	0,03	0,03	0,01	0,01	0,02	0,00		
MgO	н.п.о.	н.п.о.	0,002	н.п.о.	0,008	н.п.о.	н.п.о.	н.п.о.	0,005	н.п.о.	0,003	н.п.о.		
MnO	н.п.о.	0,036	0,018	0,007	н.п.о.	0,024	0,016	н.п.о.	н.п.о.	н.п.о.	0,011	0,012		
CaO	2,42	5,11	3,23	2,43	1,21	3,59	2,60	0,21	3,17	2,83	3,16	3,08		
Na_2O	10,1	8,8	9,7	10,1	11,3	9,4	10,9	12,4	10,2	10,4	10,1	10,1		
K ₂ O	0,04	0,19	0,48	0,18	0,05	0,36	0,19	0,12	0,37	0,17	0,21	0,26		
P ₂ O ₅	0,02	0,02	0,17	н.п.о.	н.п.о.	0,02	0,04	0,01	0,16	0,05	н.п.о.	0,07		
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.		
Сумма	99,5	99,6	99,8	99,4	100,2	99,7	99,9	99,9	101,0	100,7	100,1	100,0		
Формулы	ные еди	ые единицы. Расчёт на 8 атомов О.												
Si	2,90	2,76	2,85	2,89	2,95	2,85	2,88	2,99	2,84	2,87	2,86	2,87		
Al	1,10	1,23	1,13	1,10	1,04	1,15	1,10	0,98	1,14	1,12	1,12	1,11		
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Mg	-	-	0,00	-	0,00	-	-	-	0,00	-	0,00	-		
Mn	-	0,00	0,00	0,00	-	0,00	0,00	-	-	-	0,00	0,00		
Ca	0,11	0,24	0,15	0,12	0,06	0,17	0,12	0,01	0,15	0,13	0,15	0,15		
Na	0,86	0,76	0,84	0,87	0,96	0,81	0,93	1,05	0,87	0,88	0,86	0,87		
K	0,00	0,01	0,03	0,01	0,00	0,02	0,01	0,01	0,02	0,01	0,01	0,01		
P	0,00	0,00	0,01	-	-	0,00	0,00	0,00	0,01	0,00	-	0,00		
Sr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Ba	-	_	-	-	0,00	0,00	0,00	-	0,00	0,00	0,00	-		
Or	0,002	0,011	0,027	0,010	0,003	0,021	0,010	0,006	0,020	0,009	0,012	0,014		
An	0,117	0,240	0,151	0,116	0,056	0,171	0,116	0,009	0,143	0,130	0,146	0,142		
Ab	0,881	0,749	0,822	0,873	0,942	0,809	0,874	0,984	0,837	0,861	0,842	0,844		

Табл. 5.4. Продолжение.

Массив															
Порода					2Mica 1	гранит (3 фаза)								
Обр.					Γ-8/5					Γ-	8/7				
SiO ₂	63,2	62,2	61,9	63,8	64,9	64,1	64,6	64,1	63,9	64,6	63,6				
Al_2O_3	22,4	23,3	23,1	22,2	21,6	22,1	21,8	21,8	22,0	21,2	21,8				
FeO	0,04	0,02	0,02	0,02	0,02	0,04	0,02	0,03	0,04	0,03	0,02				
MgO	0,003	н.п.о.	н.п.о.	н.п.о.	0,028	0,001	0,010	0,009	н.п.о.	н.п.о.	н.п.о.				
MnO	0,010	н.п.о.	0,007	0,014	0,001	0,024	0,001	0,019	0,009	0,012	0,005				
CaO	4,00	4,98	5,05	3,77	3,01	3,55	3,24	3,45	3,56	2,78	3,56				
Na ₂ O	9,4	9,3	9,2	9,5	10,1	9,6	9,9	9,8	9,9	10,1	10,0				
K_2O	0,35	0,25	0,23	0,37	0,27	0,39	0,23	0,25	0,29	0,16	0,34				
P ₂ O ₅	0,03	0,09	н.п.о.	0,02	0,04	0,01	0,04	0,07	0,01	0,11	0,13				
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.				
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.				
Сумма	99,6	100,2	99,6	100,0	100,3	100,1	100,0	99,7	100,0	99,3	99,7				
Формулы	ные един	ые единицы. Расчёт на 8 атомов О.													
Si	2,81	2,76	2,76	2,83	2,86	2,84	2,85	2,84	2,83	2,87	2,83				
Al	1,17	1,22	1,22	1,16	1,12	1,15	1,14	1,14	1,15	1,11	1,14				
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Mg	0,00	-	-	-	0,00	0,00	0,00	0,00	-	-	-				
Mn	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Ca	0,19	0,24	0,24	0,18	0,14	0,17	0,15	0,16	0,17	0,13	0,17				
Na	0,81	0,80	0,80	0,82	0,86	0,83	0,84	0,84	0,85	0,87	0,86				
K	0,02	0,01	0,01	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,02				
P	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Sr	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Ba	-	_	_	0,00	_	0,00	0,00	0,00	-	-	0,00				
Or	0,020	0,013	0,012	0,020	0,015	0,021	0,013	0,014	0,016	0,009	0,018				
An	0,187	0,226	0,230	0,176	0,139	0,165	0,152	0,160	0,163	0,131	0,161				
Ab	0,793	0,761	0,758	0,804	0,846	0,813	0,836	0,826	0,821	0,860	0,820				

Табл. 5.4. Продолжение.

Массив	Б	елокурі	ихинскі	ий				Осоки	нский			
Порода	2Mi	іса гран	ит (3 ф	аза)				Вt гр	анит			
Обр.		Γ-8	8/7					Г-2	25/3			
SiO_2	65,9	65,6	63,1	65,9	68,2	64,8	63,4	66,5	66,7	68,7	66,2	66,3
Al_2O_3	20,6	20,9	22,4	21,1	19,7	21,8	22,8	20,5	20,6	19,1	21,1	21,1
FeO	0,02	н.п.о.	0,03	0,01	0,07	0,05	0,03	0,01	0,02	0,05	0,03	0,04
MgO	0,011	0,019	н.п.о.	н.п.о.	0,021	0,001	н.п.о.	0,03	н.п.о.	0,013	0,016	н.п.о.
MnO	0,004	н.п.о.	0,006	0,013	0,008	0,009	0,003	0,008	н.п.о.	0,001	н.п.о.	0,001
CaO	2,07	2,09	4,15	2,39	0,09	3,01	4,06	1,70	1,04	0,03	2,10	2,09
Na ₂ O	10,9	10,4	9,8	10,4	11,5	9,5	9,4	10,6	11,0	11,7	10,1	10,3
K ₂ O	0,09	0,39	0,26	0,13	0,34	0,33	0,24	0,15	0,63	0,09	0,12	0,17
P ₂ O ₅	0,04	н.п.о. н.п.о. н.п.о. н.п.о.			н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,02	н.п.о.	0,03
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,9	99,7	100,0	100,2	99,9	99,6	100,0	99,5	100,0	99,8	99,7	100,0
Формулы	ные еди	ницы. Р	асчёт н	а 8 атом	юв О.							
Si	2,91	2,90	2,80	2,90	2,99	2,87	2,81	2,93	2,93	3,01	2,91	2,91
Al	1,07	1,09	1,17	1,09	1,02	1,13	1,19	1,06	1,07	0,99	1,09	1,09
Fe	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	-	-	0,00	0,00	-	0,00	-	0,00	0,00	-
Mn	0,00	_	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00	-	0,00
Ca	0,10	0,10	0,20	0,11	0,00	0,14	0,19	0,08	0,05	0,00	0,10	0,10
Na	0,93	0,89	0,84	0,89	0,98	0,82	0,81	0,91	0,94	1,00	0,86	0,88
K	0,01	0,02	0,01	0,01	0,02	0,02	0,01	0,01	0,04	0,00	0,01	0,01
P	0,00	0,00	0,00	-	-	-	0,00	-	-	0,00	-	0,00
Sr	0,00	0,00	0,00	0,00	-	-	-	-	-	-	-	-
Ba	0,00	0,00	-	-	0,00	-	-	_	-	-	-	_
	ı	ı .	I	1		1	I	I	I	I	I	<u> </u>
Or	0,005	0,022	0,014	0,007	0,019	0,019	0,013	0,008	0,034	0,005	0,007	0,010
An	0,095	0,098	0,187	0,112	0,004	0,145	0,190	0,080	0,048	0,001	0,102	0,100
Ab	0,901	0,880	0,799	0,881	0,977	0,835	0,797	0,911	0,918	0,994	0,891	0,890

Табл. 5.4. Продолжение.

Массив	в Курановский															
Порода					N	Іи грани	IT									
Обр.						Γ-22/1										
SiO ₂	68,2	68,1	68,1	67,8	67,2	68,2	68,2	68,7	68,2	68,2	67,7					
Al_2O_3	19,5	19,6	19,9	19,7	19,8	19,7	19,7	19,2	19,8	19,5	20,0					
FeO	0,02	0,01	н.п.о.	0,01	н.п.о.	н.п.о.	0,01	н.п.о.	н.п.о.	0,01	0,01					
MgO	0,005	н.п.о.	0,042	н.п.о.	0,016	0,008	0,009	0,011	0,007	0,047	н.п.о.					
MnO	0,006	0,005	н.п.о.	0,001	н.п.о.	0,006	0,002	н.п.о.	0,003	н.п.о.	0,006					
CaO	0,36	0,51	0,70	0,74	1,22	0,48	0,61	0,13	0,46	0,62	0,96					
Na ₂ O	11,6	11,5	11,1	11,2	11,2	11,6	11,3	11,6	11,2	11,1	11,2					
K_2O	0,14	0,06	0,08	0,18	0,15	0,07	0,05	0,10	0,08	0,09	0,06					
P ₂ O ₅	н.п.о.	0,01	0,02	0,01	0,09	0,03	н.п.о.	н.п.о.	0,02	н.п.о.	0,02					
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.					
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.					
Сумма	99,8	99,8 99,8 100,0 99,7 99,7 100,1 99,9 99,8 99,7 99,6 100,0														
Формулы	ные един	ые единицы. Расчёт на 8 атомов О.														
Si	2,99	2,98	2,98	2,98	2,96	2,98	2,98	3,00	2,98	2,99	2,96					
Al	1,01	1,01	1,03	1,02	1,02	1,01	1,02	0,99	1,02	1,01	1,03					
Fe	0,00	0,00	-	0,00	-	-	0,00	-	-	0,00	0,00					
Mg	0,00	-	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	-					
Mn	0,00	0,00	-	0,00	-	0,00	0,00	-	0,00	-	0,00					
Ca	0,02	0,02	0,03	0,03	0,06	0,02	0,03	0,01	0,02	0,03	0,05					
Na	0,98	0,98	0,94	0,95	0,95	0,98	0,96	0,99	0,95	0,94	0,95					
K	0,01	0,00	0,00	0,01	0,01	0,00	0,00	0,01	0,00	0,01	0,00					
P	_	0,00	0,00	0,00	0,00	0,00	-	-	0,00	-	0,00					
Sr	-	-	-	-	-	-	-	-	-	-	-					
Ba	-	_	-	-	_	0,00	0,00	0,00	0,00	_	0,00					
Or	0,008	0,003	0,005	0,010	0,008	0,004	0,003	0,005	0,004	0,005	0,003					
An	0,017	0,024	0,034	0,035	0,056	0,022	0,029	0,006	0,022	0,030	0,045					
Ab	0,975	0,973	0,962	0,955	0,936	0,974	0,968	0,988	0,973	0,965	0,951					

Табл. 5.4. Продолжение.

Массив		Курановский Ми гранит				Точильненский						
Порода		Mu г	ранит					гранит				
Обр.		Γ-2	22/1					8-1006/5				
SiO_2	68,2	67,9	68,8	68,4	67,5	65,9	63,2	66,8	63,6	61,5	60,7	
Al ₂ O ₃	19,5	19,8	19,3	19,5	19,3	20,4	22,3	19,4	21,5	23,0	23,4	
FeO	н.п.о.	0,02	н.п.о.	н.п.о.	0,04	0,05	0,11	0,03	0,07	0,13	0,18	
MgO	0,023	0,002	н.п.о.	0,014	н.п.о.	0,006	0,008	0,011	н.п.о.	н.п.о.	0,005	
MnO	0,005	н.п.о.	0,026	0,003	0,014	0,007	0,018	н.п.о.	0,013	0,009	0,006	
CaO	0,27	0,76	0,06	0,51	0,27	1,60	3,84	0,56	3,20	4,81	5,59	
Na ₂ O	11,5	10,9	11,6	11,3	11,8	10,8	9,2	11,9	10,4	9,2	8,8	
K_2O	0,08	0,14	0,09	0,05	0,11	0,12	0,16	0,19	0,25	0,30	0,29	
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	0,02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	
Сумма	99,6	99,5	99,8	99,8	99,2	99,0	99,0	99,1	99,2	99,2	99,0	
Формуль	ные един	ницы. Ра	счёт на 8	В атомов	O.							
Si	2,99	2,98	3,01	2,99	2,98	2,93	2,82	2,96	2,84	2,76	2,73	
Al	1,01	1,02	0,99	1,01	1,01	1,07	1,17	1,02	1,13	1,22	1,24	
Fe	_	0,00	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,01	
Mg	0,00	0,00	-	0,00	_	0,00	0,00	0,00	0,00	0,00	0,00	
Mn	0,00	-	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	
Ca	0,01	0,04	0,00	0,02	0,01	0,08	0,18	0,03	0,15	0,23	0,27	
Na	0,98	0,92	0,98	0,96	1,01	0,93	0,79	1,03	0,90	0,80	0,77	
K	0,00	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,02	0,02	
P	_	-	-	0,00	_	0,00	-	-	-	-	0,000	
Sr	_	-	-	-	0,00	0,00	0,00	-	0,00	0,00	-	
Ba	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00	-	
Or	0,004	0,008	0,005	0,003	0,006	0,006	0,009	0,010	0,013	0,016	0,016	
An	0,013	0,037	0,003	0,024	0,012	0,075	0,186	0,025	0,143	0,220	0,256	
Ab	0,983	0,955	0,992	0,973	0,982	0,918	0,805	0,965	0,844	0,764	0,728	

Табл. 5.4. Продолжение.

Массив					Точ	ильненс	кий				
Порода						гранит					
Обр.						8-1006/5					
SiO_2	64,6	63,7	63,1	64,1	65,7	62,8	63,5	66,1	67,6	67,6	67,5
Al_2O_3	21,1	21,2	22,2	21,3	20,4	22,4	21,6	20,3	19,5	19,5	19,8
FeO	0,09	0,10	0,10	0,10	0,04	0,01	0,09	0,06	0,05	0,05	0,06
MgO	н.п.о.	0,015	0,014	н.п.о.	н.п.о.	0,007	н.п.о.	н.п.о.	н.п.о.	0,004	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,010	н.п.о.	0,008	0,020	н.п.о.	н.п.о.
CaO	2,68	2,97	3,81	2,82	1,81	3,90	3,42	1,45	0,37	0,31	0,55
Na ₂ O	10,9	10,7	10,0	10,6	11,2	9,6	10,0	11,5	12,1	11,7	11,6
K ₂ O	0,37	0,35	0,38	0,29	0,23	0,12	0,32	0,19	0,11	0,17	0,14
P_2O_5	н.п.о.	н.п.о.	н.п.о.	0,04	0,01	0,04	н.п.о.	0,03	н.п.о.	н.п.о.	0,02
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,8	99,1	99,7	99,4	99,6	99,1	99,0	99,7	99,9	99,5	99,9
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	O.						
Si	2,87	2,85	2,81	2,86	2,91	2,81	2,84	2,92	2,97	2,98	2,97
Al	1,10	1,12	1,17	1,12	1,07	1,18	1,14	1,06	1,01	1,01	1,03
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	0,00	-	-	0,00	-	-	-	0,00	-
Mn	-	-	-	-	-	0,00	-	0,00	0,00	-	-
Ca	0,13	0,14	0,18	0,13	0,09	0,19	0,16	0,07	0,02	0,01	0,03
Na	0,94	0,93	0,86	0,91	0,96	0,83	0,86	0,98	1,03	1,00	0,99
K	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01
Rb	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cs	0,00	-	-	-	0,00	0,00	0,00	-	0,00	0,00	0,00
P	_	-	_	0,00	0,00	0,00	-	0,00	-	-	0,00
Sr	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-
Ba	0,00	-	_	_	_	-	-	0,00	-	_	0,00
Or	0,019	0,018	0,020	0,016	0,012	0,007	0,018	0,010	0,006	0,009	0,008
An	0,118	0,131	0,171	0,126	0,081	0,182	0,157	0,065	0,016	0,014	0,025
Ab	0,863	0,851	0,809	0,858	0,906	0,811	0,826	0,925	0,978	0,977	0,967

Табл. 5.4. Продолжение.

Массив					Точ	ильненс	кий				
Порода						гранит					
Обр.						8-1006/5	1				
SiO ₂	64,6	63,7	63,1	64,1	65,7	62,8	63,5	66,1	67,6	67,6	67,5
Al_2O_3	21,1	21,2	22,2	21,3	20,4	22,4	21,6	20,3	19,5	19,5	19,8
FeO	0,09	0,10	0,10	0,10	0,04	0,01	0,09	0,06	0,05	0,05	0,06
MgO	н.п.о.	0,015	0,014	н.п.о.	н.п.о.	0,007	н.п.о.	н.п.о.	н.п.о.	0,004	н.п.о.
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,010	н.п.о.	0,008	0,020	н.п.о.	н.п.о.
CaO	2,68	2,97	3,81	2,82	1,81	3,90	3,42	1,45	0,37	0,31	0,55
Na ₂ O	10,9	10,7	10,0	10,6	11,2	9,6	10,0	11,5	12,1	11,7	11,6
K ₂ O	0,37	0,35	0,38	0,29	0,23	0,12	0,32	0,19	0,11	0,17	0,14
P_2O_5	н.п.о.	н.п.о.	н.п.о.	0,04	0,01	0,04	н.п.о.	0,03	н.п.о.	н.п.о.	0,02
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,8	99,1	99,7	99,4	99,6	99,1	99,0	99,7	99,9	99,5	99,9
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	O.						
Si	2,87	2,85	2,81	2,86	2,91	2,81	2,84	2,92	2,97	2,98	2,97
Al	1,10	1,12	1,17	1,12	1,07	1,18	1,14	1,06	1,01	1,01	1,03
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	_	0,00	0,00	-	-	0,00	-	-	-	0,00	-
Mn	-	-	-	-	-	0,00	-	0,00	0,00	-	-
Ca	0,13	0,14	0,18	0,13	0,09	0,19	0,16	0,07	0,02	0,01	0,03
Na	0,94	0,93	0,86	0,91	0,96	0,83	0,86	0,98	1,03	1,00	0,99
K	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01
Rb	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cs	0,00	-	-	-	0,00	0,00	0,00	-	0,00	0,00	0,00
P	_	-	-	0,00	0,00	0,00	-	0,00	-	-	0,00
Sr	_	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-
Ba	0,00	_	_	_	_	_	-	0,00	_	_	0,00
Or	0,019	0,018	0,020	0,016	0,012	0,007	0,018	0,010	0,006	0,009	0,008
An	0,118	0,131	0,171	0,126	0,081	0,182	0,157	0,065	0,016	0,014	0,025
Ab	0,863	0,851	0,809	0,858	0,906	0,811	0,826	0,925	0,978	0,977	0,967

Табл. 5.4. Продолжение.

Массив					Точиль	ненски	й			
Порода					гра	анит				
Обр.					8-1	006/5				
SiO ₂	64,6	63,7	63,1	64,1	65,7	62,8	63,5	66,1	67,6	67,6
Al_2O_3	21,1	21,2	22,2	21,3	20,4	22,4	21,6	20,3	19,5	19,5
FeO	0,09	0,10	0,10	0,10	0,04	0,01	0,09	0,06	0,05	0,05
MgO	н.п.о.	0,015	0,014	н.п.о.	н.п.о.	0,007	н.п.о.	н.п.о.	н.п.о.	0,004
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,010	н.п.о.	0,008	0,020	н.п.о.
CaO	2,68	2,97	3,81	2,82	1,81	3,90	3,42	1,45	0,37	0,31
Na_2O	10,9	10,7	10,0	10,6	11,2	9,6	10,0	11,5	12,1	11,7
K ₂ O	0,37	0,35	0,38	0,29	0,23	0,12	0,32	0,19	0,11	0,17
P ₂ O ₅	н.п.о.	н.п.о.	н.п.о.	0,04	0,01	0,04	н.п.о.	0,03	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,8	99,1	99,7	99,4	99,6	99,1	99,0	99,7	99,9	99,5
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	O.					
Si	2,87	2,85	2,81	2,86	2,91	2,81	2,84	2,92	2,97	2,98
Al	1,10	1,12	1,17	1,12	1,07	1,18	1,14	1,06	1,01	1,01
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	0,00	-	-	0,00	-	-	-	0,00
Mn	_	-	-	-	-	0,00	-	0,00	0,00	-
Ca	0,13	0,14	0,18	0,13	0,09	0,19	0,16	0,07	0,02	0,01
Na	0,94	0,93	0,86	0,91	0,96	0,83	0,86	0,98	1,03	1,00
K	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01
P	_	-	-	0,00	0,00	0,00	-	0,00	-	-
Sr	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ba	0,00	_	-	-	_	-	-	0,00	_	-
Or	0,019	0,018	0,020	0,016	0,012	0,007	0,018	0,010	0,006	0,009
An	0,118	0,131	0,171	0,126	0,081	0,182	0,157	0,065	0,016	0,014
Ab	0,863	0,851	0,809	0,858	0,906	0,811	0,826	0,925	0,978	0,977

Табл. 5.4. Продолжение.

Массив					Точиль	ненски	й			
Порода					гра	анит				
Обр.					8-1	006/5				
SiO ₂	64,6	63,7	63,1	64,1	65,7	62,8	63,5	66,1	67,6	67,6
Al_2O_3	21,1	21,2	22,2	21,3	20,4	22,4	21,6	20,3	19,5	19,5
FeO	0,09	0,10	0,10	0,10	0,04	0,01	0,09	0,06	0,05	0,05
MgO	н.п.о.	0,015	0,014	н.п.о.	н.п.о.	0,007	н.п.о.	н.п.о.	н.п.о.	0,004
MnO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,010	н.п.о.	0,008	0,020	н.п.о.
CaO	2,68	2,97	3,81	2,82	1,81	3,90	3,42	1,45	0,37	0,31
Na ₂ O	10,9	10,7	10,0	10,6	11,2	9,6	10,0	11,5	12,1	11,7
K ₂ O	0,37	0,35	0,38	0,29	0,23	0,12	0,32	0,19	0,11	0,17
P_2O_5	н.п.о.	н.п.о.	н.п.о.	0,04	0,01	0,04	н.п.о.	0,03	н.п.о.	н.п.о.
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,8	99,1	99,7	99,4	99,6	99,1	99,0	99,7	99,9	99,5
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	O.					
Si	2,87	2,85	2,81	2,86	2,91	2,81	2,84	2,92	2,97	2,98
Al	1,10	1,12	1,17	1,12	1,07	1,18	1,14	1,06	1,01	1,01
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	0,00	-	-	0,00	-	-	-	0,00
Mn	_	-	-	-	-	0,00	-	0,00	0,00	-
Ca	0,13	0,14	0,18	0,13	0,09	0,19	0,16	0,07	0,02	0,01
Na	0,94	0,93	0,86	0,91	0,96	0,83	0,86	0,98	1,03	1,00
K	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01
P	_	-	-	0,00	0,00	0,00	-	0,00	-	-
Sr	-	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ba	0,00	_	-	-	_	_	-	0,00	_	-
Or	0,019	0,018	0,020	0,016	0,012	0,007	0,018	0,010	0,006	0,009
An	0,118	0,131	0,171	0,126	0,081	0,182	0,157	0,065	0,016	0,014
Ab	0,863	0,851	0,809	0,858	0,906	0,811	0,826	0,925	0,978	0,977

Табл. 5.4. Продолжение.

Массив					Точиль	ненски	й			
Порода					пег	матит				
Обр.					8-1	010/1				
SiO ₂	67,9	67,6	67,3	67,3	66,6	65,9	65,9	66,2	65,9	66,4
Al_2O_3	19,0	19,2	19,3	19,2	19,7	20,2	20,2	20,3	20,0	20,0
FeO	0,02	0,01	0,03	0,01	0,01	0,01	0,01	0,03	0,03	0,04
MgO	н.п.о.	0,009	0,010	0,022	0,005	н.п.о.	н.п.о.	0,021	0,008	н.п.о.
MnO	н.п.о.	0,001	0,010	0,008	0,003	н.п.о.	0,016	0,006	н.п.о.	н.п.о.
CaO	0,08	0,23	0,40	0,41	0,78	1,66	1,23	1,44	1,27	1,01
Na ₂ O	12,2	12,1	12,0	11,9	12,0	11,4	11,5	11,5	11,7	11,6
K ₂ O	0,08	0,07	0,11	0,07	0,07	0,06	0,11	0,08	0,07	0,07
P_2O_5	0,05	н.п.о.	0,01	0,02	0,19	0,03	0,10	0,04	0,05	0,14
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,3	99,3	99,4	99,2	99,5	99,4	99,1	99,8	99,1	99,3
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	O.					
Si	2,99	2,98	2,98	2,98	2,94	2,92	2,93	2,92	2,93	2,94
Al	0,99	1,00	1,01	1,00	1,03	1,06	1,06	1,06	1,05	1,04
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	0,00	0,00	0,00	-	-	0,00	0,00	-
Mn	_	0,00	0,00	0,00	0,00	-	0,00	0,00	-	-
Ca	0,00	0,01	0,02	0,02	0,04	0,08	0,06	0,07	0,06	0,05
Na	1,04	1,04	1,03	1,03	1,03	0,98	0,99	0,99	1,00	1,00
K	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00
P	0,00	-	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,01
Sr	0,00	0,00	0,00	0,00	-	0,00	0,00	-	-	-
Ba	-	_	0,00	0,00	0,00	0,00	-	0,00	-	0,00
Or	0,004	0,004	0,006	0,004	0,004	0,003	0,006	0,004	0,004	0,004
An	0,004	0,010	0,018	0,018	0,035	0,074	0,056	0,064	0,057	0,046
Ab	0,992	0,986	0,976	0,978	0,962	0,922	0,939	0,931	0,940	0,951

Табл. 5.4. Продолжение.

Массив					Точилн	ненски	й			
Порода					пег	матит				
Обр.					8-1	010/1				
SiO ₂	67,9	67,6	67,3	67,3	66,6	65,9	65,9	66,2	65,9	66,4
Al_2O_3	19,0	19,2	19,3	19,2	19,7	20,2	20,2	20,3	20,0	20,0
FeO	0,02	0,01	0,03	0,01	0,01	0,01	0,01	0,03	0,03	0,04
MgO	н.п.о.	0,009	0,010	0,022	0,005	н.п.о.	н.п.о.	0,021	0,008	н.п.о.
MnO	н.п.о.	0,001	0,010	0,008	0,003	н.п.о.	0,016	0,006	н.п.о.	н.п.о.
CaO	0,08	0,23	0,40	0,41	0,78	1,66	1,23	1,44	1,27	1,01
Na ₂ O	12,2	12,1	12,0	11,9	12,0	11,4	11,5	11,5	11,7	11,6
K_2O	0,08	0,07	0,11	0,07	0,07	0,06	0,11	0,08	0,07	0,07
P ₂ O ₅	0,05	н.п.о.	0,01	0,02	0,19	0,03	0,10	0,04	0,05	0,14
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,3	99,3	99,4	99,2	99,5	99,4	99,1	99,8	99,1	99,3
Формуль	ные един	ницы. Ра	счёт на	3 атомов	O.					
Si	2,99	2,98	2,98	2,98	2,94	2,92	2,93	2,92	2,93	2,94
Al	0,99	1,00	1,01	1,00	1,03	1,06	1,06	1,06	1,05	1,04
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	0,00	0,00	0,00	-	-	0,00	0,00	-
Mn	-	0,00	0,00	0,00	0,00	-	0,00	0,00	_	-
Ca	0,00	0,01	0,02	0,02	0,04	0,08	0,06	0,07	0,06	0,05
Na	1,04	1,04	1,03	1,03	1,03	0,98	0,99	0,99	1,00	1,00
K	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00
P	0,00	-	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,01
Sr	0,00	0,00	0,00	0,00	-	0,00	0,00	-	-	-
Ba	-	_	0,00	0,00	0,00	0,00	-	0,00	_	0,00
Or	0,004	0,004	0,006	0,004	0,004	0,003	0,006	0,004	0,004	0,004
An	0,004	0,010	0,018	0,018	0,035	0,074	0,056	0,064	0,057	0,046
Ab	0,992	0,986	0,976	0,978	0,962	0,922	0,939	0,931	0,940	0,951

Табл. 5.4. Продолжение.

Массив					Точиль	ненски	й			
Порода					пег	матит				
Обр.					8-1	010/1				
SiO ₂	67,9	67,6	67,3	67,3	66,6	65,9	65,9	66,2	65,9	66,4
Al_2O_3	19,0	19,2	19,3	19,2	19,7	20,2	20,2	20,3	20,0	20,0
FeO	0,02	0,01	0,03	0,01	0,01	0,01	0,01	0,03	0,03	0,04
MgO	н.п.о.	0,009	0,010	0,022	0,005	н.п.о.	н.п.о.	0,021	0,008	н.п.о.
MnO	н.п.о.	0,001	0,010	0,008	0,003	н.п.о.	0,016	0,006	н.п.о.	н.п.о.
CaO	0,08	0,23	0,40	0,41	0,78	1,66	1,23	1,44	1,27	1,01
Na ₂ O	12,2	12,1	12,0	11,9	12,0	11,4	11,5	11,5	11,7	11,6
K ₂ O	0,08	0,07	0,11	0,07	0,07	0,06	0,11	0,08	0,07	0,07
P_2O_5	0,05	н.п.о.	0,01	0,02	0,19	0,03	0,10	0,04	0,05	0,14
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,3	99,3	99,4	99,2	99,5	99,4	99,1	99,8	99,1	99,3
Формуль	ные един	ницы. Ра	счёт на 8	3 атомов	O.					
Si	2,99	2,98	2,98	2,98	2,94	2,92	2,93	2,92	2,93	2,94
Al	0,99	1,00	1,01	1,00	1,03	1,06	1,06	1,06	1,05	1,04
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	-	0,00	0,00	0,00	0,00	-	-	0,00	0,00	-
Mn	_	0,00	0,00	0,00	0,00	-	0,00	0,00	-	-
Ca	0,00	0,01	0,02	0,02	0,04	0,08	0,06	0,07	0,06	0,05
Na	1,04	1,04	1,03	1,03	1,03	0,98	0,99	0,99	1,00	1,00
K	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00
P	0,00	-	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,01
Sr	0,00	0,00	0,00	0,00	-	0,00	0,00	-	-	-
Ba	-	_	0,00	0,00	0,00	0,00	-	0,00	_	0,00
Or	0,004	0,004	0,006	0,004	0,004	0,003	0,006	0,004	0,004	0,004
An	0,004	0,010	0,018	0,018	0,035	0,074	0,056	0,064	0,057	0,046
Ab	0,992	0,986	0,976	0,978	0,962	0,922	0,939	0,931	0,940	0,951

Табл. 5.4. Окончание.

Массив					Точ	ильнен	ский				
Порода]	пегмати	łТ				
Обр.						8-1010/	1				
SiO ₂	66,7	66,9	65,7	66,1	66,3	66,5	66,5	66,2	66,0	66,6	67,1
Al_2O_3	19,9	19,5	20,6	20,1	20,1	20,2	20,3	19,9	19,8	20,1	20,0
FeO	0,03	0,03	0,04	0,02	0,01	н.п.о.	0,01	0,02	0,01	0,01	0,03
MgO	0,003	0,009	0,001	0,003	0,008	0,009	н.п.о.	0,015	0,018	н.п.о.	н.п.о.
MnO	н.п.о.	н.п.о.	0,007	н.п.о.	0,003	0,007	н.п.о.	0,004	0,005	н.п.о.	н.п.о.
CaO	1,14	0,78	1,71	1,37	1,19	1,24	1,55	1,31	1,28	1,37	1,03
Na_2O	11,7	11,6	11,3	11,2	11,8	11,2	11,4	11,4	11,5	11,3	11,7
K ₂ O	0,10	0,09	0,12	0,06	0,06	0,07	0,10	0,07	0,26	0,07	0,05
P ₂ O ₅	н.п.о.	0,14	0,07	0,06	0,07	0,06	0,10	0,03	0,08	0,06	0,04
SrO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	99,7	99,1	99,6	99,1	99,6	99,4	100,0	99,1	99,2	99,6	100,1
Формулі	ьные еді	иницы.	Расчёт і	на 8 атог	мов О.						
Si	2,94	2,96	2,91	2,93	2,93	2,94	2,92	2,94	2,93	2,94	2,95
Al	1,03	1,02	1,07	1,05	1,05	1,05	1,05	1,04	1,04	1,04	1,03
Fe	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00
Mg	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	-	-
Mn	-	-	0,00	-	0,00	0,00	-	0,00	0,00	-	-
Ca	0,05	0,04	0,08	0,06	0,06	0,06	0,070	0,06	0,06	0,06	0,05
Na	1,00	1,00	0,97	0,97	1,01	0,96	0,98	0,98	0,99	0,97	1,00
K	0,01	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00
P	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sr	0,00	0,00	-	0,00	-	0,00	0,00	-	0,00	0,00	0,00
Ba	-	0,00	_	0,00	0,00	0,00	-	0,00	0,00	0,00	-
Or	0,005	0,005	0,006	0,003	0,003	0,004	0,005	0,004	0,014	0,004	0,002
An	0,051	0,035	0,076	0,063	0,053	0,057	0,069	0,060	0,057	0,063	0,046
Ab	0,944	0,960	0,917	0,934	0,944	0,939	0,926	0,937	0,929	0,933	0,951

Примечание. Данные электронно-зондового анализа (мас. %). н.п.о. - ниже предела обнаружения, прочерк – не определялся.

 Табл. 5.5. Состав пироксенов из пород пермо-триасовых интрузивных серий Алтая.

 Массив
 Айский

Массив		Айский								Tepa	Теранджикский	ский						ĺ
Порода	га	ra66po	сиенит							MOI	монцога ббро	bo				•		
Образец	Γ -27	2-752a	2-756a							9-09-3							8-09-102/2	02/2
Минерал		\mathbf{CPx}			Opx							C	\mathbf{CPx}					
SiO_2	46,8	49,1	51,0	53,9	52,8	52,2	52,0	51,2	52,9	51,5	51,1	52,6	52,0	51,9	52,3	52,3	52,2	53,1
TiO_2	4,10	0,91	0,47	0,01	0,38	0,3	0,68	0,89	0,09	0,89	0,79	0,28	0,67	0,67	0,94	0,73	0,46	0,29
Al_2O_3	5,14	2,78	2,03	0,5	0,67	0,51	1,57	1,77	1,26	2,53	2,16	0,91	1,32	1,32	1,74	1,52	2,75	1,62
Cr_2O_3	0,04	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	0,05	0,02	0,12	0,16	0,12	0,02	0,02	н.п.о.	0,04	0,01	н.п.о.	н.п.о.
FeO	12,3	10,7	10,0	22,0	23,5	25,2	12,0	13,4	8,6	11,3	11,3	11,8	13,5	13,3	11,4	11,5	7,1	7,6
MnO	0,22	0,25	0,57	9,0	0,56	0,69	0,37	0,41	0,26	0,31	0,33	0,39	0,4	0,39	0,4	0,44	0,29	0,37
MgO	12,0	11,5	11,4	22,5	20,3	19,3	14,4	14,5	13,9	14,4	15,3	12,8	13,2	13,3	14,8	14,4	14,6	14,5
CaO	13,6	22,8	22,1	9,0	1,9	2,0	18,6	17,3	21,9	18,7	18,3	20,5	18,6	18,6	18,3	18,9	22,3	22,5
Na_2O	0,44	99'0	0,94	0,02	0,08	0,06	0,5	0,42	0,52	0,41	0,51	0,44	0,46	0,46	0,62	0,47	0,68	0,5
$\mathbf{K}_2\mathbf{O}$	0,52	0,03	0,01	0,01	0,01	0,01	н.п.о.	0,01	0,01	н.п.о.	0,02	н.п.о.	н.п.о.	0,01	0,01	н.п.о.	0,07	0,03
Сумма	95,3	99,3	99,3	100,1	100,1	100,3	100,1	6,66	99,5	100,1	6,66	8,66	100,1	100,0	100,5	100,2	100,5	100,5
Формульные единицы. Расчёт на 6 атомов О	ные един	ицы. Расч	ёт на 6 ат	омов О.														
S	1,86	1,87	1,94	2,00	1,99	1,97	1,94	1,92	1,97	1,92	1,90	1,99	1,96	1,96	1,94	1,95	1,91	1,96
Ţ	0,12	0,03	0,01	0,00	0,01	0,01	0,02	0,03	0,00	0,02	0,02	0,01	0,02	0,02	0,03	0,02	0,01	0,01
$\mathbf{Al}^{\;\mathbf{IV}}$	0,01	0,11	0,04	0,00	0,00	0,02	0,04	0,05	0,02	0,05	0,07	0,01	0,02	0,02	0,04	0,03	0,07	0,04
$\mathbf{Al}^{\mathrm{VI}}$	0,23	0,02	0,05	0,02	0,03	0,01	0,03	0,02	0,03	0,06	0,02	0,03	0,04	0,03	0,04	0,04	0,05	0,03
${ m Fe}^{+3}$	0,14	0,14	0,14	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr^{+3}	0,00	1	ı	1	0,00	1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1	0,00	0,00	ı	1
${ m Fe}^{+2}$	0,27	0,20	0,18	0,69	0,74	0,80	0,38	0,42	0,27	0,35	0,35	0,37	0,43	0,42	0,35	0,36	0,22	0,23
Mn	0,01	0,01	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
${ m Mg}^{ m VI}$	0,35	0,63	0,62	0,27	0,22	0,17	0,58	0,54	0,69	0,58	0,61	0,58	0,52	0,53	0,59	0,59	0,73	0,72
${ m Mg}^{ m VIII}$	0,36	0,02	0,03	0,97	0,92	0,91	0,22	0,27	0,0	0,22	0,23	0,14	0,22	0,21	0,23	0,21	0,07	0,07
$\mathrm{Ca}^{\mathrm{VIII}}$	0,58	0,93	0,90	0,02	0,07	0,08	0,74	0,70	0,88	0,75	0,73	0,83	0,75	0,75	0,73	0,75	0,88	0,89
Na VIII	0,03	0,05	0,07	0,00	0,01	0,00	0,04	0,03	0,0	0,03	0,04	0,03	0,03	0,03	0,04	0,03	0,05	0,04
K	0,03	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	-	0,00	ı	1	0,00	0,00	-	0,00	0,00
Wo	37,18	52,07	52,25	1,20	3,82	4,18	38,72	36,08	45,64	39,37	37,83	43,10	39,20	39,21	38,29	39,45	46,29	46,35
En	45,55	36,62	37,42	63,76	58,24	55,25	41,74	42,06	40,36	42,12	43,91	37,54	38,56	38,91	43,17	41,82	42,16	41,52
Fs	17,27	11,31	10,33	35,04	37,93	40,57	19,54	21,86	13,99	18,51	18,25	19,37	22,24	21,88	18,54	18,73	11,55	12,13

Табл. 5.5. Продолжение.

Массив	٠							ָר.	Герандя	Теранджикский	,=							
Порода					монцога	габбро								МОНЦОНИТ	ОНИТ			
Образец					8-09-10	.102/2								8-09-102/1	102/1			
Минерал					C	\mathbf{CPx}								0	Opx			
SiO_2	53,5	53,3	54,0	53,8	53,9	53,1	53,7	53,3	52,1	53,7	53,8	53,5	52,4	51,6	51,7	52,4	53,1	52,7
TiO_2	0,18	0,23	0,15	0,18	0,19	0,32	0,36	0,29	0,55	0,16	0,35	0,4	0,42	0,35	0,37	0,42	0,38	0,4
Al_2O_3	1,17	1,34	0,83	0,98	1,07	1,7	1,63	1,23	2,41	0,89	1,44	1,57	1,37	1,04	1,18	1,08	1,47	1,42
Cr_2O_3	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,04	0,03	0,01	0,01	0,01	н.п.о.	0,03	0,02
FeO	7,6	7,64	7,95	7,41	7,93	7,69	7,69	6,93	7,91	7,97	16,3	17,4	22,1	26,1	24,6	23,1	19,5	21,7
MnO	0,37	0,36	0,42	0,37	0,4	0,35	0,33	0,32	0,26	0,38	0,39	0,42	0,58	0,73	0,62	0,59	0,49	0,57
MgO	14,5	14,5	14,6	14,3	14,3	14,7	14,4	14,8	15,0	14,9	25,6	24,0	20,8	18,0	19,2	20,2	22,7	21,2
CaO	22,8	22,4	22,1	22,9	22,4	21,6	22,5	22,3	20,5	21,7	2,13	2,13	1,93	2,08	1,95	1,89	2	2,09
Na_2O	0,47	0,61	0,56	0,5	0,56	0,64	0,55	0,55	0,66	0,46	0,07	0,11	0,07	0,09	0,08	0,07	0,00	0,09
K_2O	0,01	0,01	0,01	0,01	н.п.о.	0,08	0,06	0,01	0,17	0,01	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,01	0,01
Сумма	100,6	100,4	100,6	100,5	100,8	100,2	101,2	8,66	99,5	100,2	100,1	99,5	7,66	100,0	7,66	8,66	8,66	100,1
Формульные единицы. Расчёт на 6 атомов О.	ые един	ицы. Ра	счёт на	6 атомоғ	30.													
Si	1,97	1,96	1,99	1,98	1,98	1,96	1,96	1,97	1,93	1,99	1,95	1,97	1,97	1,97	1,96	1,98	1,97	1,96
Ti	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0,01	0,02	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
$\mathbf{Al}^{\ ext{IV}}$	0,02	0,03	0,01	0,01	0,01	0,03	0,03	0,02	0,05	0,01	0,04	0,02	0,02	0,02	0,03	0,01	0,02	0,02
$\mathbf{A}\mathbf{I}^{\mathrm{VI}}$	0,03	0,03	0,03	0,03	0,04	0,04	0,04	0,03	0,05	0,03	0,02	0,05	0,04	0,03	0,03	0,04	0,04	0,04
Fe ⁺³	0,00	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,00	0,00	0,00	0,00
Cr^{+3}	ı	ı	1	ı	ı	ı	ı	ı	ı	1	0,00	0,00	0,00	0,00	00,00	0,00	0,00	0,00
${ m Fe}^{+2}$	0,23	0,19	0,20	0,18	0,20	0,19	0,19	0,17	0,20	0,20	0,45	0,49	0,65	0,79	0,78	0,73	0,60	0,67
Mn	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02
${ m Mg}^{ m VI}$	0,73	0,72	0,71	0,73	0,71	0,71	0,71	0,74	0,70	0,71	0,47	0,41	0,25	0,12	0,17	0,22	0,34	0,27
${f Mg}^{ m vm}$	0,07	0,07	0,09	0,06	0,08	0,10	0,08	0,08	0,13	0,11	0,91	0,91	0,92	0,91	0,91	0,92	0,91	0,91
$ m Ca^{~VIII}$	0,60	0,88	0,87	0,91	0,88	0,85	0,88	0,88	0,81	0,86	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,08
Na ^{viii}	0,03	0,04	0,04	0,04	0,04	0,05	0,04	0,04	0,05	0,03	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01
K	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	1	-	-	1	-	-	0,00	0,00
Wo	46,55	47,23	46,49	48,24	47,32	46,05	47,42	47,22	44,18	45,73	4,32	4,44	4,10	4,48	4,09	3,94	4,11	4,32
En	41,33	42,52	42,78	41,92	41,95	43,51	42,26	43,66	44,88	43,49	72,12	69,59	61,56	53,91	55,91	58,60	64,74	98,09
Fs	12,13	10,25	10,73	9,84	10,73	10,44	10,32	9,12	10,94	10,77	23,57	25,97	34,34	41,61	40,01	37,46	31,15	34,82

	POTOTOTOR	Thornwilling.
	r	;
l r		E001:

Массив	·	Массив						Tep	Теранджикский	кский								
Порода			МОНЦОНИТ	нит								МОНЦО	монцодиорит	<u>_</u>				
Образец		&	8-09-102/1			9-00-2						A-	A-041					
Минерал	Opx			\mathbf{CPx}						Opx	X					CPx	X	
SiO_2	52,9	51,5	53,3	51,5	51,5	51,9	53,1	53,5	52,6	53,1	51,7	52,9	52,8	52,0	52,1	52,3	52,2	54,2
TiO_2	0,45	0,37	0,14	0,52	0,97	0,69	0,25	0,2	0,29	0,33	0,26	0,27	0,27	0,27	9,0	0,51	0,56	0,35
Al ₂ O ₃	1,14	1,91	0,49	1,64	3,28	2,54	0,88	0,86	0,7	0,87	1,27	1,59	1,02	0,85	2,25	1,55	3,98	1,72
Cr_2O_3	0,02	0,05	н.п.о.	н.п.о.	н.п.о.	0,14	0,02	0,01	н.п.о.	0,07	н.п.о.	0,03	н.п.о.	0,01	н.п.о.	н.п.о.	0,15	0,23
FeO	21,6	13,0	11,0	13,7	9,3	8,6	20,2	20,1	23,0	20,3	21,9	18,8	21,5	22,8	9,5	10,1	6,39	10,7
MnO	0,51	0,43	0,4	0,46	0,28	0,3	0,8	0,67	1,12	0,62	0,79	0,59	0,72	1,14	0,42	0,46	0,22	0,5
MgO	21,5	14,1	13,2	13,4	14,0	14,6	22,6	22,7	21,5	24,6	22,6	24,7	23,0	21,9	14,7	14,4	14,4	15,8
CaO	1,9	18,0	21,5	18,4	19,9	20,5	1,1	1,45	0,98	0,91	1,63	1,23	1,31	0,83	19,5	20,1	20,7	15,5
Na_2O	0,04	0,51	0,28	0,41	0,84	0,74	0,07	0,04	н.п.о.	0,03	0,04	0,04	90,0	н.п.о.	0,75	9,0	0,95	0,64
K_2O	н.п.о.	0,02	н.п.о.	0,01	0,05	0,00	0,02	0,01	0,01	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,01	0,02	0,01	90,0	0,08
Сумма	100,0	8,66	100,4	100,0	100,0	100,1	99,1	5,66	100,1	100,8	100,1	100,2	100,7	8,66	6,66	100,1	9,66	7,66
Формульные	ле единип	ы. Расчё	единицы. Расчёт на 6 атомов О	MOB O.														
\mathbf{Si}	1,97	1,93	2,00	1,94	1,91	1,92	1,99	1,99	1,97	1,94	1,92	1,93	1,94	1,95	1,93	1,94	1,92	2,01
Ţi	0,01	0,01	0,00	0,01	0,03	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,01
$\mathbf{Al}^{\ \mathbf{N}}$	0,01	0,06	0,00	0,05	0,06	0,06	0,01	0,00	0,02	0,05	0,08	0,06	0,05	0,04	0,05	0,04	0,06	0,00
Al VI	0,04	0,03	0,02	0,03	0,08	0,05	0,03	0,03	0,01	0,00	0,00	0,01	0,00	0,00	0,05	0,03	0,11	0,10
Fe ⁺³	0,00	0,00	0,00	00,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	90,0	0,06	90,0	0,06	0,06	0,06
Cr^{+3}	0,00	0,00	ı	1	ı	0,00	0,00	0,00	ı	0,00	ı	0,00	ı	0,00	ı	1	0,00	0,01
Fe^{+2}	0,67	0,40	0,34	0,43	0,28	0,26	0,63	0,62	0,72	0,62	0,68	0,57	0,61	0,66	0,24	0,26	0,14	0,28
Mn	0,02	0,01	0,01	0,01	0,01	0,01	0,03	0,02	0,04	0,02	0,02	0,02	0,02	0,04	0,01	0,01	0,01	0,02
${ m Mg}^{ m VI}$	0,27	0,55	0,62	0,53	0,63	0,67	0,31	0,32	0,24	0,37	0,32	0,40	0,32	0,26	0,64	0,64	0,68	0,54
${ m Mg}^{ m VIII}$	0,92	0,24	0,12	0,23	0,15	0,13	0,95	0,94	96,0	0,96	0,93	0,95	0,94	0,97	0,17	0,15	0,11	0,33
Ca VIII	0,08	0,73	0,86	0,74	0,79	0,81	0,04	90,0	0,04	0,04	0,06	0,05	0,05	0,03	0,78	0,80	0,82	0,62
Na VIII	0,00	0,04	0,02	0,03	90,0	0,05	0,01	0,00	1	0,00	0,00	0,00	0,00	1	0,05	0,04	0,07	0,05
K	ı	0,00	1	0,00	0,00	0,00	0,00	0,00	0,00	1	1	ı	ı	0,00	0,00	0,00	0,00	0,00
Wo	3,96	37,89	44,48	38,61	42,83	43,32	2,28	2,98	2,01	1,79	3,26	2,45	2,69	1,74	42,54	43,14	46,64	34,75
En	61,55	41,06	37,95	39,07	41,81	42,76	65,15	65,01	61,34	67,20	62,73	68,48	65,81	63,91	44,37	42,96	45,32	49,57
Fs	34,49	21,06	17,57	22,32	15,36	13,92	32,57	32,01	36,65	31,01	34,01	29,07	31,50	34,35	13,09	13,91	8,04	15,68

Табл. 5.5. Окончание.

	иенит	51		52,8	0,14	1,46	Н.П.О.	8,18	0,51	14,0	21,6	0,51	0,01	99,3		1,97	0,00	0,02	0,04	0,01	ı	0,24	0,02	69,0	0,09	0,87	0,04	0,00	45,91	41,25	12,84
	граносиенит	5-451		53,7	0,06	1,01	н.п.о.	5,77	0,31	15,5	22,5	0,48	0,01	66,3		1,99	0,00	0,01	0,03	0,01	1	0,17	0,01	0,78	0,07	0,89	0,03	0,00	46,71	44,63	8,65
	сиенит	7-745		54,1	0,27	2,12	н.п.о.	8,56	0,29	17,7	13,7	0,65	0,22	0,86		2,02	0,01	0	0,13	0,01	1	0,25	0,01	0,59	0,39	0,55	0,05	0,01	30,66	55,15	14,19
				52,5	99'0	2,40	0,00	5,71	0,20	16,2	21,3	0,32	н.п.о.	66,3		1,94	0,02	0,04	0,06	0,03	0	0,15	0,01	0,76	0,13	0,84	0,02	_	44,84	47,27	7,88
				52,6	0,26	1,29	н.п.о.	7,04	0,21	15,7	21,5	0,38	н.п.о.	0,66		1,96	0,01	0,04	0,02	0,03	ı	0,19	0,01	0,75	0,11	0,86	0,03	ı	44,74	45,29	9,97
				53,4	0,26	1,23	н.п.о.	7,02	0,20	15,4	21,6	0,38	0,01	9,66		1,98	0,01	0,01	0,04	0,03	1	0,19	0,01	0,74	0,11	0,86	0,03	0,00	45,21	44,80	66,6
				52,3	0,40	1,89	н.п.о.	7,04	0,20	15,3	21,7	0,38	н.п.о.	99,2		1,94	0,01	0,04	0,04	0,03	1	0,19	0,01	0,74	0,11	0,86	0,03	1	45,36	44,60	10,04
į				52,1	0,45	2,01	н.п.о.	7,18	0,22	15,0	21,8	0,47	н.п.о.	66,3		1,94	0,01	0,05	0,04	0,03	1	0,20	0,01	0,73	0,10	0,87	0,03	ı	45,79	43,90	10,31
Гархатинский			\mathbf{CPx}	52,1	0,69	2,52	н.п.о.	6,89	0,19	15,4	21,4	0,38	0,02	7,66		1,93	0,02	0,05	0,06	0,03	1	0,19	0,01	0,72	0,12	0,85	0,03	0,00	45,10	45,05	9,85
Тархал	ИТ)	53,0	0,45	1,61	н.п.о.	6,90	0,22	17,1	20,3	0,27	н.п.о.	6,66		1,95	0,01	0,04	0,03	0,03	1	0,18	0,01	0,75	0,18	0,80	0,02	ı	41,61	48,79	9,61
	монцодиорит	8-07-09		52,1	0,62	2,26	н.п.о.	7,18	0,25	15,0	21,6	0,39	н.п.о.	5,66		1,93	0,02	0,05	0,05	0,03	ı	0,20	0,01	0,72	0,11	0,86	0,03	-	45,64	44,01	10,35
	MO			52,4	0,34	1,51	н.п.о.	7,15	0,22	15,6	21,4	0,34	н.п.о.	6,86		1,95	0,01	0,04	0,03	0,03	ı	0,19	0,01	0,74	0,12	0,85	0,02	ı	44,55	45,26	10,19
				51,8	0,65	2,56	н.п.о.	7,12	0,22	15,3	21,0	0,52	0,02	99,2		1,92	0,02	0,06	0,05	0,03	ı	0,19	0,01	0,72	0,13	0,83	0,04	0,00	44,55	45,12	10,33
				51,8	0,68	2,48	н.п.о.	6,91	0,22	15,0	21,7	0,47	0,02	66,3	О.	1,92	0,02	0,06	0,05	0,03	1	0,19	0,01	0,73	0,10	0,86	0,03	0,001	45,96	44,09	9,95
				52,5	0,60	2,19	н.п.о.	6,00	0,20	15,9	21,9	0,41	0,00	7,66	атомов	1,93	0,02	0,05	0,04	0,03	1	0,16	0,01	0,77	0,11	0,86	0,03	0	45,54	46,17	8,29
				52,4	0,45	1,89	н.п.о.	7,24	0,25	15,3	21,4	0,43	0,01	99,4	чёт на 6	1,94	0,01	0,04	0,04	0,03	1	0,20	0,01	0,73	0,12	0,85	0,03	0,00	44,98	44,63	10,40
				51,8	0,67	2,48	н.п.о.	7,52	0,22	14,7	21,2	0,43	0,01	99,2	ицы. Рас	1,93	0,02	0,05	0,06	0,03	1	0,21	0,01	0,70	0,12	0,85	0,03	0,00	45,28	43,69	11,03
				51,4	0,83	2,93	н.п.о.	7,54	0,24	14,6	21,3	0,46	0,01	99,4	ые един	1,92	0,02	0,06	0,07	0,03	1	0,21	0,01	0,69	0,12	0,85	0,03	0,00	45,50	43,40	11,10
Массив	Порода	Образец	Минерал	SiO_2	${ m TiO}_2$	Al_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Сумма	Формульные единицы. Расчёт на	Si	Ţ	$\mathbf{Al}^{\ \mathbf{N}}$	Al ^{VI}	${ m Fe}^{+3}$	\mathbf{Cr}^{+3}	${ m Fe}^{+2}$	$\mathbf{M}\mathbf{n}$	${ m Mg}^{ m VI}$	${ m Mg}^{ m VIII}$	Са VIII	$Na^{ m viii}$	K	Wo	$\mathbf{E}\mathbf{n}$	Fs

Примечание. Данные электронно-зондового анализа (мас. %). н.п.о. - ниже предела обнаружения, прочерк – не определялся.

Табл. 5.6. Состав амфиболов из пород пермо-триасовых интрузивных серий Алтая.

11,9 11,7 12,1 12,0 0,72 1,53 0,64 0,91 1,37 0,45 0,62 0,48 0,67 0,62 0,13 0,12 0,13 0,15 0,12 0,03 0,03 0,03 0,03 0,03 96,1 96,1 96,0 96,4 41. - - - - - - - - - 0,10 0,34 0,08 0,11 0,40 0,14 0,25 0,18 0,22 0,09 0,00 0,00 0,01 0,00 0,00 0,44 0,85 0,36 0,55 1,28 - - - - - 1,18 1,02 1,24 1,06 0,00 0,44 0,85 0,36 0,55 1,28 1,18 1,02 1,24 1,06 0,75 3,14 2,55 3,13 3,06 2,49 0,04 0,04 0,03 0,05 0,04 0,04 0,09 0,09
,26 6,46 7,27 6,94 ,74 1,54 0,73 1,06 -
0,85 0,36 0,55 - 0,00 - 1,02 1,24 1,06 2,55 3,13 3,06 0,04 0,04 0,03
0,01 1,91 0,05 0,21 0,13 1,70

		:
	ā	,
	Ξ	7
	a	Ⅎ
	7	7
	ť	2
	Ž	₹
	Ė	Ⅎ
	7	3
	۲	4
		4
	C)
	2	2
۱	÷	4
۲	-	4
١	۷)
	_	٠
Į	•)
		÷
ì	コンロ	3
•	₹	۷.
	C	3

υда 39,3 38,4 37,7 39,8 38,9 37,2 40,5 D, 0,71 1,29 1,27 0,42 1,03 1,50 0,59 D, 0,87 0,89 0,87 0,90 0,84 0,84 0,84 0,94 D, 20,6 21,1 21,5 20,9 20,3 21,4 19,9 D, 840 7,61 7,23 8,30 8,31 7,28 8,84 D, 11,2 11,0 11,3 11,0 11,0 11,0 11,0 D, 20,6 21,1 21,2 20,9 20,3 21,4 19,9 O, 9 8,40 7,61 7,23 8,30 8,31 7,28 8,84 D, 1,91 2,2	Габл. 5.6. Продолжение. Массив	Прод	олже	ние.						Айский	КИЙ								
39,3 38,4 37,7 39,8 38,9 37,2 40,5 0,71 1,29 1,27 0,42 1,03 1,50 0,59 13,1 13,1 13,7 14,3 12,8 13,1 14,0 12,3	Порода									сиенил	нит								
39,3 38,4 37,7 39,8 38,9 37,2 40,5 0,71 1,29 1,27 0,42 1,03 1,50 0,59 13,1 13,7 14,3 12,8 13,1 14,0 12,3	Образец									Γ-12/1								i.	
0,71 1,29 1,27 0,42 1,03 1,50 0,59 13,1 13,7 14,3 12,8 13,1 14,0 12,3	SiO_2	39,3	38,4	37,7	39,8	38,9	37,2	40,5	37,9	39,4	40,5	38,2	39,7		39,5	39,5	37,8	39,1	41,2
13,1 13,7 14,3 12,8 13,1 14,0 12,3 - - - - - - - - 0,87 0,89 0,87 0,90 0,84 0,84 0,94 20,6 21,1 21,5 20,9 20,3 21,4 19,9 8,40 7,61 7,23 8,30 8,31 7,28 8,84 11,2 11,0 11,1 11,0 11,0 11,0 2,41 2,20 2,31 1,78 2,04 2,38 1,79 0,98 0,90 0,87 1,14 0,96 0,89 0,99 1,91 2,29 2,31 1,78 2,04 2,48 1,79 0,06 0,04 0,04 0,06 0,11 0,06 0,98 0,99 <th>TiO_2</th> <th>0,71</th> <th>1,29</th> <th>1,27</th> <th>0,42</th> <th>1,03</th> <th>1,50</th> <th>0,59</th> <th>1,23</th> <th>1,46</th> <th>0,58</th> <th>1,08</th> <th>0,76</th> <th>1,20</th> <th>1,37</th> <th>0,81</th> <th>1,20</th> <th>1,46</th> <th>0,67</th>	TiO_2	0,71	1,29	1,27	0,42	1,03	1,50	0,59	1,23	1,46	0,58	1,08	0,76	1,20	1,37	0,81	1,20	1,46	0,67
- - - - - 0,87 0,89 0,87 0,90 0,84 0,84 0,94 20,6 21,1 21,5 20,9 20,3 21,4 19,9 8,40 7,61 7,23 8,30 8,31 7,28 8,84 11,2 11,0 11,0 11,3 11,0 11,0 11,0 2,41 2,20 2,31 1,78 2,04 2,38 1,79 0,98 0,90 0,87 1,14 0,96 0,89 0,99 1,91 2,29 2,31 1,78 2,04 2,48 1,79 0,98 0,90 0,87 1,14 0,96 0,89 0,99 0,06 0,04 0,04 0,06 0,11 0,06 0,11 0,06 0,09 0,04 0,06 0,11 0,05 0,26 0,38 0,39 0,08 0,09 0,36 0,32 0,36 0,37 0,	Al_2O_3	13,1	13,7	14,3	12,8	13,1	14,0	12,3	14,1	12,9	12,1	13,9	12,4	14,5	13,3	13,1	14,6	12,9	12,1
0,87 0,89 0,87 0,90 0,84 0,84 0,94 20,6 21,1 21,5 20,9 20,3 21,4 19,9 8,40 7,61 7,23 8,30 8,31 7,28 8,84 11,2 11,0 11,0 11,0 11,1 11,0 11,0 11,0	Cr.0,	ı	ı	1	ı	ı	1	1	1	1	1	ı	1	1	ı	1	1	1	ı
20,6 21,1 21,5 20,9 20,3 21,4 19,9 8,40 7,61 7,23 8,30 8,31 7,28 8,84 11,2 11,0 11,0 11,0 11,0 11,0 1,2,41 2,20 2,31 2,39 2,38 2,23 2,36 2,41 2,20 2,31 1,78 2,04 2,48 1,79 0,98 0,99 0,99 0,97 1,14 0,96 0,11 0,02 0,06 0,06 0,04 0,04 0,06 0,11 0,02 0,06 0,06 0,04 0,04 0,06 0,11 0,02 0,06 0,09 0,09 0,09 0,09 0,09 0,09 0,09	MnO	0,87	0,89	0,87	0,00			0,94	0,82	0,87	0,93	0,85	0,89	0,83	0,90	0,94	0,89	0,87	0,87
8,40 7,61 7,23 8,30 8,31 7,28 8,84 11,2 11,0 11,0 11,0 11,0 11,1 11,0 11,0	FeO	20,6	21,1	21,5	20,9	ļ	21,4	19,9	21,6	21,1	20,7	21,1	20,7	21,6	20,4	20,8	21,8	20,6	20,4
11,2 11,0 11,0 11,3 11,0 11,0 11,0 11,0 12,4 12,10 2,31 2,39 2,38 2,23 2,35 1,91 2,99 2,38 2,23 2,36 1,91 2,99 0,99 0,987 1,14 0,96 0,89 0,99 0,99 0,90 0,00 0,00 0,00 0,00	MgO	8,40	7,61	7,23	8,30	ļ	7,28	8,84	7,26	7,92	8,84	7,92	8,55	7,24	8,22	8,48	7,20	8,07	8,77
2,41 2,20 2,31 2,39 2,38 2,23 2,36 1,91 2,29 2,31 1,78 2,04 2,48 1,79 0,98 0,90 0,87 1,14 0,96 0,89 0,99 0,99 0,006 0,11 0,02 0,06 0,99 0,09 0,006 0,004 0,006 0,11 0,02 0,006 0,99 0,99,1 99,0 99,2 98,6 98,5 98,9 0,99 0,99 0,92 0,86 0,88 2,08 2,08 2,03 0,33 0,34 0,36 0,32 0,29 0,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00	CaO	11,2	11,0	11,0	11,3		11,0	11,0	11,0	10,7	11,0	11,0	11,0	10,9	10,9	10,9	10,9	10,6	11,0
1,91 2,29 2,31 1,78 2,04 2,48 1,79 0,98 0,99 0,99 0,06 0,04 0,04 0,06 0,11 0,02 0,06 0,99 0,00 0,00 0,01 0,02 0,06 0,99 1 99,1 99,0 99,2 98,6 98,5 98,9 0,99 0,99 1 99,1 99,1 99,0 99,2 98,6 98,5 98,9 0,99 0,08 0,13 2,13 2,22 1,95 2,05 2,26 1,84 0,08 0,15 0,15 0,05 0,12 0,17 0,07 0,08 0,15 0,07 0,07 0,00 0,07 0,00 0,07 0,00 0,07 0,00 0,07 0,00 0,	Na_2O	2,41	2,20	2,31	2,39		2,23	2,36	2,36	2,25	2,41	2,44	2,44	2,42	2,09	2,41	2,39	2,27	2,19
0,98 0,90 0,87 1,14 0,96 0,89 0,99 0,06 0,04 0,04 0,06 0,11 0,02 0,06 99,1 99,1 99,0 99,2 98,6 98,5 98,9 HSI e ELIMHILISI. Paccytër Ha 24 аниона по Глососк, 20 5,98 5,74 6,16 2,06 2,07 1,84 2,03 2,13 2,22 1,95 2,05 2,26 1,84 - - - - - - - - 0,08 0,15 0,05 0,12 0,17 0,07 0,07 0,08 0,09 0,07 0,09 0,07 1,73 1,70 1,69 1,88 1,66 1,81 1,91 1,74 1,65 1,88 1,60 1,81 1,91 1,74 1,65 1,88 1,60 1,81 1,91 1,74 1,65 1,88 1,90 1,09 0,04 0,04 <th>K_2O</th> <th>1,91</th> <th>2,29</th> <th>2,31</th> <th>1,78</th> <th></th> <th>2,48</th> <th>1,79</th> <th>2,19</th> <th>2,38</th> <th>1,80</th> <th>1,95</th> <th>1,83</th> <th>2,24</th> <th>2,39</th> <th>1,92</th> <th>2,18</th> <th>2,44</th> <th>1,70</th>	K_2O	1,91	2,29	2,31	1,78		2,48	1,79	2,19	2,38	1,80	1,95	1,83	2,24	2,39	1,92	2,18	2,44	1,70
0.06 0.04 0.04 0.06 0.11 0.02 0.06 99.1 99.1 99.0 99.2 98.6 98.5 98.9 4 вы единицы. Рассчёт на 24 аниона по Глососк, 20 5.98 5.74 6.16 5.98 5.87 5.78 6.05 5.95 5.74 6.16 2.03 2.13 2.22 1.95 2.05 2.26 1.84 - - - - - - - - 0.08 0.15 0.15 0.05 0.12 0.17 0.07 0.08 0.10 0.05 0.12 0.17 0.07 0.89 1.00 1.07 0.79 0.94 1.16 0.72 0.07 0.08 0.09 0.07 0.07 0.00 0.05 1.74 1.65 1.88 1.90 1.68 2.00 0.04 0.04 0.07 0.01 0.08 0.04 0.01 0.08	H	0,98	06,0	0,87	1,14		0,89	0,99	0,89	0,88	0,98	0,99	1,05	0,84	0,96	1,00	0,82	0,93	0,93
199,1 99,0 99,2 98,6 98,5 98,9 15,98 5,87 5,78 6,05 5,95 5,74 6,16 2,98 5,87 5,78 6,05 5,95 5,74 6,16 2,03 2,13 2,22 1,95 2,05 2,26 1,84 - - - - - - 0,08 0,15 0,15 0,05 0,12 0,17 0,07 0,08 0,15 0,05 0,12 0,17 0,07 0,07 0,08 0,09 0,07 0,09 0,07 0,00 1,73 1,70 1,69 1,88 1,66 1,60 1,81 1,91 1,74 1,65 1,88 1,60 1,81 1,90 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,14 0,1	ರ	0,06	0,04	0,04	0,00		0,02	0,06	0,04	0,02	0,05	0,04	0,07	0,05	0,04	0,08	0,04	0,02	0,09
Нале единицы. Рассчёт на 24 аниона по [Locock, 20 5,98 5,87 5,78 6,05 5,95 5,74 6,16 2,03 2,13 2,22 1,95 2,05 2,26 1,84 - - - - - - - 0,08 0,15 0,15 0,05 0,12 0,17 0,07 0,03 0,15 0,15 0,05 0,22 0,29 0,35 0,07 0,08 0,09 0,07 0,07 0,10 0,05 1,73 1,70 1,69 1,88 1,66 1,81 1,91 1,74 1,65 1,88 1,00 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,14 0,15 0,45 <t< th=""><th>Сумма</th><th>99,1</th><th>99,1</th><th>99,0</th><th>99,2</th><th></th><th>98,5</th><th>6,86</th><th>0,66</th><th>99,4</th><th>5,66</th><th>0,66</th><th>6,86</th><th>99,2</th><th>8,66</th><th>5,66</th><th>99,5</th><th>6,86</th><th>9,66</th></t<>	Сумма	99,1	99,1	99,0	99,2		98,5	6,86	0,66	99,4	5,66	0,66	6,86	99,2	8,66	5,66	99,5	6,86	9,66
5,98 5,87 5,78 6,05 5,95 5,74 6,16 2,03 2,13 2,22 1,95 2,05 2,26 1,84 - - - - - - - - 0,08 0,15 0,05 0,12 0,17 0,07 0,07 0,03 0,34 0,36 0,34 0,32 0,29 0,35 0,07 0,08 1,00 1,07 0,79 0,94 1,16 0,72 0,07 0,08 0,09 0,07 0,07 0,01 0,05 1,73 1,70 1,69 1,88 1,66 1,81 1,81 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,14 0,15 0,17 0,11 0,16	бормульн	пые еди	ницы.	Рассчёт	24	аниона	1	_)14].										
2,03 2,13 2,22 1,95 2,05 2,26 1,84 - - - - - - - - - 0,08 0,15 0,15 0,05 0,12 0,17 0,07 0,33 0,34 0,36 0,34 0,32 0,29 0,35 - - - - - - - 0,89 1,00 1,07 0,79 0,94 1,16 0,72 0,07 0,08 0,09 0,07 0,07 0,10 0,05 1,73 1,70 1,69 1,88 1,66 1,81 1,91 1,74 1,65 1,88 1,60 1,88 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,18 1,81 1,81 1,82 1,79 0,14 0,15 0,17 0,14 0,14 0,14 0,14 0,15	Si	5,98	5,87	5,78	6,05		5,74	6,16	5,81	5,99	6,12	5,83	6,05	5,75	5,98	5,97	5,76	5,98	6,22
0.08 0.15 0.05 0.12 0.17 0.07 0.33 0.34 0.36 0.34 0.32 0.29 0.35 0.33 0.34 0.36 0.34 0.32 0.29 0.07 0.89 1,00 1,07 0.79 0.94 1,16 0.72 0.07 0,08 0,09 0,07 0,07 0,10 0,05 1,73 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,14 0,14 0,15 0,17 0,14 0,18 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,47 0,44 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34	Al ^{IV}	2,03	2,13	2,22	1,95		2,26	1,84	2,20	2,01	1,88	2,17	1,95	2,25	2,02	2,03	2,24	2,02	1,79
0,08 0,15 0,15 0,05 0,12 0,17 0,07 0,33 0,34 0,36 0,34 0,32 0,29 0,35 - - - - - - - - 0,89 1,00 1,07 0,79 0,94 1,16 0,72 0,07 0,08 0,09 0,07 0,01 0,05 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,18 1,80 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,56 0,47 0,44 0,42 0,55 0,47 0,48 0,48	${ m Ti}^{~{ m IV}}$	ı	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	ı
0,33 0,34 0,36 0,34 0,32 0,29 0,35 - - - - - - - - 0,89 1,00 1,07 0,79 0,94 1,16 0,72 0,07 0,08 0,09 0,07 0,01 0,05 1,73 1,70 1,69 1,88 1,66 1,81 1,81 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 0,04 0,04 0,04 0,01 0,08 0,14 0,15 0,17 0,14 0,17 0,14 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,42 0,50	$\mathrm{Ti}^{\mathrm{MI}}$	0,08	0,15	0,15	0,05	0,12	0,17	0,07	0,14	0,17	0,07	0,12	0,00	0,14	0,16	0,09	0,14	0,17	0,08
0.89 1,00 1,07 0,79 0,94 1,16 0,72 0,07 0,08 0,09 0,07 0,07 0,10 0,05 1,73 1,70 1,69 1,88 1,66 1,81 1,81 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 - - - - - - - 1,82 1,81 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,48 0,48 0,02	Al ^{VI}	0,33	0,34	0,36	0,34	0,32	0,29	0,35	0,35	0,30	0,28	0,33	0,28	0,37	0,36	0,31	0,38	0,30	0,37
0,89 1,00 1,07 0,79 0,94 1,16 0,72 0,07 0,08 0,09 0,07 0,07 0,10 0,05 1,73 1,70 1,69 1,88 1,66 1,68 2,00 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 - - - - - - - - 1,82 1,81 1,80 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,37 1,27 1,27 1,37 0,47 0,44 0,42 0,55 0,47 0,48	ن	1	1	1	1	1	1	1	ı	1	1	1	1	ı	1	1	ı	1	1
0,07 0,08 0,09 0,07 0,07 0,10 0,05 1,73 1,70 1,69 1,88 1,66 1,68 2,00 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 - - - - - - - - 1,82 1,81 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,01 0,01 0,01	Fe^{3+}	0,89	1,00	1,07	0,79	0,94	1,16	0,72	1,05	0,98	0,83	1,07	0,89	1,10	0,91	0,96	1,10	1,00	0,68
1,73 1,70 1,69 1,88 1,66 1,60 1,81 1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 - - - - - - - 1,82 1,81 1,80 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,03 0,01 0,02 0,15 0,20 0,20 0,01 0,02 0,10	$ m Mn^{2+VI}$	0,07	0,08	0,09	0,07	0,07	0,10	0,05	0,08	0,06	0,05	90,0	0,06	0,08	0,05	0,06	0,08	0,06	0,01
1,91 1,74 1,65 1,88 1,90 1,68 2,00 0,04 0,04 0,02 0,05 0,04 0,01 0,08 - - - - - - - 1,82 1,81 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,03 0,01 0,02 0,15 0,20 0,20 0,24 0,25 0,14	$\mathrm{Fe^{2+VI}}$	1,73	1,70	1,69	1,88	1,66	1,60	1,81	1,72	1,70	1,78	1,62	1,75	1,66	1,67	1,67	1,68	1,63	1,89
0,04 0,04 0,02 0,05 0,04 0,01 0,08 -	\mathbf{Mg}	1,91	1,74	1,65	1,88	1,90	1,68	2,00	1,66	1,80	1,99	1,80	1,94	1,65	1,85	1,91	1,64	1,84	1,97
1,82 1,81 1,80 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,27 1,37 0,47 0,44 0,42 0,55 0,47 0,48 0,48 0,02 0,01 0,01 0,02 0,03 0,01 0,02 0,01	${ m Mn}^{2+{ m VIII}}$	0,04	0,04	0,02	0,05	0,04	0,01	0,08	0,03	0,06	0,07	0,05	0,06	0,02	0,07	0,07	0,04	0,05	0,10
1,82 1,81 1,80 1,84 1,81 1,82 1,79 0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,48 0,02 0,01 0,01 0,01 0,02 0,03 0,01 0,15 0,20 0,10 0,25 0,14	Fe^{2+} VIII	1	1	1	ı	ı	1	1	ı	ı	ı	ı	1	1	ı	ı	1	ı	ı
0,14 0,15 0,17 0,11 0,16 0,17 0,14 0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,48 0,48 0,02 0,01 0,01 0,02 0,03 0,01 0,02 0,15 0,20 0,10 0,24 0,14 0,25 0,14	Ca	1,82	1,81	1,80	1,84	1,81	1,82	1,79	1,81	1,74	1,78	1,79	1,80	1,79	1,77	1,77	1,78	1,74	1,78
0,57 0,50 0,51 0,59 0,55 0,49 0,56 0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,01 0,02 0,01 0,02	Na VIII	0,14	0,15	0,17	0,11	0,16	0,17	0,14	0,17	0,20	0,15	0,16	0,15	0,19	0,16	0,16	0,18	0,21	0,12
0,37 0,45 0,45 0,35 0,40 0,49 0,35 1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,01 0,02 0,01 0,02 0,15 0,20 0,10 0,20 0,10 0,25 0,14	$\mathbf{Na}^{\mathbf{X}}$	0,57	0,50	0,51	0,59	0,55	0,49	0,56	0,53	0,46	0,56	0,56	0,57	0,53	0,45	0,55	0,53	0,46	0,53
1,35 1,26 1,28 1,34 1,27 1,22 1,37 0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,03 0,01 0,02 0,15 0,20 0,20 0,10 0,25 0,14	K	0,37	0,45	0,45	0,35	0,40	0,49	0,35	0,43	0,46	0,35	0,38	0,36	0,44	0,46	0,37	0,42	0,48	0,33
0,47 0,44 0,42 0,55 0,47 0,43 0,48 0,02 0,01 0,01 0,02 0,03 0,01 0,02 0,03 0,01 0,02 0,03 0,01 0,02	НО	1,35	1,26	1,28	1,34	1,27	1,22	1,37	1,27	1,24	1,39	1,27	1,30	1,31	1,22	1,32	1,32	1,21	1,38
0,02 0,01 0,01 0,02 0,03 0,01 0,02	H	0,47	0,44	0,42	0,55	0,47	0,43	0,48	0,43	0,42	0,47	0,48	0,51	0,41	0,46	0,48	0,40	0,45	0,45
0.16 0.20 0.30 0.10 0.34 0.35 0.14	ت ت	0,02	0,01	0,01	0,02	0,03	0,01	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,02
+1,0 CC,0 +7,0 O1,0 C2,0 OC,0 O1,0	0	0,16	0,30	0,29	0,10	0,24	0,35	0,14	0,28	0,34	0,13	0,25	0,18	0,28	0,31	0,18	0,28	0,34	0,15

Продолжение.	
5.6.	
абл.	

1/1 38,3 40,9 42,9 47,1 46,4 4
40,9 42,9 47,1 40,4 42,9 46,0 0,93 2,69 1,17 1,45 1,53 1,23
7 9,28 6,17 7,02 9,19 6,83 9
0,00 - 0,01
0,46 0,52 0,54 0,51 0,49 0,54
12,1 1,7,1
11,5 11,2 11,5 11,3 11,7 11,6
1,39 1,61 0,92 1,28 1,32 0,89
1,30 0,64 0,52 0,55 0,84 0,70
0.90 - 0.17 - 0.10 - 0.11 - 0.16 - 0.14 - 0.17 - 0.12 - 0.04 - 0.02 - 0.03 - 0.03 - 0.03 - 0.04 - 0.04
96,1 96,4 96,3
a 1
6,35 6,54 7,07 6,94 6,57 6,93
2,20 1,65 1,46 0,93 1,06 1,43 1,07 1,51
1
0,11 0,31 0,13 0,16 0,18 0,14
0,21 0,17 0,17 0,22
00.00 - 00.00
0,78 0,85 0,56 0,63 0,75 0,68
- 0,00 - 0,03 0,01
1,85 1,30 1,54 1,23 1,52 1,52
2,33 2,60 2,80 2,30 2,50
, 0,07
0.01 - 0.02
1,82 1,86 1,81 1,92 1,87
0,19 0,05 0,10 0,08 0,11 0,05 0,08 0,05
0,37 0,38 0,19 0,26 0,34 0,18 0,31
0,10
1,25 1,69 1,33 1,68 1,59 1,57 1,63 1,52
0,43 0,08 0,05 0,05 0,08 0,07 0,08 0,06
0,01 0,00 0,01 0,01 0,01 0,01 0,01
0,22 0,62 0,26 0,33 0,35 0,28 0,41

абл. 5.6. Продолжение.			
. 5.6. Продолжени			•
. 5.6. Продол:			×
. 5.6. IIpc		TYP P	
. 5.6. I			2
абл. 5.6.		ζ	1
абл. 5		C	;
<u>a</u> 60	l	~	;
		2	3

	Айский гранит								Тера	Теранджикский монпогаббро	ский						
Γ-26					9-09-1b	1-1p			9-09-3	9-3			%	8-09-102/2	7/2		
45,0 44	4	4,44	51,7	52,4	49,5	49,8	53,5	49,3	43,7	7,44	52,0	51,0	51,5	47,9	46,1	45,7	45,4
0,91	Τ,	25	0,45	0,54	0,50	0,49	0,40	0,63	2,97	2,74	0,65	0,22	0,71	1,06	1,58	1,72	2,18
6,71 7,33	7,3	33	4,67	5,01	6,88	6,37	4,29	6,53	9,35	8,44	4,11	4,77	4,73	6,68	8,61	8,24	8,97
	'		0,22	0,04	0,13	0,43	0,26	0,42	0,06	1	1	1	1	ı	ı	1	1
1,43 0,86	3,0	98	0,31	0,28	0,27	0,32	0,27	0,26	0,15	0,18	0,28	0,35	0,27	0,27	0,23	0,26	0,21
	15	15,5	12,9	12,5	13,5	13,3	11,8	13,8	13,6	12,5	8,6	11,0	10,1	12,0	11,5	12,9	12,1
11,2 12,1	12	1,	14,8	14,7	13,8	13,8	15,1	13,9	13,1	14,4	17,7	17,0	16,6	15,4	15,0	14,0	14,4
	11	Ó,	11,8	11,7	11,8	11,8	11,6	11,6	11,4	11,0	11,7	11,5	12,2	11,7	11,9	11,7	11,7
2,18 2,38	<u>~</u>	88	0,70	0,69	0,91	0,78	0,62	1,01	2,18	2,05	0,94	1,22	0,86	1,51	1,62	1,68	2,06
1,04 $1,1$	Ξ,		0,20	0,25	0,24	0,30	0,18	0,32	1,36	1,55	0,43	0,47	0,42	0,73	0,91	1,07	1,09
0,79 0,87	Ö,	87	0,17	0,14	0,15	0,12	0,15	0,14	1	1	0,48	0,57	0,45	0,51	0,59	0,51	0,61
0,05 0,06	0,0	90	0,02	0,02	0,05	0,12	0,01	0,02	ı	-	0,08	0,12	0,00	0,15	0,18	0,25	0,12
96,8 96,5	96	5,5	6,76	98,2	9,76	97,5	98,1	6,76	8,76	97,5	6,76	6,76	8,76	9,76	6,76	6,76	98,5
Формульные единицы. Рассчёт на	cc	чёт 1		нона і	24 аниона по [Locock, 2014]	ock, 20	14].										
6,87 6,	9	6,78	7,44	7,50	7,17	7,24	7,63	7,15	9,50	6,62	7,39	7,30	7,39	86,98	6,72	6,74	6,65
1,13 1	П	1,22	0,56	0,50	0,83	0,76	0,37	0,85	1,50	1,38	0,61	0,70	0,61	1,02	1,28	1,27	1,36
		ı	1	ı	1	1	ı	1	ı	1	ı	ı	ı	1	1	ı	
0,111	0	0,14	0,05	0,06	90,0	0,05	0,04	0,07	0,33	0,31	0,07	0,02	0,08	0,12	0,17	0,19	0,24
0,08 0,	0	0,10	0,23	0,35	0,35	0,33	0,35	0,26	0,14	0,09	0,08	0,11	0,19	0,12	0,20	0,17	0,19
0,01		1	0,03	0,01	0,02	0,05	0,03	0,05	0,01	1	1	1	1	1	1	1	1
	0	0,42	0,27	0,18	0,35	0,29	0,08	0,41	0,68	0,71	4,0	0,41	0,24	0,53	0,60	0,58	0,56
	0	0,02	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	` '	1,56	1,24	1,28	1,25	1,29	1,29	1,20	0,94	0,74	0,66	0,84	0,95	0,88	0,77	0,98	0,86
	(1	2,76	3,18	3,14	2,98	2,99	3,21	3,01	2,90	3,16	3,76	3,62	3,55	3,35	3,25	3,08	3,14
0,111 0	0	,10	0,0	0,03	0,03	0,04	0,03	0,03	0,02	0,02	0,03	0,0	0,03	0,03	0,03	0,03	0,03
		ı	0,04	0,04	0,05	0,04	0,04	0,06	0,07	0,09	0,07	0,07	0,02	0,05	0,03	0,03	0,05
1,77	Т	1,79	1,82	1,79	1,83	1,83	1,78	1,80	1,81	1,74	1,78	1,77	1,88	1,83	1,87	1,85	1,83
	0	0,11	0,10	0,13	0,00	0,00	0,15	0,11	0,11	0,14	0,12	0,12	0,07	0,10	0,08	0,08	0,10
	0	,59	0,10	0,06	0,16	0,13	0,03	0,18	0,52	0,44	0,14	0,22	0,17	0,33	0,38	0,40	0,49
	0	,22	0,04	0,05	0,04	90,0	0,03	0,06	0,26	0,29	0,08	0,0	0,08	0,14	0,17	0,20	0,20
	_	1,28	1,82	1,82	1,81	1,81	1,84	1,79	1,33	1,39	1,63	1,67	1,62	1,50	1,34	1,32	1,21
\sim	0	0,42	0,08	0,06	0,07	0,06	0,07	0,06	1	1	0,22	0,26	0,20	0,24	0,27	0,24	0,28
0,01	$^{\circ}$	0,02	0,01	0,01	0,01	0,03	0,00	0,01	ı	ı	0,02	0,03	0,02	0,04	0,05	0,06	0,03
	Ó,	29	0,10	0,12	0,11	0,11	0,09	0,14	0,67	0,61	0,14	0,05	0,15	0,23	0,35	0,38	0,48

-	DO TO TWO LIND	TOTAL THE CHILLS.
۰	-	┥
	٥	;
•	•	•
l	100	507

Массив	·								Теранджикский	икский								
Порода		MOF	монцогаббро	66po			MOF	монцонит					MOH	монцодиорит	ТИС			
Образец		-8	8-09-102/2	1/2		8	8-09-102/	./1	6-00-2					A-041				
\mathbf{SiO}_2	51,5	52,4	49,7	47,7	46,4	50,7	47,6	44,5	46,8	45,7	46,0	45,1	6,44	46,5	46,3	46,2	45,8	46,7
${ m TiO}_2$	0,60	0,83	1,10	1,24	1,58	0,44	0,55	1,94	1,87	1,85	1,80	2,04	1,94	1,47	1,99	1,90	1,83	1,72
Al_2O_3	4,47	4,02	5,38	7,65	7,14	3,72	6,43	7,7	6,89	7,43	7,41	7,33	7,57	7,57	7,36	7,39	7,41	7,31
Cr_2O_3	ı	ı	ı	ı	ı	ı	ı	1	0,02	н.п.о.	0,01	0,02	0,02	0,01	0,01	0,01	0,01	н.п.о.
MnO	0,28	0,28	0,30	0,23	0,26	0,25	0,22	0,25	0,26	0,26	0,35	0,26	0,33	0,40	0,33	0,32	0,33	0,24
FeO	10,2	10,1	11,0	11,7	13,6	12,6	15,4	16,9	13,4	12,7	13,9	12,4	13,2	11,6	13,4	13,4	13,6	11,6
$M_{\rm M}$	17,8	17,5	16,0	15,3	14,2	16,0	13,7	12,3	14,8	14,9	14,2	14,9	14,4	14,7	14,5	14,4	14,3	16,1
CaO	11,3	11,6	11,5	11,7	11,6	11,2	11,3	10,9	10,7	11,2	11,2	11,5	11,1	11,3	11,3	11,3	11,2	11,1
Na_2O	1,05	1,03	1,40	1,68	1,85	1,02	1,53	1,86	2,06	2,13	1,95	2,11	2,20	1,83	1,92	1,89	2,03	1,94
K_2O	0,47	0,45	0,63	0,81	1,02	0,50	0,92	1,40	1,13	1,33	1,23	1,12	1,31	0,98	1,15	1,14	1,19	1,36
鱼	0,52	0,57	0,54	0,56	0,53	0,89	1,01	н.п.о.	н.п.о.	1,15	1,03	1,19	1,08	1,05	1	ı	ı	1
Cl	0,00	0,10	0,14	0,16	0,22	0,04	0,19	н.п.о.	Н.П.О.	0,22	0,19	0,25	0,26	0,26	1	-	-	-
Сумма	98,1	98,7	97,3	98,4	98,1	97,0	98,3	97,6	0,86	98,3	8,86	9,76	7,76	97,1	98,3	6,76	7,76	6,76
Формульные единицы. Рассчёт на 24	ые еди	ницы.	Рассчё	т на 24	аниона	и по [Locock,	cock, 2	2014].										
Si	7,31	7,43	7,24	6,90	6,83	7,39	7,00	99'9	6,85	6,74	6,77	6,70	89'9	6,89	6,77	6,78	9,79	6,78
${ m Al}^{~ m IV}$	0,69	0,58	0,76	1,10	1,17	0,62	1,00	1,34	1,15	1,26	1,23	1,28	1,32	1,11	1,23	1,22	1,24	1,22
${ m Ti}^{~{ m IV}}$	ı	1	ı	ı	ı	ı	ı		ı	ı	ı	0,02	ı	ı	ı	ı	ı	ı
${ m Ti}^{ m VI}$	0,06	0,09	0,12	0,14	0,18	0,05	0,06	0,22	0,21	0,21	0,20	0,21	0,22	0,16	0,22	0,21	0,20	0,19
Al VI	0,06	0,10	0,16	0,21	0,02	0,02	0,12	0,02	0,03	0,03	0,05	ı	0,01	0,21	0,04	90,0	0,04	0,03
Ç	ı	1	ı	ı	1	1	ı	-	0,00	ı	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
${ m Fe}^{3+}$	0,55	0,38	0,24	0,48	0,56	0,49	0,51	0,80	0,67	0,63	0,66	0,68	0,67	0,42	0,68	0,64	0,66	0,70
$\mathbf{Mn}^{2+\mathrm{VI}}$	1	ı	1	1	1	1	1	1	1	ı	1	ı	ı	1	1	1	1	1
$\mathrm{Fe}^{2+\mathrm{VI}}$	0,56	0,74	1,00	0,88	1,07	0,96	1,31	1,23	0,87	0,86	0,98	0,82	0,91	0,97	06,0	0,94	0,95	0,61
${f Mg}$	3,77	3,69	3,47	3,31	3,12	3,48	3,00	2,74	3,23	3,27	3,11	3,29	3,19	3,24	3,16	3,15	3,15	3,48
$\mathbf{Mn}^{2+\mathrm{VIII}}$	0,03	0,03	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,04	0,03	0,04	0,05	0,04	0,04	0,04	0,03
${ m Fe}^{2+~{ m VIII}}$	0,10	0,07	0,10	0,06	0,04	0,09	0,08	0,00	0,11	0,08	0,07	0,04	0,06	0,05	0,06	0,06	0,07	0,10
Ca	1,72	1,76	1,79	1,81	1,83	1,74	1,78	1,74	1,68	1,76	1,76	1,83	1,77	1,79	1,78	1,78	1,76	1,72
Na VIII	0,15	0,13	0,08	0,10	0,00	0,14	0,12	0,14	0,17	0,13	0,13	0,09	0,12	0,11	0,12	0,12	0,13	0,15
Na ^x	0,15	0,15	0,32	0,37	0,44	0,15	0,32	0,40	0,41	0,48	0,42	0,52	0,51	0,41	0,42	0,42	0,45	0,40
K	0,00	0,08	0,12	0,15	0,19	0,09	0,17	0,27	0,21	0,25	0,23	0,21	0,25	0,19	0,22	0,21	0,22	0,25
НО	1,62	1,54	1,48	1,43	1,35	1,48	1,36	1,56	1,59	1,00	1,08	0,92	0,99	1,12	1,56	1,58	1,59	1,62
¥	0,23	0,26	0,25	0,26	0,25	0,41	0,47	1	1	0,54	0,48	0,56	0,51	0,49	1	1	1	1
こ	0,02	0,02	0,04	0,04	0,06	0,01	0,05	1	1	0,06	0,05	0,06	0,07	0,07	ı	ı	ı	1
0	0,13	0,18	0,24	0,27	0,35	0,10	0,12	0,44	0,41	0,41	0,40	0,46	0,44	0,33	0,44	0,42	0,41	0,38

		٠
	1)
	-	4
	Е	×
	Ħ	٠.
	7	₹
	a.	,
	Š	4
	7	₹
	Ŀ	÷.
	_	•
		5
	-	÷
	-	1
		7
	≻	<
	2	,
۲	-	4
ŀ		_
		7
	ے	;
	_	;
		;
		;
	•	;
	•	;
	•	;
	•	;
	•	;
		;

таол. 3.0. продолжение. Массив	. 11poди 	лжение	j. Tonomawa	OVI RIVIVI	ŽIMA							V	MINO III ONGAL A	7				
Поводо			Teban		nun i							47.17		1111				
Порода	МОНЩО	МОНЦОДИОРИТ • 0.41		гря	раносиенит	нит						MOHI	<u>монцогранит</u> о 4	TT				
Ооразец	A-	A-041		- 1	A-048/1								4-4					
${ m SiO}_2$	46,6	46,1	50,9	46,6	4,74	48,4	47,8	45,9	46,7	46,0	45,8	46,0	44,9	45,0	45,6	49,4	48,8	48,5
${ m TiO}_2$	1,75	2,08	0,89	1,44	1,24	1,05	0,94	1,28	1,30	1,07	1,06	1,16	1,30	1,43	1,22	0,46	0,48	0,67
Al_2O_3	7,55	7,51	4,67	7,07	6,54	6,18	6,46	9,11	8,24	8,59	8,86	8,78	9,62	9,55	9,11	6,00	6,63	6,57
Cr_2O_3	0,04	0,01	0,02	0,02	0,01	0,01	0,02	ı	1	1	ı	ı	ı	ı	ı	ı	1	ı
MnO	0,30	0,28	0,52	0,36	0,38	0,42	0,37	0,80	0,62	0,91	0,92	0,61	0,89	0,79	0,62	0,91	0,86	0,94
FeO	12,8	12,8	10,7	15,1	15,0	14,6	14,7	15,4	13,9	15,6	16,1	14,5	16,2	15,7	14,6	13,7	14,3	14,6
MgO	14,7	14,5	16,5	13,4	13,7	13,7	13,7	12,3	13,5	12,3	12,2	13,2	11,9	12,1	13,0	14,2	14,1	13,9
CaO	11,2	11,2	11,1	11,5	11,7	11,7	11,7	11,2	11,3	11,2	11,4	11,2	11,2	11,3	11,3	11,5	11,5	11,4
Na_2O	1,92	1,96	1,57	1,80	1,65	1,61	1,72	1,87	1,84	1,76	1,57	1,95	1,90	1,87	1,89	1,36	1,44	1,4
K ₂ 0	1,26	1,23	0,63	0,97	0,87	0,77	0,83	96,0	0,83	0,88	0,92	0,85	1,04	1,04	0,95	0,58	0,62	0,64
H	1	1	0,64	0,58	0,55	0,52	0,62	0,95	0,87	0,75	0,73	1,00	0,78	0,84	0,95	0,80	0,93	0,82
ت ت	1	1	0,14	0,19	0,13	0,10	0,11	0,10	0,10	0,07	0,05	0,10	0,12	0,08	0,00	0,04	0,03	0,0
Сумма	98,1	9,76	0,86	98,6	6,86	8,86	98,6	99,4	6,86	8,86	99,3	6,86	5,66	99,4	6,86	98,5	99,3	99,1
Формульные	ные единицы.		Рассчёт на		24 аниона по	Locock	ζ, 2014]											
Si	6,81	6,78	7,33		6,93	7,07	7,01	6,72	6,82	9/.9	6,71	6,73	9,60	6,61	69'9	7,19	7,05	7,04
$\mathbf{Al}^{\;\mathrm{IV}}$	1,19	1,22	0,67	1,14	1,07	0,93	0,99	1,28	1,18	1,24	1,29	1,27	1,40	1,39	1,31	0,81	0,95	0,96
$\mathrm{Ti}^{\;\mathrm{IV}}$		ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı
${ m Ti}^{ m VI}$	0,19	0,23	0,10	0,16	0,14	0,12	0,10	0,14	0,14	0,12	0,12	0,13	0,14	0,16	0,14	0,05	0,05	0,07
${f Al}^{~{ m VI}}$	0,11	0,00	0,12	0,09	0,06	0,14	0,13	0,30	0,24	0,25	0,24	0,25	0,27	0,26	0,26	0,23	0,18	0,16
Ç	0,01	0,00	0,00	0,00	0,00	0,00	0,00	1	1	ı	1	ı	ı	1	ı	ı	1	ı
Fe^{3+}	0,55	0,60	0,38	0,56	0,55	0,37	0,40	0,52	0,51	0,57	0,67	0,57	99,0	0,64	0,59	0,24	0,48	0,53
${ m Mn}^{2+{ m VI}}$	1	ı	1	ı	1	1	1	1	1	0,01	0,02	1	1	1	1	ı	0,01	0,01
$\mathrm{Fe^{2+VI}}$	0,94	0,90	0,87	1,26	1,26	1,39	1,38	1,36	1,16	1,35	1,30	1,17	1,33	1,29	1,17	1,41	1,24	1,23
Mg	3,19	3,19	3,54	2,93	3,00	2,98	2,99	2,68	2,95	2,70	2,66	2,89	2,60	2,65	2,85	3,08	3,04	3,00
$ m Mn^{2+VIII}$	0,04	0,04	0,06	0,05	0,05	0,05	0,05	0,10	0,08	0,11	0,10	0,08	0,11	0,10	0,08	0,11	0,10	0,11
$\mathrm{Fe}^{2+\mathrm{~VIII}}$	0,02	0,07	0,04	0,04	0,03	0,02	0,03	0,009	0,026	0	0	0,035	0	0,004	0,03	0,02	0	0
Ca	1,76	1,77	1,70	1,82	1,84	1,83	1,83	1,76	1,77	1,77	1,79	1,76	1,76	1,78	1,77	1,79	1,79	1,77
Na VIII	0,13	0,13	0,19	0,10	0,00	0,00	0,09	0,13	0,12	0,13	0,12	0,13	0,13	0,12	0,13	0,07	0,11	0,13
Na ^X	0,41	0,43	0,25	0,41	0,38	0,37	0,40	0,40	0,40	0,38	0,33	0,43	0,41	0,41	0,41	0,31	0,29	0,28
K	0,24	0,23	0,12	0,18	0,16	0,14	0,16	0,18	0,16	0,17	0,17	0,16	0,19	0,20	0,18	0,11	0,12	0,12
Н0	1,61	1,54	1,48	1,36	1,44	1,50	1,48	1,25	1,29	1,40	1,41	1,26	1,32	1,27	1,27	1,52	1,47	1,47
Œ	1	1	0,29	0,27	0,26	0,24	0,29	2,0	0,40	0,35	0,34	0,47	0,36	0,39	0,44	0,37	0,42	0,37
ວ	1	1	0,03	0,05	0,03	0,03	0,03	0,03	0,03	0,02	0,01	0,03	0,03	0,02	0,02	0,01	0,01	0,01
0	0,39	0,46	0,19	0,32	0,27	0,23	0,21	0,28	0,29	0,24	0,24	0,26	0,29	0,32	0,27	0,10	0,11	0,15

Пъо попусытия	продолжение.
V	5.0
ا ا ا	aCII.

таол. э.о. продолжение. Массив	μυ <u>στι</u> . 	олжен	Λς.						ATVIDA	žinojo ji ovidar V	בָּׁנ							
Порода									ином	монцогранит	ı							
Образец					9-4	4								8-13-88/1	88/1			
SiO_2	47,5	47,9	48,5	51,4	45,6	45,3	48,7	44,3	49,2	45,3	46,3	45,6	48,3	45,2	46,3	45,1	45,6	46,6
${ m TiO}_2$	0,49	0,58	0,61	0,13	1,25	1,59	0,48	1,16	0,51	1,43	1,42	1,42	0,58	1,13	1,13	1,45	1,36	1,21
AI_2O_3	7,31	7,36	6,47	3,72	9,24	9,52	6,48	9,40	5,65	9,17	9,03	9,39	7,07	9,32	8,62	9,80	9,48	80,6
Cr_2O_3	ı	ı	ı	ı	ı	ı	ı	ı	ı		ı	ı	ı	1	ı	ı	ı	ı
MnO	0,93	0,88	0,91	0,89	0,70	0,85	0,91	06,0	0,89	0,68	0,66	0,77	0,91	0,95	0,85	0,79	0,89	0,58
FeO	15,2	14,7	14,2	12,5	15,4	15,0	14,2	16,2	13,4	15,1	14,7	15,7	15,2	16,6	15,3	15,6	16,0	14,4
$M_{\mathbf{gO}}$	13,1	13,4	14,1	15,5	12,4	12,2	14,2	12,0	14,8	12,6	12,8	12,0	13,1	11,2	12,5	12,0	11,8	13,3
CaO	11,4	11,1	11,3	11,8	11,2	11,3	11,4	11,3	11,5	11,3	11,3	11,2	11,1	11,2	11,5	11,1	11,4	11,2
Na_2O	1,41	1,71	1,53	0,84	1,91	1,94	1,42	1,71	1,18	2,03	2,00	1,97	1,64	1,71	1,77	2,16	1,87	1,97
K_2O	0,65	0,70	0,65	0,29	0,97	0,88	ļ	1,00	0,54	0,92	0,93	0,94	0,72	0,86	0,87	1,02	0,94	0,90
H	0,82	0,78	0,80	0,68	0,92	0,75	0,93	0,71	0,86	0,60	0,96	0,90	0,81	0,79	0,86	0,84	0,79	1,02
IJ	0,04	0,02	0,05	0,02	0,10	0,07		0,08	1	0,00	0,09	0,09	ı	0,08	0,07	0,11	0,07	0,11
Сумма	98'6	8,86	7.86	97,5		99,1	6,86	98,4	98,1	99,2	7,66	9,66	99,1	98,7	99,4	7,66	8,66	6,66
Формульные единицы	іые еди		Рассчёт на 24 ан	та 24 а1	ниона по	ro [Locock,	ock, 201	4										
S	6,95	_	7,05	7,45			7,	6,57	7,15	99'9	6,75	89'9	7,05	69'9	6,78	6,62	6,67	6,75
Al ^{IV}	1,05	0,99	0,96	0,55	1,31	1,35		1,43	0,85	1,34	1,25	1,32	0,95	1,31	1,22	1,38	1,33	1,25
${ m Ti}^{~ m IV}$	ı	ı	1	1	1	1	1	1	1	1	ı	ı	ı	1	1	1	ı	ı
${ m Ti}^{ m VI}$	0,05	0,06	0,07	0,02	0,14	0,18	0,05	0,13	90,0	0,16	0,16	0,16	0,06	0,13	0,12	0,16	0,15	0,13
$\mathbf{Al}^{\mathrm{VI}}$	0,21	0,28	0,15	0,00	0,29	0,30	0,16	0,21	0,11	0,24	0,30	0,30	0,27	0,32	0,26	0,31	0,31	0,30
Ċ	ı	ı	ı	ı	1	1	1	ı	ı		ı	ı	ı	1	ı	ı	ı	
${ m Fe}^{3+}$	0,55	0,29	0,52	0,34	0,55	0,57	0,51	0,77	0,54	0,59	0,47	0,55	0,28	0,56	0,51	0,54	0,56	0,51
${f Mn}^{2+{ m VI}}$	0,02	1	1	0,03	1	0,01		0,02	0,01	1	1	ı	ı	0,02	0,02	ı	0,01	ı
${ m Fe}^{2+{ m VI}}$	1,31	1,45	1,21	1,18	1,32	1,28		1,23	1,09	1,25	1,29	1,36	1,52	1,50	1,36	1,36	1,40	1,18
${f Mg}$	2,86	2,92	3,06	3,34	2,71	2,67	3,06	2,64	3,20	2,76	2,79	2,63	2,86	2,47	2,73	2,63	2,58	2,87
$\mathbf{Mn}^{2+\mathrm{VIII}}$	0,10	0,11	0,11	0,08	0,09	0	0,11	0,09	0,10	0,09	0,08	0,10	0,11	0,10	0,09	0,10	0,10	0,07
${ m Fe}^{2+~{ m VIII}}$	0	0,058	0,002	0	0,023	0	0	0	0	0,015	0,028	0,017	0,047	0	0	0,019	0	0,048
Ca	1,79	1,74	1,75	1,84	1,76	1,78	1,77	1,80	1,78	1,78	1,76	1,75	1,74	1,78	1,80	1,75	1,78	1,74
Na VIII	0,11	0,10	0,13	0,00	0,13	0,12	0,13	0,11	0,12	0,12	0,13	0,13	0,10	0,12	0,11	0,14	0,12	0,14
Na ^x	0,29	0,39	0,30	0,15	0,42	0,43	0,27	0,38	0,22	0,46	0,44	0,43	0,36	0,38	0,39	0,48	0,41	0,41
K	0,12	0,13	0,12	0,05	0,18	0,16	0,12	0,19	0,10	0,17	0,17	0,18	0,13	0,16	0,16	0,19	0,18	0,17
НО	1,50	1,51	1,49	1,66	1,27	1,28	1,46	1,39	1,49	1,24	1,22	1,24	1,50	1,36	1,34	1,26	1,32	1,24
ı	0,38	0,36	0,37	0,31	0,43	0,35		0,33	0,40	0,42	0,44	0,42	0,38	0,37	0,40	0,39	0,37	0,47
ວ	0,01	0,01	0,01	0,01	0,03	0,02		0,02	1	0,02	0,02	0,02	1	0,02	0,02	0,03	0,02	0,03
0	0,11	0,13	0,13	0,03	0,28	0,35	0,11	0,26	0,11	0,32	0,31	0,31	0,13	0,25	0,25	0,32	0;30	0,26

Іродолжени
H
છં
4)
абл.

		MOIIII.
	はこれては	
ļ	_	1
(c	;
Į	•	,
l		: כל כל

Массив Порода							J	<u> </u>	Тархатинский сиенит	, -						
Образец								7-7	7-745							
2	55,2	53,5	56,9	53,5	55,0	57,6	50,1	52,7	55,2	51,0	50,8	51,9	52,9	53,7	52,6	53,9
${ m TiO}_2$	0,18	0,14	0,00	0,23	0,15	0,05	0,63	0,40	0,14	0,41	0,68	0,18	0,11	0,16	0,31	0,18
Al_2O_3	0,99	2,10	0,63	2,11	1,28	0,31	4,28	2,56	0,79	3,56	3,72	2,26	2,32	2,35	2,94	1,70
Cr_2O_3	0,03	0,05	0,14	0,56	0,05	0,15	н.п.о.	0,11	0,06	н.п.о.	0,13	0,07	0,12	0,06	0,07	0,04
_	0,38	0,30		0,25	0,36	0,32	0,28	0,29	0,29	0,28	0,31	0,32	0,31	0,27	0,30	0,30
FeO	7,97	8,78		7,84	7,10	3,26	6,69	9,57	7,56	9,64	9,97	66'6	69,6	9,37	9,28	8,13
MgO	19,0	17,9		18,1	19,5	22,9	16,7	17,2	19,1	16,3	16,7	16,2	17,0	17,7	17,5	18,3
Ca0	11,6	12,4		12,3	11,8	11,2	11,9	12,2	12,6	11,6	11,9	11,8	12,4	12,3	12,1	12,1
Na_2O	0,69	0,61	0,57	0,63	0,73	0,37	1,15	0,74	0,34	1,06	0,97	0,72	0.58	0,68	0,86	0,63
	0,14	0,18		0,15	0,17	0,08	0,48	0,26	0,10	0,39	0,43	0,21	0,17	0,19	0,25	0,17
H	0,28	0,28		0,30	0,33	0,32	0,35	0,30	0,24	0,34	0,29	0,29	0,24	0,29	0,35	0,31
	0,02	0,02		0,02	0,01	0,00	0,05	0,02	0,01	0,11	0,03	0,29	0,02	0,02	0,02	0,02
Сумма	96,4	96,2	97,3	656	96,3	96,4	95,7	96,3	6,7	94,5	95,8	94,1	95,7	6,96	96,3	7,56
ульн	Формульные единицы	ницы.	Рассчёт	на 24	аниона	по [Loc	аниона по [Locock, 201	14].								
	7,87	7,71	7,89	7,71	7,82	8,00	7,34	7,63	7,89	7,55	7,42	7,72	7,69	7,68	7,59	7,77
$\mathbf{Al}^{\;\mathrm{IV}}$	0,13	0,29		0,29	0,18	ı	99,0	0,37	0,11	0,45	0,58	0,28	0,31	0,32	0,41	0,23
${f Ti}^{\ m IV}$	ı	1		1	ı	ı	ı	ı	ı	1	1	ı	ı	ı	ı	1
	0,02	0,02		0,03	0,02	0,01	0,07	0,04	0,02	0,05	0,07	0,02	0,01	0,02	0,03	0,02
	0,03	0,07		0,02	0,03	0,05	0,08	0,07	0,02	0,17	0,06	0,12	0,09	0,08	0,00	0,06
_	0,00	0,01	0,02	0,06	0,01	0,02	1	0,01	0,01	1	0,02	0,01	0,01	0,01	0,01	0,00
${ m Fe}^{3+}$	0,16	0,12	0,14	0,08	0,19	0,01	0,31	0,15	0,00	0,15	0,28	0,10	0,10	0,15	0,19	0,14
${f Mn}^{2+{ m VI}}$	ı	0,00		0,01	ı	1	1	ı	0,01	1	1	0,01	0,01	ı	ı	1
${ m Fe}^{2+{ m VI}}$	0,74	0,94	0,30	0,86	0,63	0,17	0,89	1,00	0,81	1,04	0,92	1,14	1,08	0,97	0,92	0,83
	4,04	3,85		3,89	4,12	4,75	3,66	3,72	4,05	3,60	3,65	3,60	3,69	3,78	3,76	3,94
$\mathbf{Mn}^{2+\mathrm{VIII}}$	0,05	0,04	0,04	0,02	0,04	0,04	0,04	0,04	0,02	0,04	0,04	0,03	0,03	0,03	0,04	0,04
${ m Fe}^{2+~{ m VIII}}$	0,05	ı	0,10		0,02	0,20	0,03	0,01	ı	0,01	0,02	ı	ı	0,01	0,02	0,00
	1,77	1,91			1,79	1,66	1,87	1,90	1,92	1,84	1,87	1,87	1,93	1,89	1,87	1,87
Na VIII	0,14	0,05			0,14	0,10	0,07	0,06	0,06	0,12	0,07	0,10	0,04	0,07	0,08	0,09
V	0,05	0,12			0,06	0,00	0,25	0,15	0,04	0,18	0,21	0,11	0,12	0,12	0,16	0,08
	0,03	0,03		0,03	0,03	0,01	0,00	0,05	0,02	0,07	0,08	0,04	0,03	0,03	0,05	0,03
	1,83	1,84		1,81	1,82	1,85	1,69	1,77	1,86	1,72	1,71	1,75	1,86	1,83	1,77	1,81
L	0,13	0,13	0,14	0,14	0,15	0,14	0,16	0,14	0,11	0,16	0,13	0,14	0,11	0,13	0,16	0,14
	0,01	0,01		0,01	0,00	0,00	0,01	0,00	0,00	0,03	0,01	0,07	0,00	0,01	0,00	0,01
_	0,04	0,03	0,02	0,05	0,03	0,01	0,14	0,09	0,03	0,09	0,15	0,04	0,02	0,03	0,07	0,04

Гродолжение.
\Box
6.
9
абл.
ıα
×
r

ап								THENTOHEUT	THH							
							1 1	anorm								
								5-451								
	52,4	49,6	51,3	53,4	51,9	55,2	50,3	54,0	52,5	53,1	52,6	57,1	51,7	54,4	55,7	54,9
$\mathbf{TiO}_2 = 0$,36	0,85	0,56	0,29	0,40	0,12	0,79	0,19	0,25	0,25	0,31	0,09	0,26	0,17	0,07	0,13
	4,38	6,14	4,89	4,92	4,84	1,77	5,39	3,09	3,45	3,50	3,89	0,56	5,32	2,64	1,38	1,97
	1	ı	ı	ı	1	1	1	ı	ı	ı	ı	1	ı	ı	1	ı
	0,36	0,43	0,45	0,16	0,46	0,40	0,45	0,45	0,45	0,48	0,47	0,68	0,47	0,46	0,42	0,43
	60.	10,82	10,01	4,59	9,42	7,01	9,52	8,49	8,51	8,54	8,92	5,12	9,51	8,10	5,50	6,89
_	8,0	16,1	17,1	20,7	17,6	19,7	17,1	18,5	18,0	18,5	18,0	21,8	17,5	18,8	20,6	19,8
	12,0	11,7	11,8	11,6	11,9	11,5	11,7	12,0	12,0	12,1	11,8	10,9	11,3	12,2	11,9	11,8
Na_2O 1,	1,11	1,53	1,32	1,59	1,27	0,93	1,45	1,00	1,08	1,04	1,20	0,72	1,60	0,90	0,74	0,95
	,33	0,56	0,46	0,40	0,44	0,19	0,49	0,26	0,28	0,29	0,32	0,07	0,48	0,22	0,29	0,22
	66,	1,03	0,85	1,14	0,92	0,99	0,83	1,02	0,98	0,91	0,97	0,94	1,03	0,88	0,84	1,00
C D	0,02	90,0	0,03	0,02	0,03	0,00	0,05	0,03	0,03	0,03	0,05	0,01	0,02	0,02	0,01	0,01
Сумма 97	7,76	98,4	98,4	98,4	7,86	97,4	7,76	98,5	97,2	98,4	98,1	9,76	28,7	98,4	97,1	8,76
Формульные единиць	един	ицы. Рас	ы. Рассчёт на		24 аниона по		Locock, 2014									
\mathbf{Si} 7,	,45	7,14	7,32	7,40	7,35	7,77	7,26	7,60	7,52	7,51	7,47	7,93	7,32	7,66	7,82	7,72
	0,55	0,86	0,68	0,61	0,65	0,23	0,74	0,40	0,48	0,50	0,53	0,07	0,69	0,34	0,18	0,28
		ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
	0,04	0,09	0,06	0,03	0,04	0,01	0,09	0,02	0,03	0,03	0,03	0,01	0,03	0,02	0,01	0,01
Al ^{VI} 0,	,19	0,18	0,14	0,20	0,16	0,07	0,17	0,11	0,11	0,09	0,13	0,02	0,20	0,09	0,05	0,05
		ı		ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı
	0,21	0,36	0,31	0,36	0,29	0,23	0,22	0,22	0,22	0,26	0,27	0,14	0,35	0,19	0,17	0,24
		1	ı	1	1	1	1	1	1	1	1	1	ı	0,00	ı	ı
$\mathbf{Fe}^{2+VI} = 0,$	0,74	0,00	0,85	0,14	0,80	0,56	0,85	0,77	0,80	0,74	0,77	0,31	0,74	0,76	0,46	0,56
_	3,83	3,46	3,64	4,27	3,71	4,14	3,67	3,88	3,85	3,89	3,80	4,52	3,69	3,93	4,32	4,15
	2,	0,05	0,05	0,02	90,0	0,05	90,0	0,05	0,05	90,0	0,06	0,08	90,0	0,05	0,05	0,05
\mathbf{Fe}^{2+} VIII 0,	,02	0,04	0,03	0,03	0,03	0,04	0,07	0,01	0,01	0,02	0,02	0,15	0,04	ı	0,02	0,02
	1,84	1,80	1,81	1,73	1,81	1,74	1,80	1,81	1,84	1,84	1,80	1,62	1,71	1,83	1,78	1,78
ı	,11	0,11	0,11	0,22	0,11	0,18	0,07	0,13	0,10	0,00	0,13	0,15	0,20	0,11	0,15	0,15
	0,20	0,32	0,26	0,20	0,24	0,08	0,33	0,15	0,20	0,19	0,20	0,04	0,24	0,13	90,0	0,11
	90,	0,10	0,08	0,07	0,08	0,04	0,00	0,05	0,05	0,05	0,06	0,01	0,09	0,04	0,05	0,04
	1,47	1,33	1,49	1,43	1,50	1,54	1,44	1,50	1,50	1,53	1,49	1,57	1,48	1,57	1,61	1,52
F 0,	0,45	0,47	0,39	0,50	0,41	4,0	0,38	0,46	0,44	0,41	0,44	0,41	0,46	0,39	0,37	0,45
	0,01	0,02	0,01	0,01	0,01	1	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00
_	80,	0,18	0,12	0,06	0,09	0,03	0,17	0,04	0,05	0,05	0,07	0,03	0,00	0,04	0,01	0,03

Табл. 5.6. Окончание.

Массив								Cabb	Саввушинский	кий							
Порода				П	диорит								гранодиорит	иорит			
Образец		Γ -3/4	3/4				Γ -3/3						Γ -2/9	6/			
${ m SiO}_2$	43,9	44,8	44,9	44,2	44,7	45,4	45,4	45,0	43,2	43,8	43,2	44,7	43,1	44,3	44,5	44,3	44,8
TiO_2	1,16	1,02	1,38	1,22	1,31	1,08	1,04	1,45	0,00	68,0	1,00	1,29	0,91	1,00	1 <u>.</u>	1,11	1,19
Al_2O_3	7,89	7,26	7,29	7,44	7,10	6,51	6,92	6,95	8,38	7,44	7,99	6,92	8,15	7,21	7,07	7,33	6,84
Cr_2O_3	ı	н.п.о.	ı	ı	0,02	ı	ı	0,02	ı	ı	0,01	н.п.о.	1	0,02	1	ı	
MnO	0,95	0,95	1,03	1,02	0,99	1,03	0,95	0,98	1,06	1,31	1,31	1,24	1,26	1,30	1,25	1,18	1,27
FeO	16,5	16,9	16,9	17,7	16,2	16,9	16,4	16,4	18,1	18,2	18,5	17,2	18,5	18,3	17,5	17,2	17,9
MgO	11,1	10,8	10,7	10,3	11,1	11,1	11,5	11,3	10,0	10,3	10,0	10,8	10,1	10,1	10,5	10,8	10,4
Ca0	11,1	11,2	11,2	11,1	11,0	11,2	11,2	11,1	11,2	11,0	11,0	11,0	11,2	11,1	11,0	11,0	10,9
Na_2O	1,57	1,31	1,47	1,46	1,52	1,39	1,39	1,42	1,63	1,69	1,87	1,78	1,84	1,57	1,72	1,72	1,69
K_2O	1,12	0,98	1,01	1,04	0,92	0,92	0,94	0,99	1,12	1,11	1,19	1,00	1,16	1,05	1,04	1,08	0,94
H	0,36	0,35	0,33	0,34	0,35	0,36	0,36	0,32	0,34	0,51	0,59	0,54	0,52	0,54	0,52	0,54	0,51
ū	0,11	0,05	0,06	90,0	0,05	90,0	0,05	0,05	90,0	0,07	90,0	0,04	90,0	0,02	0,05	0,03	0,05
Сумма	9,56	95,5	0,96	7,56	1,26	7,56	0,96	8,56	8,56	96,1	96,5	96,1	96,5	96,3	96,4	96,1	96,3
Формульные единицы.	ые един		Рассчёт на	24	аниона п	по [Locock,	ock, 2014]	4].									
Si	6,74		6,87	6,80	88'9	6,95	6,91	6,87	89'9	6,75	99'9	98'9	6,64	6,81	6,82	6,80	6,87
Al ^{IV}	1,26	1,13	1,14	1,20	1,12	1,05	1,09	1,13	1,33	1,25	1,34	1,15	1,36	1,19	1,18	1,20	1,13
Ti ^{IV}	ı	1	ı	1	ı	ı	ı	ı		1			ı	1	ı	ı	ı
Ti ^{VI}	0,13	0,12	0,16	0,14	0,15	0,13	0,12	0,17	0,11	0,10	0,12	0,15	0,11	0,12	0,17	0,13	0,14
Al ^{VI}	0,17	0,19	0,18	0,15	0,17	0,13	0,15	0,12	0,20	0,10	0,11	0,11	0,12	0,12	0,10	0,12	0,11
Ç	ı	1	ı	1	0,00	ı	ı	0,00	,	ı	0,00		1	0,00	ı	ı	ı
${ m Fe}^{3+}$	0,60	0,53	0,51	0,59	0,51	0,52	0,54	09'0	0,58	0,63	0,63	0,53	0,64	0,58	0,58	0,56	0,55
${ m Mn}^{2+{ m VI}}$	0,05	0,06	0,06	0,06	0,05	0,06	0,05	0,04	0,07	0,09	0,09	0,07	0,00	0,09	0,08	0,07	0,07
$\mathrm{Fe}^{2+\mathrm{VI}}$	1,51	1,63	1,65	1,69	1,58	1,65	1,55	1,50	1,75	1,72	1,75	1,67	1,74	1,77	1,67	1,64	1,75
Mg	2,54	2,48	2,44	2,37	2,54	2,53	2,60	2,57	2,29	2,36	2,30	2,47	2,31	2,32	2,41	2,48	2,38
$\mathbf{Mn}^{2+\mathrm{VIII}}$	0,08	0,07	0,08	0,08	0,08	0,08	0,08	0,08	0,07	0,08	0,08	0,09	0,07	0,08	0,09	0,00	0,09
$\mathrm{Fe}^{2+\mathrm{~VIII}}$	ı	1	ı	1	1	ı	ı	ı	1	ı	1	1	1	1	1	ı	ı
Ca	1,83	1,85	1,83	1,83	1,82	1,83	1,83	1,82	1,85	1,82	1,82	1,80	1,84	1,83	1,81	1,81	1,80
Na VIII	0,10	0,08	0,09	0,09	0,10	0,0	0,09	0,10	0,08	0,10	0,10	0,11	0,00	0,00	0,11	0,10	0,11
Na ^X	0,37	0,31	0,35	0,34	0,35	0,32	0,32	0,32	0,41	0,41	0,46	0,42	0,46	0,38	0,41	0,41	0,39
K	0,22	0,19	0,20	0,20	0,18	0,18	0,18	0,19	0,22	0,22	0,23	0,20	0,23	0,21	0,20	0,21	0,19
НО	1,53	1,58	1,51	1,53	1,51	1,56	1,58	1,50	1,61	1,53	1,47	1,43	1,52	1,50	1,40	1,47	1,46
H	0,17	0,17	0,16	0,17	0,17	0,17	0,17	0,16	0,17	0,25	0,29	0,26	0,25	0,26	0,25	0,26	0,25
ت ت	0,03	0,01	0,02	0,02	0,01	0,02	0,01	0,01	0,02	0,02	0,02	0,01	0,02	0,01	0,01	0,01	0,01
0	0,27	0,24	0,32	0,28	0,31	0,25	0,24	0,33	0,21	0,21	0,23	0,30	0,21	0,23	0,33	0,26	0,28

Примечание. Данные электронно-зондового анализа (мас. %). н.п.о. - ниже предела обнаружения, прочерк – не определялся.

Табл. 5.7. Состав тёмных слюд из пород пермо-триасовых интрузивных серий Алтая.

-															
Порода							0	Ou сиенит Г-28/1	T						
SiO,	36.9	36.9	37.4	37.3	36.9	37.0	37.1	37.4	37.1	37.5	37.4	36.9	37.4	37.2	37.5
TiO_2	2.51	2.54	2,43	2,4	2.76	2,42	2,49	2.65	2,27	2,32	2,56	2,37	2.40	2,27	2,65
ALO_3	14,9	14,8	15,0	15,0	14,6	15,1	15,1	15,3	14,8	14,8	14,9	14,9	15.2	15,1	15,0
$\mathrm{Cr}_2\mathrm{O}_3$	1	1	ı	ı	ı	ı	1	1	1	1	ı	1	ı	ı	1
$M_{\mathbf{g}}O$	1111	11.0	11,4	11.5	10,8	11.4	11,4	11.1	1111	11.5	11.2	11,2	11.5	11,1	11,3
FeO	21.0	20,7	20,7	20,8	21.1	21,0	21,1	20,8	20.9	20.8	21,1	20,5	20,7	20,6	20,7
MnO	0,38	0,35	0,34	0,34	0.37	0,33	0,35	0,36	0.33	0,34	0,34	0,34	0,34	0,36	0,34
CaO	н.п.о.	н.п.о.	н.п.о.	0.02	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,02	0,03	0,05	н.п.о.
Na_2O	0.08	0,08	0,07	0.09	0.08	0,05	0.04	0.07	0,07	0,04	0.10	0,05	0,07	0,09	0,08
K_2O	9,53	9,23	9,30	9,31	9,44	9,44 9,55	9,49	9,57	9,35	9,54	9,38	9,11	9,21	9,10	9,36
$ m Rb_2O$	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
\mathbf{BaO}	0.33	0,31	0.28	0.27	0,25	0,21	0.18	0,33	0,19	0,25	0,16	0,10	0,17	н.п.о.	0,23
Œ,	0,46	0,35	0,37	0,31	0,21	0,33	0,31	0,31	0,26	0,52	0,29	0,36	0,31	0,30	0,33
CI	0,05	0,05	0,04	0,05	0,04	0,08	0,04	0,05	0,05	0,07	0,06	0,05	0,05	0,05	0,05
Сумма	96,1	95,3	96.2	96,3	95.5	96,3	96,4	8,96	95,4	96.5	96.5	94,7	96,3	95,1	96,4
Формульные единицы. Расчёт на	е едини	цы. Рас	чёт на 1	1 атомої	в О (с по	ЭМОЩЬЮ	MICA+	- [Yavuz	, 20031)	_•					
S	2,81	2,82	2.82	2.81	2,82	2.80	2.80	2.81	2,83	2,83	2,82	2,83	2.82	2,83	2,82
ij	0,14	0,15	0,14	0,14	0,16	0,14	0,14	0,15	0.13	0,13	0,15	0,14	0,14	0,13	0.15
$\mathbf{AI}^{(\Gamma\!V)}$	1,19	1,18	1,18	1,19	1,18	1,20	1,20	1,19	1,17	1,17	1,18	1,17	1.18	1,17	1,18
$\mathbf{AI}^{(\mathrm{VI})}$	0,14	0,16	0,16	0,15	0,13	0,15	0,15	0,16	0,16	0,15	0,15	0,17	0,17	0,18	0,16
Ċ	ı	1	ı	1	ı	,	1	1	ı	,	1	'	ı	1	
Mg	1.26	1,26	1.28	1,29	1,23	1,28	1,28	1,25	1,26	1,29	1,26	1,27	1.29	1,26	1,27
${ m Fe}^{2+}$	1,19	1,18	1,17	1,15	1,19	1,16	1,15	1,19	1,22	1,19	1,17	1,16	1,15	1,19	1,16
Fe ³⁺ (Cymma)	0,15	0,14	0,14	0,16	0,16	0,16	0,18	0,12	0,11	0,12	0,17	0,15	0,16	0,12	0,14
$\mathrm{Fe}^{3+}(\mathrm{T})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,15	0,14	0,14	0,16	0,16	0,16	0,18	0,12	0,11	0,12	0,17	0,15	0,16	0,12	0,14
Mn	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Ca	0.00	0,00	0.00	0.00	0.00	00.00	00.00	0,00	0.00	000	000	00.00	0,00	00.00	0.00
Na	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01
K	0,92	0,90	06.0	0.30	0,92	0,92	0,91	0,92	0,91	0,92	0,90	0,89	0.88	0,88	0,90
Rb	0,00	0,00	0,00	00.00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	000	0,00	0,00	0,00
Ba	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0.00	0,01	00.00	0,01
НО	1,88	1,91	1,91	1,92	1,94	1,91	1,92	1,92	1,93	1,87	1,92	1,91	1,92	1,92	1,92
1	0,11	0,0	0.09	0,07	0.05	0,08	0,07	0,07	0,06	0,12	0,07	0,09	0,07	0,07	0.08
Cl	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
J	0.65	0,65	0,64	0,64	99.0	0,65	0,65	0,65	0,65	0,64	0,65	0,65	0.64	0,65	0,65
	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18

ние.
лже]
родс
7. П
ς.
Табл.

Hopoqia SiO				40,3 1,64 14,9 - 11,0 16,2 0,94 H.II.0. 9,98	Гранос Г. Т. 38.7 2.75 13.3 - 12.8 17.3 17.3	Граносиенит Г-29 38.7 38.3 2.75 2.52 13.3 14.1	40,9 1,11 12,1	39.1 1,99 13.4	37.5 3.66 14.2	41,7 1,30 14,0	36.9 2,33 14.2	39,3 2,02 13,8	40,4 1,45 14,0
2.16 3.2.16 14.2 11.2 18.3 1.25 1.26				40,3 1,64 14,9 - 11,0 16,2 0,94 1.11.0. 0,14 9,98		29 38.3 2.52 14.1	40.9 1,11 12.1	39,1 1,99 13,4	37.5 3.66 14.2	41,7 1,30 14,0	36,9 2,33 14,2	39,3 2,02 13,8	40,4 1,45 14,0 -
2.16 2.16 1.4.2 1.1.2 1.1.2 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.6 1.2.5 1.2.6 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.6 1.2.5 1.2.6 1.2.5 1.2.6 1.2.				40,3 1,64 14,9 - - 111,0 16,2 0,94 1.п.о. 0,14 9,98	38.7 2.75 13.3 - 12.8 17.3	38.3 2.52 14.1	40,9 1,11 12,1	39,1 1,99 13,4	37.5 3.66 14.2	41.7 1.30 14.0	36,9 2,33 14,2	39,3 2,02 13,8	40,4 1,45 14,0 -
2.16 14.2 11.2 11.2 18.3 1.25 1.25 1.0.13 1.289 1.2.89 1.2	-			1,64 14,9 - 111,0 16,2 0,94 1.11.0. 0,14 9,98	2,75 13,3 12,8 17,3	2,52	1,11	1,99	3,66	1,30	2,33	2,02 13,8	1,45
14.2 11.2 18.3 1.25	-			- - 111.0 16,2 0,94 1.11.0. 0,14 9,98	13.3	14,1	12.1	13.4	14.2	14.0	14.2	13,8	14.0
- 11.2 1 18.3 1 1.25 1 1.25 1 0.13 1 0.02 1 0.03 1	-			- 11,0 16,2 0,94 1.11.0. 0,14 9,98	12.8			· · · · · · · · · · · · · · · · · · ·	į	· · · · · · · · · · · · · · · · · · ·			12.2
11.2 1.25 1.25 1.25 1.013 1.25 1.013 1.289 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.003				11,0 16,2 0,94 н.п.о. 0,14 9,98	12,8			ı	ı	1	1		12.2
18.3 1.25 1.25 1.0013 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.003 1.				16.2 0.94 г.п.о. 0,14 9,98	17,3	11,5	13,9	12,3	10,9	11,8	10,7	11,7	1
1.25 1.1.25 1.1.25 1.1.26 1.1.26 1.2.89				0,94 г.п.о. 0,14 9,98	(18,3	16,0	17.9	19,3	15.0	19.2	18,0	16,3
1. H.II.O. 1. 0,13 2. H.II.O. 1. 2,89 1. 0,02 1. 0,02 1. 0,02 1. 0,02 1. 0,02 1. 0,02 1. 0,02 1. 0,02 1. 0,02 1. 0,03 1. 0,03				г.п.о. 0,14 9,98	1,08	1,24	1,15	0,85	0.95	0,95	1,41	1,15	1,01
0.13 9.85 9. H.II.O. 1 H.II.O. 2.89 1 0.02 96.8 96.8 1 2.94				0,14 9,98	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,05	н.п.о.	н.п.о.	н.п.о.	н.п.о.
9.85 1. H.II.O. 1. 2.89 1. 0.02 1. 0.02 2.89 1. 0.02 3. 0.02 3. 0.02 3. 0.02 3. 0.02 3. 0.02 4. 0.02 5. 0.02				86.6	0,15	0,14	0,17	0,19	0,13	0,19	0,08	0,14	0,14
1. H.II.O. 1. 2.89 1. 0.02 1. 96.8 2.94 1. 2.94					9,66	9,72	6,67	9,58	9,47	9,84	9,49	9.82	66.6
1 H.II.O. 2,89 1 0,02 1 96,8 2cyër Ha 1 1 2,94				0.09	н.п.о.	0,11	0,19	н.п.о.	н.п.о.	0,09	н.п.о.	н.п.о.	н.п.о.
2.89 1 0.02 2 96.8 acyër Ha 1 2.94					н.п.о.	0,14	0,16	н.п.о.	0,88	0,11	0,45	н.п.о.	н.п.о.
1 0,02 96,8 acyër Ha 1 2,94					3,17	3,02	4,27	3,43	2,50	4,17	2,87	3,32	3,80
96,8 асчёт на 1) 2,94					0,02	0,02	0,02	0,03	0,04	0,02	н.п.о.	0,06	0,02
асчёт на 1) 2,94					96,6	6,96	8.96	96,4	97.5	96,5	95.5	97.0	296,7
) 2,94			МОЩЬЮ	- 3	+ [Yavu								
	3,06				2,92	2.90	3,07	2,96	2,84	3,11	2,86	2.96	3,03
	90,0			0,09	0,16	0,14	0,06	0,11	0,21	0,07	0,14	0,11	0.08
	0,94			0,98	1,08	1,10	0,93	1,04	1,16	0,60	1,14	1,04	0.98
	0,29			0,34	0,10	0,16	0,15	0,16	0,10	0,34	0,16	0,19	0,26
1	1			1	1	1	1	ı	,	1	ı	ı	ı
,37 1,27	1,37			1,23	1,44	1,30	1,55	1,39	1,23	1,32	1,24	1,31	1,36
	0,55			0,51	1,05	1,12	0,73	1,01	1,12	0,32	1,24	0,97	0.63
0,04 0,16	0,47			0,51	0.04	0,04	0,27	0,12	0,10	0,62	0,01	0,17	0,39
0	0			0	0	0	0	0	0	0	0	0	0
	0,47			0,51	0,04	0,04	0,27	0,12	0,10	0,62	0,01	0,17	0,39
	90.0			90.0	0.07	0.08	0,07	0,06	0.06	0,06	0.09	0,07	0,06
	0,00			0,00	0.00	0.00	0,00	000	0,00	0.00	0,00	0.00	0.00
	0,03			0,02	0,02	0,02	0,03	0,03	0,02	0,03	0,01	0,02	0,02
	0,92			96'0	0,93	0,94	0,93	0,93	0,92	0,94	0,94	0,94	0,95
	0,01			0,00	0.00	0,01	0,01	00.00	0,00	00.00	0,00	0.00	00.00
	0,00			0,00	0,00	0,00	0,01	0,00	0,03	0,00	0,01	0,00	0,00
	1,06			1,21	1,24	1,27	0,98	1,17	1,40	1,01	1,30	1,20	1,10
	0,94			0,79	0.76	0,72	1,02	0,82	09.0	0,98	0,70	0,79	0.90
	0,00			0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
0.60 0.62	0,57			0,60	0,57	0,61	0,54	0,59	0,64	0,56	0,64	0,61	0,57
0,16 0,17	0,17			0,18	0,16	0,17	0,15	0,16	0,17	0,17	0,17	0.17	0,17
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.94 2.94 0.12 1.06 0.20 0.16 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.05 0.05 0.05 0.47 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	11 a towog 3.06 0.06 0.09 0.09 0.05 0.00 0.00 0.00 0.00 0.00	3.92 3.87 3.31 0.02 H.n.o. 0.02 95.7 96.8 95.7 111 atomos O (c nomounds) 3.06 3.06 2.97 0.06 0.07 0.10 0.09 0.31 0.34 1.37 1.38 1.09 0.47 0.44 0.42 0.47 0.44 0.42 0.07 0.00 0.00 0.00 0.00 0.00 1.06 0.08 0.094 0.01 0.01 0.01 0.00 0.00 0.00 1.06 1.09 1.20 0.04 0.94 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01	3.92 3.87 3.11 3.12. 3.92 3.87 3.31 3.33 0.02 H.n.o. 0.02 0.02 11 atromob O (c inomolitis o MIC 3.06 3.06 2.97 3.02 0.04 0.95 1.03 0.98 0.29 0.31 0.34 0.34 0.47 0.44 0.42 0.51 0.47 0.44 0.42 0.51 0.06 0.06 0.08 0.06 0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.02 0.89 0.94 0.96 0.03 0.03 0.02 0.06 0.04 0.01 0.01 0.00 0.05 0.89 0.94 0.96 0.06 0.00 0.00 0.00 0.07 0.09 0.00 0.00 0.07 0.00 0.00 0.00 0.07 0.05 0.66 0.01 0.01 0.01 0.02 0.03 0.05 0.05 0.04 0.91 0.80 0.79 0.057 0.56 0.65 0.60 0.17 0.17 0.18 0.18	3.92 3.87 3.31 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.92 3.87 3.31 3.33 3.17 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.92 3.87 3.31 3.33 3.17 3.02 0.02 H.H.O. 0.02 0.02 0.02 0.02 95.7 96.8 95.7 96.0 96.6 96.9 11 aromob O (c помощью МІСА+ ГУачиг. 2003]). 3.06 3.06 2.97 3.02 2.92 2.90 0.06 0.07 0.10 0.09 0.16 0.14 0.04 0.95 1.03 0.98 1.08 1.10 0.29 0.31 0.34 0.34 0.10 0.16 0.29 0.31 0.34 0.13 1.09 1.12 0.47 0.44 0.42 0.51 1.04 1.12 0.47 0.44 0.42 0.51 1.05 1.12 0.47 0.44 0.42 0.51 0.04 0.04 0.06 0.06 0.07 0.09 0.00 0.00 0.07 0.08 0.06 0.07 0.00 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.09 </th <th> 3.92 3.87 3.31 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.12. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15.</th> <th>3.92 3.87 3.31 3.33 3.17 3.02 4.27 3.43 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.0</th> <th> 1.37 3.47 3.41 3.42 3.43 2.50 0.02 H.II.O. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 H.II.O. 0.02 0.02 0.02 0.02 0.02 0.02 0.04 95.7 96.8 95.7 96.0 96.6 96.9 96.8 96.4 97.5 11 atromob O (c nomonins o MICA+ Yavuz_2003). 3.06 3.06 2.97 3.02 2.92 2.90 3.07 2.96 2.84 0.06 0.07 0.10 0.09 0.16 0.14 0.06 0.11 0.21 0.04 0.95 1.03 0.98 1.08 1.10 0.93 1.04 1.16 0.29 0.31 0.34 0.34 0.10 0.16 0.15 0.10 0.47 0.44 0.42 0.51 1.05 1.12 0.73 1.01 1.12 0.47 0.44 0.42 0.51 0.04 0.04 0.27 0.12 0.10 0.06 0.06 0.08 0.06 0.00 0.00 0.00 0.06 0.06 0.08 0.06 0.07 0.04 0.05 0.05 0.07 0.09 0.00 0.00 0.00 0.00 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.18 0.16 0.17 0.15 0.16 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</th> <th> 3.92 3.87 3.31 3.317 3.01 4.17 3.13 3.13 3.11 3.02 4.17 3.13 3.31 3.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 3.02 0.03 0.04 0.02 1.11 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 </th> <th> 3.92 3.87 3.13 3.13 3.14 3.15 3.14 3.14 3.15 3.14 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 </th>	3.92 3.87 3.31 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.11.5. 1.12. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15. 1.15.	3.92 3.87 3.31 3.33 3.17 3.02 4.27 3.43 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.0	1.37 3.47 3.41 3.42 3.43 2.50 0.02 H.II.O. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 H.II.O. 0.02 0.02 0.02 0.02 0.02 0.02 0.04 95.7 96.8 95.7 96.0 96.6 96.9 96.8 96.4 97.5 11 atromob O (c nomonins o MICA+ Yavuz_2003). 3.06 3.06 2.97 3.02 2.92 2.90 3.07 2.96 2.84 0.06 0.07 0.10 0.09 0.16 0.14 0.06 0.11 0.21 0.04 0.95 1.03 0.98 1.08 1.10 0.93 1.04 1.16 0.29 0.31 0.34 0.34 0.10 0.16 0.15 0.10 0.47 0.44 0.42 0.51 1.05 1.12 0.73 1.01 1.12 0.47 0.44 0.42 0.51 0.04 0.04 0.27 0.12 0.10 0.06 0.06 0.08 0.06 0.00 0.00 0.00 0.06 0.06 0.08 0.06 0.07 0.04 0.05 0.05 0.07 0.09 0.00 0.00 0.00 0.00 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.18 0.16 0.17 0.15 0.16 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.92 3.87 3.31 3.317 3.01 4.17 3.13 3.13 3.11 3.02 4.17 3.13 3.31 3.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 4.17 3.02 3.02 0.03 0.04 0.02 1.11 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	3.92 3.87 3.13 3.13 3.14 3.15 3.14 3.14 3.15 3.14 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15

	٩)	
	K	3	
	Ę	7	
	7	₹	
	ç	2	
	þ	ŧ	
	Ė	₹	
	-	ż	
		4	
	7	7	
	۶	≺	
	۲	-	
		3	
		7	
٠	_	•	
Ļ		:	
Ļ	1	7	
		•	
	۰	∹	
	7	3	
•	۲	3	
,	C	٥	

Массив									Айский	кий								
Порода						BtAmp	р гранит								Вt гранит	анит		
O6p.						Ţ.	Γ -26								Γ-1	Γ-13/1		
SiO_2	38,7	38.6	41,1	38.8	40,6	39,7	40,1	40,0	39,1	39.0	41,5	40,2	40.2	39,7	40.0	40,1	36.8	39.8
TiO_2	1,97	2,25	1,15	2,29	1,39	1,58	1,00	1,28	1,82	2,02	1,04	1,52	1,29	1,47	1,28	1,31	1.59	1,46
Al_2O_3	12,8	12.9	12,3	12.5	11.7	12,2	12.0	11,8	12.7	12.5	11.8	11,9	12,4	14,3	12.1	12.0	12,7	13,6
Cr_2O_3	ı	ı	1	,	,	1	ı	1	1	1	1	,	1	1	1	1	1	1
MgO	13,3	13,4	15,0	13,4	15,0	13,9	15.3	14,9	13,5	14,0	15,9	14,5	12,9	11,2	13,4	13.5	13,2	13,3
FeO	18,3	18,1	15,0	18,6	15,6	17,3	15,7	17,0	18,5	17,8	14,8	16,8	16,9	15,8	16,8	16,6	17.1	16,2
$\mathbf{M}\mathbf{n}0$	1,26	1,43	1,11	1,27	0.95	1,22	1,17	1.26	1,22	1,37	1,45	1,13	2,32	1.90	2,74	2.51	2,16	1,33
CaO	н.п.о.	н.п.о.	0,09	н.п.о.	Н.П.О.	н.п.о.	0,07	0,03	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,21	н.п.о.	н.п.о.	0,13	н.п.о.
Na_2O	0,00	0,08	0,04	0,02	Н.П.О.	0,06	0,0	0,06	0,00	0,10	0,08	0,03	0,0	0,10	0,11	0,12	0,11	0,0
$ m K_2O$	9,58	9.78	8,72	9,70	8,17	8,97	9,20	9,71	9,49	9,77	9.59	9.08	9.72	8,06	9.59	9,51	9,58	9,35
Rb_2O	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,14	0,12	0,11	0,16	н.п.о.	0,14	0,11	0,16	0.14	0.09	0.08	0,10	0.08	0,13
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.
H	2,85	2,75	3,05	2,58	3,28	3,07	3,43	3,33	2,76	2,82	3,68	3,12	3,76	3,19	4,00	4,00	3,71	3,63
Cl	0,02	0,02	0,02	0,03	н.п.о.	0,02	0,03	н.п.о.	0.05	0,03	0,02	0,02	0,02	0,02	0,02	н.п.о.	0,03	0,03
Сумма	2'96	97.2	95.3	97.2	94.5	95.8	95.8	97,1	97.1	97,4	5.76	96,1	95.7	94,0	96,1	95.8	96,2	94,9
Формульные	іе единицы		Расчёт на 1	1 atomob		О (с помощью	_	- [Yavuz	2003).									
Si	2,93	2,91	3,07	2,93		3,00		3.01	2,94	2,93	3,06	3,03	3,03	3.03	3,01	3,03	2.99	2,99
Ï	0,11	0,13	0,07	0,13	0,08	0,09	0.06	0,07	0,10	0,11	90.0	0.09	0.07	0,09	0.07	0,07	0,09	0.08
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,07	1,09	0,93	1,08	0,93	1,00	0,98	1,00	1,06	1,07	0,94	0,97	0.97	0,97	0.99	0,97	1,01	1,01
$\mathbf{A}\mathbf{I}^{(\mathrm{VI})}$	0,07	0.05	0,15	0,04	0,11	0,09	0.09	0,05	0,07	0,04	0.09	0.08	0.13	0,32	0.00	0,10	0,11	0,20
Ç	ı	ı	1	,	,	1	ı	1	1	1	1	,	1	1	1	1	,	1
Mg	1,50	1,50	1,67	1,50	1,69	1,57	1,72	1,66	1,51	1,56	1,75	1,62	1,45	1,28	1,51	1,52	1,47	1,49
Fe^{2+}	1,06	1,01	0,83	1,02	0,95	1,05	0,94	1,06	1,07	1,00	0,81	1,03	0.00	0,72	1,00	0,97	1,00	0.88
Fe ³⁺ (Cvma)	0,10	0,13	0,12	0,15	0.04	0.05	0.05	0,01	0.09	0,12	0,10	0,02	0,16	0,29	90.0	60.0	0.08	0,14
$\mathrm{Fe}^{3+}(\mathrm{T})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,10	0,13	0,12	0,15	0,04	0,05	0,05	0,01	0.09	0,12	0,10	0,02	0,16	0,29	0,06	0.09	0,08	0,14
Mn	0.08	0.09	0,07	0,08	0.06	0.08	0.08	0.08	0.08	0,09	0.09	0,07	0.15	0,12	0,18	0,16	0,14	0.09
$\mathbf{C}_{\mathbf{a}}$	0,00	0,00	0,01	0,00	0.00	0.00	0,01	0.00	0,00	0,00	0,00	0,00	0,00	0.02	0,00	0,00	0,01	0,00
Na	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,02	0,01	0,00	0,01	0,02	0,02	0,02	0,02	0,01
X	0,93	0,94	0,83	0,93	0,79	0,87	0,89	0.93	0,91	0,94	0,00	0,87	0,94	0.79	0,92	0,92	0,92	06'0
$\mathbb{R}^{\mathbf{b}}$	000	0,00	0.00	0,00	0.01	0,01	0,01	0.01	0,00	0,01	0,01	0,01	0,01	0.00	0.00	0,01	0.00	0,01
Ba	000	0,00	000	0,00	0,00	0,00	000	00'0	0,00	0,00	0,00	0,00	0.00	00.00	0,00	00.00	00.00	0.00
НО	1,32	1,34	1,28	1,38	1,22	1,26	1,18	1,21	1,34	1,33	1,14	1,25	1,10	1,23	1,04	1,04	1,12	1,13
H	0,68	0,66	0,72	0,62	0,78	0,74	0,82	0.79	99.0	0,67	98.0	0,74	0.00	0,77	0.95	96.0	0,88	0,86
C	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
f	0,58	0,58	0.50	0,58	0,51	0,55	0,51	0,53	0,58	0,56	0,48	0,54	0.57	0,58	0,56	0,55	0,56	0,55
1	0,15	0,16	0,15	0,15	0,14	0,15	0,14	0,14	0,15	0,15	0,14	0,14	0,15	0,18	0,15	0,15	0,15	0,16

	ď	;
	ĭ	4
	Ę	٦
	ī	5
	š	2
	2	3
	Ξ	ż
	٤	4
	-	4
	۲	₹
۲	<u>+</u>	4
Ļ	-	÷
		•
C	`	-
ι	r	ż
	•	:
	Ħ	ě
ι	5	Ś
	ā	ż
r		

Массив									Айс	Айский								
Порода							Вt гранит	анит								лейкогранит	ранит	
O6p.							Γ -13/1	3/1								Γ -14/2	4/2	
SiO_2	39,9	39.5	38.9	39,9	39,4	40,4	38.7	39,0	39,3	39.1	40,3	39.8	39,9	39.5	40,2	40,3	40,9	40,5
TiO_2	1,54	1,33	1,73	1,31	1,42	1,30	1,75	1,71	1,55	1,81	1,22	1,33	1,59	1,57	1,99	1,99	1,50	1,42
Al_2O_3	12,4	12.1	12,7	12.1	12,4	12.9	12.6	13.0	12.5	12.7	12.6	12,1	13.8	12,9	12,7	13,3	12.1	12,2
$\operatorname{Cr}_2\mathrm{O}_3$,	,	,	ı		,	ı	ı	1	ı	1	1	1	1	,	1	1	1
$M_{\mathbf{g}O}$	12,7	12,7	11,7	12,7	13,0	13.2	12,4	12,4	12,9	12,3	13.5	13,4	12,7	12,2	12,0	11.5	12,7	12,5
FeO	17,4	15.5	18,5	17,2	17,5	16,4	18,4	18,6	17,3	18,4	17.0	17,0	15,9	16,5	16,5	16,2	16,2	16,7
MnO	2.72	2,60	3.03	2,88	2,12	1,74	2,10	1,89	1,69	2,11	1,70	2.10	1,28	2,67	2,53	2,31	2.80	2,79
CaO	0,03	0,29	0,06	н.п.о.	Н.П.О.	0,02	н.п.о.	н.п.о.	0,04	н.п.о.	н.п.о.	н.п.о.	0,04	0,10	0,04	0,04	н.п.о.	Н.П.О.
Na_2O	0,08	0,03	0,09	0,10	0,12	0,08	0,08	0,11	0,10	0,09	0,16	90.0	0.03	90.0	0,14	0,06	0,19	0,11
K_2O	9,55	9,21	9,63	9,53	9,46	9,57	9,62	9.54	89.6	9,60	9,71	9.58	9,59	9,36	9,56	89.6	9,47	9,57
Rb_2O	0,14	0,17	н.п.о.	0,14	0,09	0,10	н.п.о.	0,10	н.п.о.	н.п.о.	0,10	0.15	0,00	0,12	0,16	0,23	0,21	0,12
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
드	3,71	3,75	3,27	3,71	3.58	3,73	3,60	3,41	3,68	3,39	4,03	3.99	3,93	3.58	3,61	3,75	4,02	3,87
Cl	0,02	н.п.о.	0,02	0,02	0,02	н.п.о.	н.п.о.	0,03	0,02	0,02	н.п.о.	н.п.о.	н.п.о.	0,03	0,02	Н.П.О.	н.п.о.	н.п.о.
Сумма	96.2	93,2	95.8	92.6	95,1	95,4	95.2	95,7	94,7	95.7	96,3	95.5	94,9	94,7	95,4	95,3	96,1	626
Формульные единицы. Расчёт на	те едини	цы. Рас	чёт на 1	1 atomob		О (с помощьк	o MICA+		z, 2003])									
Si	3,00	3,04	2.96	3,02	3,00	3,03	2,96			2,96	3,01	3,01	3,00	3,01	3,03	3,04	3,07	3,05
Ë	0.09	0,08	0,10	0,08	0.08	0,07	0,10	0,10	0.09	0,10	0.07	0.08	0,0	0.09	0,11	0,11	0.09	0.08
$\mathbf{A}\mathbf{l}^{(\Gamma\!V)}$	1,00	0,96	1,04	0,98	1,00	0,97	1,04	1,05	1,01	1,04	0,99	0,99	1,00	0,99	0,97	0,97	0,93	0,95
$\mathbf{AI}^{(\mathrm{VI})}$	0,11	0,14	0,10	0.10	0,10	0,17	0,09	0,11	0,11	0,10	0,12	0,10	0,23	0,16	0,16	0,21	0,14	0,13
Ç	,	1	,	1	1		1		1			1		1				•
Mg	1,43	1,46	1,33	1,4	1,47	1,48	1,41	1,40	1,46	1,39	1,51	1,52	1,43	1,38	1,34	1,29	1,42	1,41
Fe^{2+}	1,03	0,79	1,16	1,00	1,06	0,83	1,16	1,17	1,00	1,16	0,95	1,00	0,77	0.60	0,84	0,73	08.0	98'0
$\mathrm{Fe}^{3+}_{(\mathrm{Cym}_{\mathbf{M}}\mathbf{a})}$	0.06	0,21	0,02	0,09	0,05	0,19	0.01	0,01	0,10	0,01	0,12	0.07	0,24	0,15	0,20	0,29	0,22	0,19
$\mathrm{Fe}^{3+}(\mathrm{T})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{Fe}^{3+}(\mathrm{M})$	90.0	0,21	0,02	0,00	0.05	0,19	0,01	0,01	0,10	0,01	0,12	0,07	0,24	0,15	0,20	0,29	0,22	0,19
Mn	0,17	0,17	0.20	0,19	0,14	0,11	0,14	0,12	0,11	0,14	0,11	0,14	0,08	0,17	0,16	0,15	0,18	0,18
င	00.00	0,02	0,01	0,00	000	0,00	0.00	000	0,00	0.00	0,00	0.00	0,00	0,01	0.00	0,00	0,00	0,00
Na	0,01	0,00	0,01	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,01	0,00	0,01	0,02	0,01	0,03	0,03
K	0,92	0,91	0,93	0,92	0.92	0,92	0,94	0.92	0,94	0,93	0,93	0.93	0,92	0,91	0,92	0,93	0,91	0,92
Rb	0,01	0,01	0.00	0,01	0.01	0,01	0:00	0,01	0,00	0,00	0.05	0,01	0.00	0,01	0,01	0,01	0,01	0.01
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,11	1,08	1,21	1,11	1,14	1,11	1,13	1,18	1,11	1,19	1,05	1,04	1,06	1,14	1,14	1,11	1,05	1,08
드	0.88	0,92	0,79	0,89	0.86	0.89	0,87	0.82	0.89	0,81	0.95	96.0	0,94	98.0	0,86	0,89	0.95	0.92
Cl	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
f	0,58	0,55	0,61	0,57	0,57	0,55	09.0	09.0	0,57	0,00	0,56	0,56	0,56	0,58	0,58	0,59	0,56	0,57
7	0,15	0,15	0,16	0,15	0,15	0,16	0,15	0,16	0,15	0,15	0,15	0,15	0,17	0,16	0,16	0,16	0,15	0,15

	HIND	;
h	5	<u> </u>
ן ו	_	•
Į	•	;
l	ロンの	
ľ	_	_

Массив									Айский	кий								
Порода									лейкогранит	ранит								
O6p.									Γ -1	4/2								
SiO_2	40,8	40.9	39.2	40,2	40,1	40,6	40,6	39.5	39.3	40,4	39.5	39,1	39.8	40,3	40.8	40,6	40,1	40,0
TiO_2	1,78	1,94	1,95	1,93	1,76	1,79	1,82	1,68	1,97	1,84	1,84	1,90	1,54	1.93	1,88	2,16	1,63	1,69
Al_2O_3	12,0	12.2	12,4	12,4	12,3	13.5	12,3	12,4	13.2	12.3	12.5	12,5	13.2	12,9	12.0	13,9	13.3	12,6
$\mathrm{Cr}_2\mathrm{O}_3$	ı	ı	1	1		1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
MgO	12,7	12,8	11,8	12,0	12,1	12,0	12,3	12,0	11,2	12,3	11,6	11,1	11,9	11,9	12,4	11,6	11,4	12,2
FeO	16,0	15,2	16,1	15.8	15.8	16,0	16,0	16,8	17.5	15.8	17,1	16,9	15.7	15.8	14,7	15,4	15,9	16,5
MnO	2.53	2.58	3,07	2,60	2,45	2,21	3,00	2.35	3,03	2,83	3.28	2.89	3,03	2.88	2,67	1,77	3,11	3,00
CaO	н.п.о.	н.п.о.	0,11	0,14	0,07	н.п.о.	0,02	0,02	н.п.о.	н.п.о.	0,03	0.08	0,03	Н.П.О.	0,03	0,02	н.п.о.	Н.П.О.
Na_2O	0,16	0,11	0,17	0,11	0,09	0,05	0,16	0,09	0,00	0,12	0,18	0,14	0,11	0,08	0,06	0,07	0,12	0,08
$ m K_2O$	9.52	9.70	9,52	9,66	8,80	9,75	9:38	9,40	9,66	9,66	9.54	9.39	9,52	9.76	99.6	9,62	9,31	9,75
${ m Rb}_2{ m O}$	0,13	0.24	0,19	0,14	0,14	0,17	0,20	0,14	0.13	0,16	0,12	0,18	0,15	н.п.о.	0,17	н.п.о.	0,15	0,11
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.
드	3,99	4,21	3,67	3,83	3,76	3,80	4,05	3,76	3,54	3,91	3,65	3,52	3,62	3,68	4,29	3,75	3,74	3,85
Cl	н.п.о.	0,02	0,02	0,02	н.п.о.	0,04	0,02	н.п.о.	н.п.о.	0,02	н.п.о.	н.п.о.	0,02	0,02	н.п.о.	0,02	н.п.о.	н.п.о.
Сумма	95,7	95,9	94,2	94,8	93,4	95.9	95.7	94,2	95.5	95,3	95,3	93,7	94,5	95.5	94,8	94,8	94,8	95.8
Формульные единицы. Расчёт на	ле едини	щы. Рас	чёт на 1	11 atomob		О (с помощьк	o MICA+											
Si	3,07	3.07	3,02	3,05	3,07	3,04	3,06	3,03	2.98	3,05	3,01	3.02	3,02	3,03	3,10	3,04	3,04	3,02
Ë	0,10	0,11	0.09	0,11	0,10	0,10	0.10	0,10	0,11	0,11	0,11	0,11	0,0	0,11	0,11	0,12	60.0	0,10
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	0,93	0,93	0,98	0,95	0,94	0,97	0,94	0,98	1,02	0,95	0,99	0,98	0,98	0,97	0,91	96'0	0,96	0,98
$\mathbf{AI}^{(\mathrm{VI})}$	0,13	0.15	0.15	0,16	0,18	0,22	0.14	0,15	0,16	0.15	0,13	0,15	0,20	0,18	0,17	0,27	0,23	0,14
C	,	,	,	1	1	1	1	1				1				,	1	•
Mg	1,43	1,43	1,35	1,36	1,38	1,34	1,38	1,37	1,26	1,38	1,31	1,28	1,34	1,34	1,41	1,29	1,29	1,38
Fe^{2+}	0.80	0,72	0.82	0,73	0.82	0,71	0,81	0.91	0,98	0,78	0,95	0.89	0,75	0,75	0,62	0,60	0.73	0,88
$\mathrm{Fe}^{3+}_{(\mathrm{Cyma})}$	0.20	0.24	0,22	0,27	0.19	0,29	0,19	0,16	0.13	0,22	0,14	0.20	0,25	0.25	0.32	0,36	0,27	0,16
${ m Fe}^{3+}({ m T})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,20	0,24	0,22	0,27	0,19	0,29	0,19	0,16	0,13	0,22	0,14	0,20	0,25	0,25	0,32	0,36	0,27	0,16
$M_{\mathbf{n}}$	0,16	0,16	0.20	0,17	0,16	0,14	0.19	0,15	0.20	0,18	0,21	0,19	0,20	0,18	0,17	0,11	0.20	0,19
င်	0.00	0.00	0,01	0,01	0.01	000	000	0.00	0.00	0,00	0.00	0,01	0,00	0.00	0.00	0,00	0.00	0,00
Na	0,02	0,02	0,03	0,02	0,01	0,01	0,02	0,01	0,01	0,02	0,03	0,02	0,02	0,01	0,01	0,01	0,02	0,01
K	0,91	0,93	0.94	0,94	0.86	0,93	06.0	0.92	0,94	0,93	0.93	0.93	0,92	0.94	0,93	0.92	0.30	0,94
$\mathbb{R}^{\mathbf{b}}$	0,01	0,01	0.01	0,01	0,01	0,01	0.01	0,01	0,01	0,01	0,01	0,01	0,01	0.00	0,01	0.00	0,01	0,01
Ba	0.00	0.00	0.00	0,00	0.00	0,00	0,00	0.00	0,00	0,00	0.00	0.00	0,00	0.00	0,00	0,00	0,00	0,00
НО	1,05	1,00	1,10	1,08	1.09	1,10	1,03	1.09	1,15	1,06	1,12	1,14	1,13	1,12	0.97	1,11	1,10	1,08
드	0.95	1,00	0.89	0,92	0.91	0,90	0,97	0.91	0.85	0,94	0.88	0.86	0,87	0.88	1,03	0,89	0.30	0,92
Cl	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
f	0,56	0,54	0.58	0,57	0.57	0,57	0.56	0.58	0,61	0.56	0,00	09.0	0,57	0,57	0,54	0,57	0.58	0,57
1	0,15	0,15	0,16	0,15	0,15	0,16	0,15	0,15	0,16	0,15	0,15	0,16	0,16	0,16	0,15	0,17	0,16	0,16

олжение.
Ž
ă
П
~
`
S
Табл.

Массив								Та	Тархатинский	ский								
Порода					МОНЦОДИО	циорит								сиени	IИТ			Ī
Обр.					8-07-19	7-19								7-745	45			
SiO_2	39,4	38.8	39.2	39,3	39,4	38,9	38.9	39.3	38.9	39,2	39,1	37.9	38.6	39,0	37.2	38.5	38.7	37.9
TiO_2	4,74	4,34	5,09	4.59	4,60	4.05	4,68	4,98	4,74	4,82	3,64	3,57	3,32	4,23	4,04	3,87	2.90	2,97
Al_2O_3	12,3	12.6	12,7	12,2	12,5	12.3	12.2	12.6	12.3	12.5	13,3	13.1	13.0	13,3	13.1	12.8	12.6	12,9
$\mathrm{Cr}_2\mathrm{O}_3$	1	ı	1	ı	ı	ı	ı	1	1	1	ı	ı	1	1	ı	ı	1	1
MgO	19,5	20.2	19,6	19,5	19,5	19,5	19,3	19,3	19,2	19,2	17,4	16,7	17,2	16,7	16,4	17,1	17,9	17,1
${ m FeO}$	9,18	8,81	8,74	9,33	9,03	8,84	9,16	8,92	9,07	9,05	13,2	13,2	13,2	13,5	13,7	13,3	12,5	13,0
MnO	0.05	0.00	0.08	0.00	0.02	0.06	0,03	90.0	0,05	0,06	0,24	0,20	0,24	0.20	0.23	0,19	0.21	0,21
CaO	0,03	0,03	0,03	н.п.о.	0.08	0,07	н.п.о.	0,07	н.п.о.	0,02	0,07	0,09	0,03	0,18	90.0	0,07	0,03	0,07
Na_2O	0,21	0,24	0,16	0,26	0,22	0,23	0,25	0,17	0,22	0,21	0,11	0,12	0,11	0,16	0,18	0,15	0,12	0,13
K_2O	7.53	7,40	7,56	7,12	7.28	7,15	7,25	7.19	7,11	7,06	8,60	8,21	8,26	8,25	7,92	7,97	8.00	8,04
$ m Rb_2O$	0.09	0.08	0,11	н.п.о.	н.п.о.	0,13	0.15	0,12	0,12	0,15	н.п.о.	0,13	н.п.о.	н.п.о.	0,11	н.п.о.	0.09	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	0,14	0,10	н.п.о.	Н.П.О.	н.п.о.	0,11	н.п.о.	0,24	0,23	0,20	0,0	4,0	0,18	0,15	0,15
±	2,00	2,02	1,88	2,10	1,80	1,98	2,01	1,83	2,10	1,87	1,10	1,16	1,24	1,10	0,98	1,17	1,41	1,24
To	0.04	0.05	0.04	0,04	0.04	0,04	90.0	0,05	0,05	0,05	0,10	0,10	0,09	0,10	0.08	0,08	0,10	0,09
Сумма	95,1	94.7	95,1	94,7	94.6	93,3	94,0	94.5	94.0	94,3	97,1	94.6	92.6	8.96	94.5	95.5	94.7	93.9
Формульные	един	ицы. Расч	Расчёт на 1	1 атомов	o) (c	омощею	~	- [Yavuz.	, 2003]).									
Si		2.87	2.87	2.90	2,90	2,91		2.89	2,90	2,90	2,87	2,86	2,88	2,86	2,82	2,87	2.90	2,87
Ë	0,26	0,24	0.28	0,26	0.26	0,23		0.28	0,27	0,27	0,20	0,20	0,19	0,23	0.23	0,22	0,16	0,17
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,07	1,10	1,09	1,06	1,08	1,09		1,09	1,08	1,09	1,14	1,14	1,12	1,14	1,17	1,12	1,10	1,13
$\mathbf{A}\mathbf{I}^{(\mathrm{VI})}$	0.00	0.00	0.00	0.00	0.00	00.00		0.00	0,00	00.00	0,01	0.02	0,02	0,01	0.00	00.00	0.02	0,03
\mathbf{Cr}	,	1	,	1	ı	ı	,	1		,	,	,	1	,	ı	1	1	
Mg	2,13	2,22	2,14	2,15	2,14	2,17	2,15	2,11	2,13	2,11	1,90	1.87	1,91	1,83	1,85	1,90	2,00	1,94
Fe^{2+}	0,57	0.54	0.54	0.58	0.56	00.00	0,57	0.55	0,57	0,56	0,39	0,40	0,40	0.38	0,32	0,32	0,36	0,40
Fe³⁺ (Сумма)	0,00	0.00	0.00	0.00	0.00	0.55	00.00	0.00	00.00	000	0,42	0,43	0,43	0,45	0.55	0,51	0,43	0,42
$\mathrm{Fe}^{3+}(\mathrm{T})$	00.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	00.00	000	0,00	0,00	000	0,00	0,01	0,01	0.00	000
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,00	0,00	0.00	0,00	0.00	0,55	00.00	0,00	0,00	00.00	0,42	0,43	0,43	0,45	0,54	0,50	0,43	0,42
Mn	0.00	0.00	0.01	0.00	0.00	0.00	00.00	0.00	0,00	0,00	0,02	0,01	0,02	0,01	0.02	0,01	0.01	0,01
$\mathbf{C}_{\mathbf{a}}$	0.00	0.00	0.00	0.00	0.01	0,01	0,00	0,01	0,00	0,00	0,01	0,01	0,00	0,01	0.01	0,01	0.00	0,01
Na	0,03	0,03	0,02	0,04	0,03	0,03	0,04	0,02	0,03	0,03	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,02
K	0,71	0.70	0,71	0,67	0,68	0,68	69.0	0,68	0,68	0,67	0,80	0,79	0,79	0,77	0,77	0,76	0,77	0,78
$\mathbb{R}^{\mathbf{b}}$	0,00	0.00	0,01	0.00	0.00	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,00	0.00	0,01	000	0.00	000
Ba	00.00	0.00	0,00	0,00	0,00	0,00	00.00	00.00	0,00	000	0,01	0,01	0,01	0,00	0,01	0,01	0,00	0,00
НО	1,53	1.52	1,56	1,51	1.58	1,53	1,52	1.57	1,50	1,56	1,73	1,71	1,70	1,73	1,76	1,71	1,65	1,69
H	0,47	0,47	0,44	0,49	0,42	0,47	0,47	0,43	0,50	0,44	0,26	0,28	0,29	0,26	0,24	0,28	0,34	0,30
Cl	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
f	0,32	0:30	0,31	0,32	0,32	0,31	0,32	0,32	0,32	0,32	0,43	0,44	0,43	0,45	0,46	0,44	0,41	0,43
1	0,15	0,16	0,16	0,15	0,16	0,15	0,15	0,16	0,15	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,15	0,16

podonwenie.
٠.
-
_
•
)
÷
3
3
3
_

Массив									Тархатинский	инский								
Порода			сиени	НИТ								граносиенит	иенит					
Ogp.			7-7	7-745						•		5-4	51		•			
SiO_2	38.8	37.8	37,9	38,4	38,7	38.3	37.0	36,7	37,4	38.2	38.0	38.6	37,4	37.8	38.4	38.1	38.3	38,4
TiO_{2}	4,45	3,32	3,66	3,25	3,72	3,90	4,06	4,06	4,01	3,44	3,85	3.89	4,32	4,41	2,99	3,51	3,78	2,76
Al_2O_3	12.5	12,7	13,2	13,4	13,3	13,3	14.0	14.0	13.5	13.0	13,4	13.0	13,7	13.5	13.3	13,2	12.9	13,2
Cr_2O_3	1	1	ı	1	ı	ı	ı	ı	1	ı	1	1	ı	ı	ı	1	ı	1
$M_{\mathbf{g}O}$	16,5	17,1	16,8	17,5	17,1	16,8	15.7	16,0	15,9	17,6	17,2	17,8	16,4	16,3	17,7	17,1	17,1	18,5
FeO	12,9	12,8	13,3	13,3	13,1	13,6	13,9	14,1	13,2	12,3	12,9	12,5	13,4	13,3	12,6	12,6	12,2	12,0
MnO	0,21	0,17	0,21	0,22	0.21	0.21	0.33	0.28	0.28	0,33	0.28	0.28	0,33	0,29	0,31	0,29	0.29	0.32
CaO	0,05	0,10	0,08	0,08	н.п.о.	0,02	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	90.0	н.п.о.	н.п.о.	н.п.о.	0,03	0,07	0,07	0.05
Na_2O	0,17	0,14	0,14	0,15	0,15	0,17	0,20	0,20	0,22	0,14	0,14	0,18	0,20	0,21	0,14	0,13	0,10	0,11
K_2O	7,76	7,64	7,78	7,82	7.85	7,70	9.34	9.19	8,48	9,28	8.95	9,07	8,94	8,79	9,01	8,85	8.73	8.81
Rb_2O	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,11	н.п.о.	н.п.о.	н.п.о.	0,11	н.п.о.	н.п.о.	0.09
BaO	0,00	0,23	0,29	0,27	0,14	0,20	0,39	0.38	0,27	н.п.о.	0,29	н.п.о.	0,40	0,50	н.п.о.	0,11	0,14	Н.П.О.
H	1,17	1,35	1,21	1,24	1,25	1,18	1,24	1,20	1,41	1,66	1,53	1,57	1,44	1,42	1,57	1,54	1,58	1,70
CI	0,00	0,10	0,08	0,10	0,00	0,10	0,12	0,08	0,07	0,08	0,00	0,05	0,03	0,07	0,09	0,09	0,00	0,08
Сумма	94,7	93.6	94,7	95.7	92.6	95.5	92,4	96,3	94,6	96,1	8.96	6,96	9,96	96,6	96.2	95.7	95.3	0.96
Формульные единицы.	ле едини		Расчёт на 1	1 атомов	в О (с п	О (с помощью		⊦ [Yavuz	z, 2003])									
Si	2,90	2,87	2,85	2,85	2,87	2,85		2,76	2.83	2,85	2,82	2.84	2,79	2,82	2,86	2,85	2,87	2.85
Ë	0,25	0,19	0,21	0,18	0,21	0,22	0,23	0,23	0.23	0,19	0,22	0.22	0,24	0,25	0,17	0,20	0,21	0,15
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,10	1,13	1,15	1,15	1,13	1,15	1,23	1,24	1,17	1,14	1,18	1,13	1,20	1,18	1,15	1,15	1,13	1,15
$\mathbf{Al}^{(\mathrm{VI})}$	000	0,01	0,02	0,03	0.03	0,02	0.02	0.00	0,03	0,00	0.00	00.00	0,00	0.00	0,02	0,02	0.01	0,01
Ç	,		1	,	,	ı	ı	1	1	,	1	,	1	ı	,	,	,	•
Mg	1,84	1,94	1,88	1,93	1,90	1,87	1,76	1,79	1,79	1,96	1,90	1,95	1,83	1,81	1,97	1,91	1,91	2,05
Fe^{2+}	0,32	0,33	0.33	0,33	0,32	0;30	0,48	0,42	0,43	0.39	0.37	0.32	0,36	0,40	0,41	0,41	0,38	0,33
$\mathrm{Fe}^{3+}_{\mathrm{(Cymma)}}$	0,49	0,48	0.51	0.50	0.50	0,55	0,39	0,47	0,40	0,38	0,44	0,45	0,47	0,43	0,37	0.38	0,38	0,42
$ ext{Fe}^{3+}(ext{T})$	0.00	0,00	000	0,00	0.00	0.00	0.00	0.00	0,00	0,01	0,01	0,03	0,01	0.00	0,00	0,00	0,00	0.00
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,49	0,48	0,51	0,50	0.50	0,55	0,39	0,47	0,40	0,37	0,43	0,43	0,46	0,43	0,37	0,38	0,38	0,42
Mn	0.01	0,01	0,01	0,01	0,01	0,01	0,02	0.02	0.02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
င္မွာ	0.00	0,01	0,01	0,01	0.00	0.00	00.00	0.00	0.00	0.00	0,01	0.00	0,00	0.00	0.00	0,01	0,01	0.00
Na	0,03	0,02	0,02	0,02	0,02	0,02	0.03	0,03	0,03	0,02	0,02	0,03	0,03	0,03	0,02	0,02	0,02	0,02
Y	0,74	0,74	0,75	0,74	0,74	0,73	0.89	0.88	0.82	0.88	0.85	0,85	0,85	0,84	0.86	0,84	0,83	0,84
Rb	0.00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.01	0.00	0,00	0,00	0,01	0,00	0.00	0.00
\mathbf{Ba}	0,00	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,00	0,01	0,00	0,01	0,02	0,00	0,00	0,00	0,00
НО	1,71	1,66	1,70	1,70	1,70	1,71	1,69	1,70	1.65	1,60	1,63	1.63	1,66	1,66	1,62	1,63	1,61	1,59
H	0.28	0,33	0,29	0,29	0,29	0.28	0:30	0.29	0,34	0,39	0.36	0.37	0,34	0,34	0,37	0,36	0,37	0,40
IJ	0,01	0,01	0,01	0,01	0,01	0,01	0.02	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01
f	0,44	0,43	0,44	0,43	0,43	0,45	0,47	0,47	0,45	0,41	0,43	0,41	0,45	0,45	0,41	0,42	0,42	0,39
1	0,16	0,16	0,16	0,16	0,16	0,16	0,17	0,17	0,17	0,16	0,16	0,16	0,17	0,17	0,16	0,16	0,16	0,16

	HILD		
	5	Ξ	
	ā	5	
	サスド 〇日 〇〇	Ś	
	C	ز	
	Ξ	Í	
	ځ	5	
	Ė	7	
		•	
ľ		:	
ι	•	,	
	Þ	;	
ι		3	
		4	

Maccur Tanks	м -	Tanxar	Сіпіс. Тапхатинский								Тепантжикский	кикски	72					
Порода		грано	граносиенит								Монц	Монцога66ро						
O6p.		Ŋ.	5-451			9-09-1F	•		0-6	9-09-3				8	8-09-102/2	2		
SiO_2	37.2	37.7	37.9	39.8	37.5	3	35,4	39,1	37.9	38.5	39.2	38,0	37.0	37.5	37,2	37.1	36,6	36,4
TiO_2	3.52	4,05	4,00	2,30	1,11	1,57	i	4,64	5,19	5,42	3,21	4.2	4,21	4,2	4,59	4,81	5,31	5,49
ALO_3	13.5	13,5	13,3	12,4	17,4	16.5	i	12.8	12,2	12.2	12.5	13,0	13,0	13,1	13,1	13,1	13,2	13,1
Cr_2O_3	,	1	1	1	0.03	0,04	i	0,01	000	0,01	0,00	1	1	,	,	1	1	
$M_{\mathbf{g}O}$	17,6	16,5	17,0	19,4	13,2	12,8	12,8	14,4	12,2	12,9	18,0	16,5	16,5	16,3	15,9	15,9	14,9	14,8
FeO	13,0	13,5	13,1	10.9	17,3	17,4	i	17.0	20,1	17.5	13,1	14,4	13,9	15,0	14,3	14,4	15,1	15,1
MnO	0,29	0:30	0,27	0.25	0,19	0.20		0,02	0.09	0,11	0,18	0.13	0,18	0,12	0.15	0,10	0,12	0,14
CaO	н.п.о.	н.п.о.	0,05	н.п.о.	ı	ı		ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
Na_2O	0,15	0,19	0,15	0,11	0,16	0,11	0,00	0,16	0,16	0,10	0,24	0,18	0,11	0,14	0,09	0,24	0,27	0,28
K_2O	8,76	8,62	8,62	8,35	8,7	8,3	9.3	8,7	9,3	0.6	9.5	9,4	9,4	8,7	9.5	9.2	8.8	8.9
Rb_2O	н.п.о.	н.п.о.	н.п.о.	0.28	ı	1	ı	ı	ı	ı	1	1	ı	ı	ı	ı	ı	1
BaO	0,32	н.п.о.	0,29	н.п.о.	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
ഥ	1,59	1,45	1,50	2,02	0,19	0,23	0,18	1,22	0,82	0,85	2,24	0,88	0,91	0,88	0.83	0,93	0,84	0,91
Cl	0,08	0,08	0,08	0,09	0,43	0,36	0,50	0,50	0,80	0,70	0,33	0,31	0,30	0,31	0,27	0,25	0,26	0,30
Сумма	96,1	0.96	96.3	0.96	95,9	0.96	95,9	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	95.9
Формульные единицы. Расчёт на	ле едини	щы. Рас	чёт на 1	11 атомо	атомов О (с пом	помощ	ью МІС	A+[Ya]	vuz, 200)3]).								
Si	2,79	2,82	2,82	2,94	2,76	2.83	2,67	2,88	2.85	2.89	2,88	2.82	2,79	2.80	2.80	2.79	2,77	2,76
Ë	0.20	0.23	0.22	0.13	0,21	0.09	0.08	0,26	0.29	0.31	0,18	0,23	0,24	0,24	0.26	0.27	0:30	0,31
$\mathbf{A}\mathbf{I}^{(ext{IV})}$	1,19	1,18	1,17	1,06	1,24	1,17	1,17 1,33	1,11	1,08 1,0	1,08	1,08	1,14	1,16	1,16	1,16	1,16	1,18	1,17
$\mathbf{Al}^{(\mathrm{VI})}$	0.00	0,00	0.00	0,03	0,23	0.30	0.28	0,00	00.00	0.00	0,00	0,00	0,00	00.00	0.00	0.00	0.00	0.00
Ċ	,	1	1	•								1	,		,	1	1	
Mg	1,97	1,84	1,89	2,13	1,40	1,44	1,44	1,58	1,37	1,44	1,97	1,83	1,86	1,82	1,78	1,78	1,68	1,67
Fe^{2+}	0,28	0,35	0,33	0,34	0,74	1,01	0,96	0,63	0,81	0,70	0,47	0,43	0,37	0,36	0,41	0,37	0,37	0,36
$\mathbf{Fe}^{3+}_{(Cvmma)}$	0,53	0,49	0.48	0.34	0,29	0.08	0,22	0,42	0,46	0,40	0,34	0,46	0,51	0.58	0,49	0.53	0.59	09.0
$\mathrm{Fe}^{3+}(\mathrm{T})$	0,02	0,00	0,01	0.00	0,00	00.00	0.00	0,01	0,07	0,03	0,03	0,04	0.05	0.04	0.05	0,06	0.05	0,07
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,51	0,49	0,47	0,34	0,29	0,08	0,22	0,42	0,39	0,36	0;30	0,42	0,46	0,54	0,44	0,48	0,54	0,54
Mn	0,02	0,02	0.02	0,02	0,01	0,01	0,01	0.00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0.01	0,01
Ca	0.00	0.00	0.00	0.00	1	1	1	1	1	1	-		-		-	1	1	-
Na	0,02	0,03	0,02	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,03	0,03	0,02	0,02	0,01	0,04	0,04	0,04
K	0,84	0,82	0,82	0,79	0,79	0.80	0,89	0,82	0,89	0.86	0,89	0,89	0,91	0,83	0,91	0.88	0,85	98.0
$\mathbb{R}^{\mathbf{b}}$	0.00	0,00	0.00	0,01	ı	1	ı	ı	1	ı	1	1	1	,	1	1	ı	
Ba	0,01	0,00	0,01	0,00	1	1	ı	1	1	1	1	1	1	1	,	1	ı	
НО	1,61	1,65	1,64	1,52	1,91	1.90	1.89	1.65	1,70	1,71	1,44	1,75	1,74	1,75	1,77	1.75	1,77	1,74
丘	0,38	0,34	0.35	0.47	0,04	0,06	0.04	0,29	0.20	0,20	0,52	0,21	0,22	0,21	0,20	0,22	0,20	0,22
C	0,01	0,01	0,01	0,01	0,05	0,05	0,06	0,06	0,10	0,09	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,04
f	0,42	0,45	0,43	0,36	0,57	0.58	0.59	0,54	0,62	0.58	0,42	0,47	0,46	0,48	0,47	0,47	0,50	0,50
1	0,17	0,17	0,16	0,15	0,20	0,20	0,21	0,15	0,15	0,15	0,15	0,16	0,16	0,16	0,16	0,16	0,17	0,16

		٠
	4	`
	ų.	•
	×	٠.
	۳	4
	т	۹.
	۳	₹.
	1)
		2
	2	5
	2	ς.
	ž	٠i
	⊢	'n
	-	•
	۲	,
		4
	_	4
	\sim	`
	`=	•
	۲	5
	ζ	5
۲	2	<u> </u>
t	Š	5
ļ	2	1
ļ	2	
֡֡֡֡֝֜֜֜֜֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֡֜֜֜֜֡֡֡֡֜֜֜֜֜֡֡֡֡֡	2	717
֚֚֡֝֝֝֜֝֜֝֜֝֝֜֝֜֝֜֝֜֝֝֡֝֝֡֜֝֜֝֡֝֡֝֝֡֜֝֜֝֡֡֝֝֡֜֝֡֜֝	2	711.
֚֚֚֡֝֝֝֜֝֜֝֝֜֝֜֝֜֝֜֝֜֝֜֝֜֝֜֝֜֝֡֜֝֜֝֜֝֡֜֝֡֜֝֡֡֜֜֝֡֜֜֜֝֡֡֡֡֓֜֜֜֜֜֝֡֡֡֜֜֜֡֡֡֜֜֜֡֡֡	2	OTT :/:
֚֡֝֝֜֝֜֜֜֜֝֜֜֜֜֝֜֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֝֜֜֜֝		VIT :/:/
֡֝֜֝֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֝֜֜֜֜֝֡֓֜֜֜֜֝֡֜֜֜֜֜֝֡֓֜֜֜֡֡֜֜֜֜֜֡֡֓֜֜֜֡֡֡֜֜֜֡֡֡֓֜֜֜֜֡֡֜֜֜֜֡֜֜֜֜֡֜֜֜֜֡֜֜֜֡֡֜	<u> </u>	7.1.
֚֡֝֝֜֝֜֜֜֜֝֜֜֜֝֜֜֜֝֜֜֜֝֜֜֜֜֝֜֜֜֜֜֜֝֜֜֜֝֡֜֜֝֡	<u> </u>	7.1.
֡֝֝֝֜֜֜֜֜֝֜֜֜֝֜֜֝֜֜֜֜֝֜֜֜֜֜֜֜֝֜֜֜֜֜֝֜֜֜֝֡֓֜֜֜֝֡֜֜֜֜֜֡֡֜֜֝֡֡֜֜֜֜֡֡֜֜֜֜֡֡֜֜֜֡֡֡֡	_	OTT :/:
֚֡֝֝֝֝֜֝֜֝֜֝֝֡֜֝֝֝֡֜֝֝֡֓֜֝֝֡֓֓֜֝֡֜֜֝֝֡֓֜֝֡֓֜֜֝֡֓֜	_	7.7.1
֚֚֚֚֚֚֡֡֝֝֝֝֜֝֜֝֜֝֝֝֜֝֝֝֝֡֜֝֝֡֓֜֝֡֜֝֝֡֓֜֝֡֓֜֝֡֡֓֜֝֡	_	VII
֡֡֝֝֝֝֜֝֜֝֝֝֝֝֡֜֝֝֝֡֜֝֝֝֝֡֜֝֝֡֓֜֝֝֝֝֝ ֡	\ \ 	011 ./.0 .10
֡֝֝֝֝֜֝֡֜֝֝֝֝֝֡֜֝֝֝֡֜֝֝֝֝֡֜֝֝֡֓֜֝֝֡֝ ֡	\ \ 	011 ./.0 :100
֡֝֝֝֝֝֝֜֝֝֝֝֝֝֝֝֝ <u>֚</u>	\ \ 	271 -/
֚֡֝֝֝֡֜֜֝֜֝֝֝֡֜֝֝֝֝֡֡֝֝֝֝֡֓֜֝֝֡֓֜֝֝֝ ֡	_	CTT - / - C - 170m

Массив					Mom	1990101			Теран	Геранджикский 	нй			Mom				
порода					монцога	(01 200)	00							МІОНЦ	МОНЦОНИТЫ			
Обр.					8 -00	Ξ						9-60-6				8-09-102/1	//1	
SiO_2	37.9	37,3	37.5	37.8	38.3	37,3	36,9	37.5	38.5	36,5	37,2	37,4	37,1	37.7	38.2	36,3	36.5	36,4
${ m TiO}_2$	4,88	4,0	3,66	3,63	4,4		4,9	4,84	3,31	5,21	3,28	2,23	2,07	2,86	2,83	4,67	4,86	4,66
ALO_3	12.9	13.1	13.2	13.1	13.0	13.1		13.2	13.5	13.6	14,9	15,6	15,9	12,1	12.0	12,7	12,7	12,8
Cr_2O_3	1	1	1	1	ı	1		1	ı	1	0,01	0,00	0.00	ı	-	1	1	1
$M_{\rm EO}$	16.0	16.0	16.5	16.3	17.4		ļ	15.8	17.6	15.5	10.6	10.9	10.9	17.3	17.4	13.9	13.9	14.2
FeO	14.3	15.0	14.7	14.5	12.7		ļ	14.9	13.3	15.2	18.5	18.0	18.2	14.7	14.5	18.0	17.9	17.3
MnO	0.13	0.22	0.19	0.16	0.14	0.10	0.13	0.13	0.13	0.14	0.14	0.14	0.23	90.0	0.07	0.08	0.12	0.08
CaO						1	<u> </u>						-			-		
Na ₂ O	0.27	0.10	0.08	0.03	0.20	0.19	0.15	0.21	0.15	0.22	0.11	0.10	0.12	0.20	0.17	0.22	0.24	0.14
$\mathbf{K}_2\mathbf{O}$	9.2	9.6	9.6	9.4	9.3		<u> </u>	9.2	9.4	9.1	10.6	10.6	10.3	9.2	9.3	9.4	9.6	9.5
Rb,O	1	1	1	ı	1	ı		ı	ı	1	1	1	1	ı	1	ı	ı	1
BaO	1	1	ı	1	,	1		1	,		1		1	1	ı	ı	,	
£	0.94	0.86	0.86	0.97	0.92		 	0.75	0.93	0.77	0.26	0.31	0.25	2.1	2.11	1.47	1.42	1.55
ū	0,26	0:30	0,26	0.28	0,22	0,28	0.25	0,31	0,25	0.28	0.09	0,09	0,14	0,16	0,12	0,41	0,44	0,42
Сумма	0.96	95.9	0.96	95.9	96,0	95.7	95.9	96,0	0.96	0.96	0'96	0.96	0.96	626	96,0	96,0	96,0	0.96
Формульные единицы. Расчёт на	ые едині	ицы. Ра	счёт на	11	атомов О	(с пом	ощью 1	MICA+	1	2003]).								
Si	2,82	2.80	2,80	2,83	2.83	2,79	2,76	2,79		2,73	2.84	2,86	2,84	2,85	2.88	2,77	2,77	2,77
Ė	0,27	0.23	0,21	0,21	0.24	0,27	0.28	0,27		0.29	0.19	0,13	0,12	0,16	0,16	0,27	0,28	0,27
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,13	1,16	1,16	1,16	1,13	1,16	1,16	1,16	1,17	1,20	1,16	1,14	1,16	1,08	1,07	1,14	1,14	1,15
$\mathbf{AI}^{(\mathrm{VI})}$	000	0.00	00.00	000	0.00	000	00.00	0.00 0.00 0.00		00.00	0,19	0,26	0,27	0.00	000	0.00	0.00	0.00
Ç	,	1	,	ı	,	1	1	1	,	,				ı	,	1	,	1
Mg	1,77	1,79	1,84	1,82	1,92			1,75	1,93	1,73	1,21	1,24	1,24	1,95	1,95	1.58	1,57	1,61
Fe^{2+}	0,40	0,48	0,47	0,50	0,32			0,39	0,43	0.31	1,07	06.0	96.0	0,49	0,52	0,60	0,60	0,57
$\mathrm{Fe}^{3+}_{(\mathrm{Cymag})}$	0,49	0,46	0,45	0,41	0,46			0,54	0,39	0,64	0,12	0,25	0.20	9,4	0,40	0,55	0,54	0.54
$\mathrm{Fe}^{3+}(\mathrm{T})$	0,05	0.04	0,03	0,01	0.04			0,05	0,00	0,07	0.00	000	0.00	0,07	0.06	0,09	0,09	0.08
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,43	0,42	0,42	0,40	0,42			0,48	0,39	0.58	0,12	0,25	0,20	0,38	0,34	0,47	0,44	0,46
Mn	0,01	0,01	0,01	0.01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0.00	0.00	0,01	0,01	0,01
င္မွာ		1	1	1	1						,	1		1	1	•		
Na	0,04	0,02	0,01	0,00	0.03			0,03	0,02	0,03	0,02	0,02	0,02	0,03	0.03	0.03	0,04	0,02
K	0,87	0.92	0,92	06.0	0.88	0.88	0.89	0,87	0,88	0,87	1,03	1,03	1,01	0,89	0.89	0,92	0,93	0,92
Rb	,	1	,	ı	,			1	,	,	,	1	,	ı	,	1	,	1
Ba	ı	1	ı	ı	1		1	1	ı	ı	ı	1	1	ı	ı	1	ı	1
НО	1,75	1,76	1,76	1,73	1,76			1,78	1,75	1,78	1,93	1,91	1,92	1,48	1,48	1,59	1,60	1,57
	0,22	0.20	0,20	0,23	0,22			0,18	0,22	0.18	0,06	0.08	0.00	0.50	0.50	0,36	0,34	0,37
CI	0,03	0,04	0,03	0,04	0,03)		0,04	0,03	0,04	0,01	0,01	0,02	0,02	0,02	0,05	0,06	0,05
f	0,47	0,48	0,47	0,47	0,42)		0,49	0,43	0.50	0,64	0,62	0,63	0,46	0,45	0,56	0,56	0,55
7	0,16	0,16	0,16	0,16	0,16		0,16	0,16	0,16	0,17	0,18	0,19	0,19	0,15	0,15	0,16	0,16	0,16

0,17

0,22 9,8

0,18

0,16

1,57 0,22

1,70

1,62 0,21 96,0

1,64 0,21

96,0

96,0

96,0

2,84 0,24 1,14 0,00

2,90 0,23 1,10 0,00

2,86 0,23 1,12 0,00

2,89 0,23 1,10 0,00

1,70 0,68 0,22 0,02 0,20 0,01

1,73 0,67 0,19 0,19 0,01

1,73 0,72 0,15 0,13 0,01

1,72 0,72 0,15 0,01 0,14 0,01

0,03

0,03

0,03 1,03

0,02

-1,59 0,38 0,03

-1,57 0,40 0,03

1,59 0,39 0,03

1,58 0,39 0,03

0,48

0,47

37.3 4.2 12.7 0.01 15.0 14.1 0.21

38,7 4,04 12,4 0,01 15,5 13,8 0,18

37.8 4.03 12.5 0.01 15.3 13.8 0.21

38.6 4.07 12.4 0.00 15.4 13.9 0.16

1 (THOIL)HMT							Ì	Мон	Монцодиориты	ИТЫ			
Oop.	8-09-1	02/1	A-041	141							8	8-09-102/7	<i>L</i> /		
${ m SiO}_2$	36,6	36,4	39,2	37.5	37,8	38,4	38,5	38,3	37,8	38,2	38.2	38,9	37,3	38,6	37,5
TiO_2	4,83	4,83	3,21	4,07	4,01	3,91	3,92	4,06	4,26	3,77	3,86	4,14	4,24	4,05	4,33
AbO_3	13,0	13.0	12,5	12,4	12.2	12,1	12.3	12.2	12,1	12,3	12.5	12.5	12.7	12,4	12.7
$\operatorname{Cr}_2 O_3$	1	ı	0.00	0,01	0,02	0,00	0.05	0.02	0.01	0.00	0.03	0.00	0,01	0.00	0.00
MgO	14,8	14,9	18,0	16,2	15,0	14,8	15,3	14,9	14,6	15,4	14,9	14,8	14,8	15,2	15,0
FeO	16,4	16,3	13,1	14,3	13,9	13,7	13,5	14,0	14,3	13,8	14,0	14,1	14,4	13,8	13,6
MnO	0,11	0,10	0.18	0,14	0,17	0,19	0,18	0,14	0,22	0,19	0.21	0.20	0,18	0,15	0,23
CaO	1	ı	ı	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	1
Na_2O	0,20	0,18	0,24	0,13	0,14	0,15	0,14	0,20	0,20	0,17	0,20	0,20	0.18	0,18	0,15
K_2O	9,5	9,5	9.5	9.6	10,4	10.5	10.6	10.1	8.6	6.6	9.6	9.5	10,1	10,3	10,4
${ m Rb}_2{ m O}$	'	'	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	
BaO	1	1	ı	-	ı	ı	ı	1	ı	ı	1	ı	ı	ı	1
노	1,47	1.54	2.24	1.88	1,61	1,68	1.68	1,63	1,65	1.92	1,67	1,61	1.50	1.58	1,62
ひ	0.39	0.40	0.33	0.40	0.20	0.19	0.19	0.21	0.23	0.21	0.25	0.23	0.23	0.23	0.22
Сумма	0.96	95.9	0.96	96.0	0.96	0.96	0.96	0.96	96.0	96.0	0.96	0.96	96.0	96.0	96.0
Формульные	е единиц	пы. Рас	чёт на	11	атомов О (с		помощью МІ	CA+ [20031).					
S		2,76	2,88	4	2,89	2,92	2,90	2,91		2,90	2,90	2,92	2,84	2,90	2,85
Ë	0,27	0,28	0.28 0.18	0,23	0,23	0,22	0,22	0.23	0,25	0,22	0.22	0,23	0,24	0,23	0.25
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,16	1,16	1,08		1,10	1,08	1,09	1,09	1,09	1,10	1,10	1,08	1,14	1,10	1,14
$\mathbf{AI}^{(\mathbf{VI})}$	0.00	0.00	0.00	00.00	00.00	0,01	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00	0.00
Ç	1	ı													
Mg	1,67	1,68	1,97	1,83	1,71	1,68	1,72	1,69	1,67	1,74	1,69	1,66	1,68	1,70	1,70
Fe^{2+}	0,49	0,46	0,47	0,48	0,74	0,82	0,77	0,76	0,71	0,70	0,72	0,72	0,67	0,75	0.67
Fе ³⁺ (Сумма)		0.57	0,34	0,42	0,15	0,05	0.08	0,13	0,21	0,18	0,17	0,16	0,25	0,12	0,19
$\mathrm{Fe}^{3+}(\mathrm{T})$	0.08	0.08	0.03	0,06	0,02	0,00	0.00	0.00	0,02	0.00	0.00	0.00	0,02	0.00	0,01
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,47	0,49	0:30	0,36	0,13	0,05	0,08	0,13	0,19	0,18	0,17	0,16	0,23	0,12	0,18
Mn	0,01	0,01	0,01	0,01	0,01	0,01	0.01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02
Ca	1	-	-	-	'	1	1	1	1	-	1	1	1	1	1
Na	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,03	0,03	0.03	0,03	0,03	0.03	0.03	0,02
K	0.92	0,92	0,89	0.93	1,01	1,02	1,02	0.98	96.0	96'0	0.93	0,91	0.98	0,99	1,01
Rb	1	1	1	1	1	1	1	1	ı	1	1	1	1	1	1
Ba	'	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1
НО	1,60	1.58	1,44	1.50	1,59	1,57	1,58	1.58	1.57	1,51	1.57	1,59	1,61	1,60	1,58
L	0.35	0,37	0.52	0,45	0,39	0,40	0,40	0,39	0,40	0,46	0,40	0.38	0,36	0.38	0,39
C	0.05	0.05	0,04	0,05	0,03	0,03	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
f	0.53	0.52	0,42	0,47	0,48	0,48	0,47	0,48	0.50	0,47	0,48	0,49	0,49	0,48	0.48
1	0,16	0,16	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,16	0,16	0,16	0.15	0,16

TOTOTIVE	Thornal Marie
	Ċ
	`
-	•
196 _H	100

таол. Э./. продолжение Массив	родоли - 	NCHRIC.						-	Тепанлжикский	икский								
Порода									Граносиениты	тениты								
Обр.					0-V	A-048/1								8-09-102/5	102/5			Ī
SiO_2	34,7	34.9	35,4	35,3	37,4	38.9	38,7	38,6	37.2	38,3	37,3	37.1	37.6	38,0	37.9	37.3	36.5	37.5
TiO_2	4,7	4,43	3,96	3,85	5.38	4,41	3,93	4,2	4,94	4,2	4,19	4,15	4,29	4,1	4,28	4,44	4,48	4,11
Al_2O_3	13,3	13.1	13,4	12,9	13,4	12.9	12,7	12,7	13.0	12.8	12,4	12.5	12.8	12.2	12,4	12.8	13.0	12,7
$\operatorname{Cr}_2 O_3$	0,02	0.05	0,03	0,03	0	0	0	0	0,04	0	0	0,02	0.03	0,0	0	0	0	0,04
MgO	13,5	14,1	14,9	15.0	14,1	14.5	14,9	14,8	13,7	14,7	14,5	14,6	14,4	14,3	14,7	14,2	14,6	15,2
FeO	18,0	17.3	16,6	17,1	17.6	17.1	16,1	16,4	17.2	16,6	14,6	14,4	14,3	14,2	14,1	14.8	14,1	14,1
MnO	0,25	0,23	0.23	0,28	0,21	0.28	0,32	0,25	0,23	0,25	0,21	0,25	0,20	0,21	0,20	0,26	0,25	0,24
CaO	ı	ı	ı	1	1	ı	ı	ı	1	1	ı	ı	ı	ı	ı	ı	ı	1
Na_2O	0,12	0,1	0,22	0,16	0,34	0,21	0,15	0,19	0,20	0,16	0,10	0,14	0,14	0,13	0,07	0,13	0,18	0,15
K_2O	9.6	6.6	8.6	6.6	9,3	8.9	8.8	8,9	9,4	9,0	10,5	10,6	10,1	10.5	9,7	10,1	10,4	10,1
Rb_2O	,	ı	,	1	,	1	1	1	1	,	1	ı	1	1	ı	ı	ı	
BaO	ı	ı	ı	1	1	ı	ı	ı	1	1	ı	ı	ı	ı	ı	ı	ı	ı
드	0,95	0,99	1,09	1,09	0,95	1,01	1,11	1,1	0,93	1,05	1,31	1,34	1,27	1,34	1,44	1,29	1,27	1,35
Cl	0,35	0,25	0,19	0,32	0,19	0,24	0,28	0,21	0,27	0,24	0,40	0,43	0,43	0,42	0,41	0,42	0,44	0,39
Сумма	0.96	96,1	0.96	0.96	0.96	96.2	0.96	0.96	96,1		0.96	0.96	0.96	0.96	96,0	0.96	0.96	0.96
Формульные	іе единицы.	цы. Рас	Расчёт на 1	11 атом	атомов О (с помог	ТОМОЩЬ	_ 3	A+ [Yavu;]).								
Si	2,70	2,71	2,72	2,73	2,77	2,87	2.89	2.87	2,80	2,86	2.86	2,84	2,86	2,90	2.89	2,84	2,80	2,85
Ï	0,28	0,26	0.23	0,22	0.30	0,24	0.22	0,24	0,28	0,24	0,24	0,24	0,25	0,24	0,25	0,26	0,26	0,24
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,22	1,20	1,21	1,17	1,17	1,12	1,11	1,11	1,15	1,13	1,12	1,13	1,14	1,10	1,11	1,15	1,18	1,14
$\mathbf{AI}^{(\mathrm{VI})}$	000	0.00	00.00	0,00	0.00	00.00	0.00	00.00	000	00.00	0.00	0,00	0,01	00.00	0.00	0,00	0,00	00.00
Ċ																		
Mg	1,56	1,63	1,71	1,72	1,55	1,59	1,66	1,64	1,54	1,64	1,66	1,67	1,63	1,63	1,67	1,61	1,67	1,72
Fe^{2+}	0,54	0.54	0,53	0,54	0,53	0,63	0,63	0,62	0,62	0,62	0,75	0,74	0,73	0,83	0,67	0,71	0,64	0,64
$\mathrm{Fe}^{3+}_{(\mathrm{Cyma})}$	0.63	0.58	0,53	0.57	0,56	0,42	0.38	0,40	0,46	0,42	0,19	0,19	0,19	0.08	0,23	0,24	0,26	0,25
$\mathrm{Fe}^{3+}(\mathrm{T})$	0.09	0.09	0,07	0,10	0,07	0,01	0.00	0,01	0,04	0,02	0,02	0,03	0,00	0,00	0,00	0,01	0,02	0,02
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,55	0,49	0,46	0,46	0,50	0,41	0,38	0,39	0,42	0,40	0,17	0,16	0,19	0,08	0,23	0,23	0,24	0,24
Mn	0,02	0,02	0.02	0,02	0.01	0.02	0,02	0,02	0,02	0,02	0,01	0,02	0,01	0,01	0,01	0,02	0,02	0,02
දු	-	-	'	1	1	1	-	1	'	-		-		1	-	1	1	•
\mathbf{Na}	0,02	0,02	0,03	0,02	0,05	0,03	0,02	0,03	0,03	0,02	0,02	0,02	0,02	0,03	0,01	0,02	0,03	0,02
K	0,95	0,98	0.96	0,97	0.88	0,84	0,84	0,85	0,90	0,86	1,03	1,04	0,98	1,02	0,94	0,98	1,02	0.98
Rb	1	1	1	1	1			1	1	1		1	1	1	1	1	1	•
Ba	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	ı	1	
НО	1,72	1,72	1,71	1,69	1,75	1,74	1,70	1,71	1,74	1,72	1,63	1,62	1,64	1,62	1,60	1,63	1,63	1,63
드	0,23	0,24	0.27	0,27	0,22	0.24	0,26	0,26	0,22	0,25	0.32	0,33	0,31	0.32	0,35	0,31	0,31	0,32
C	0,05	0,03	0,03	0,04	0,02	0,03	0,04	0,03	0,03	0,03	0,05	0,06	0,06	0,05	0,05	0,05	0,06	0,05
f	0,57	0.55	0,53	0,53	0,56	0,54	0,52	0,53	0,56	0,53	0,50	0,50	0,50	0.50	0,49	0,51	0,49	0,48
1	0,17	0,17	0,17	0,16	0,16	0,15	0,15	0,15	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,17	0,16

		Γ -3/3	37.7 38.0	2,78 2,68 2,52 1,58	12,68 13,08	1	12,2 12,1		0.79 0.87	0,07 н.п.о.		9,61 9,96	Н.П.О. Н.П.О.	Н.П.О. Н.П.О.	0,55 0,56 0,55 0,54	0.06 0.06	95,3 96,8		2,91	0,16 0,14	1,09 1,11	0,08 0,06 0,07 0,17	1	1,40 1,37	1,11 1,16	0,10 0,09	0.00 0.00	0,10 0,09	0.05 0.05 0.06 0.04	0,01 0,00	0,01 0,01	0.95 0.97	0.00 0.00	0,00 0,00	1.86 1.86	0.14 0.13	
Саввушинский	диорит		38,4	2,43 2,32 2,	13,54	ı	12,0	19,2	0,74	0,07	0,05	9,63	0.09	н.п.о.	0,53	0,06	6.7		2,91	0,13	1,09	0,08 0,12 0,	1	1,36	1,19	0,03	00.00	0,03	0,05	0,01	0,01	0,93	00'0	0,00	1,87	0.13	
Cabi			38,1	2,82	13,38	ı	12,3	18,4	0.79	0,04	0,04 0,07	9,91	н.п.о.	н.п.о.	0.55	0,05	96,4		2,89	0,16	1,11	0.09	ı	1,39	1,11	0.06	00.00	0,06	0.05 0.06	00.00	0,01	0,96	00.00	00,00	1.86	0.13	,
		Γ -3/4		1,99 1,69			12,2 12,1				0,04 0,08				0.59 0.62				2,90 2,90			0,11 0,14							0.05 0.06						ļ	ļ	ļ
				94 2,13			15,2 11,8	7,8 19,1		- 0,07	0,14 0,06		-		1.98 0.57			3	2,82 2,89										0,01 0,06		0,02 0,01					0.47 0.14	_
			38,1	3,84	13.3	0,03	14,1	17,7	0.08		0,15 0				2.0	0,15 0.	0.96	CA+ [Yavuz,	2,84	0,22 0	1,16	0,00 0,01 0		1,57	0,75	0,35	00.00		0,01		0,02 0			ı	1.51	0.47	(
КИЙ			37,0 38,2	4,0 3,44				17,4 16,3			0,12 0,10	6.6 9.6	1	1	1,93 1,9	0,15 0,15	0.96 0.96	помощью MIC	2,78 2,84	0.23 0.19				1,64 1,71		0,3%	0.0	0,43 0,31		1	0.02 0.01		1	1	1.52 1.53	0.46 0.45	-
Теранджикский	Граниты	8-09-103/2	37.7 37.8					17,3 17,0				9.3 9.3	1	1	.96 1.83	0,15 0,16	0.96 0.96	атомов О (с п		21 0,22		0.00 00.00		1,66 1,64	0,66 0,67	0,43 0,40		0,40 0,38		1	0,02 0,02			1	1.52 1.54		
			38,3 37					17,0 17			_		1	1		0,14 0,	96,0 96	11		0,21	1,14	00.00		1,68	99.0	0,39	0,02			1	0,02 0,0		1	1	1,56	0.42	(
Массив			37.5 37.1							-	0,19 0,11	8.6 9.6	1	1	1,62 1,87	0,14 0,15	0.96 0.96	Формульные единицы. Расчёт на	2,83 2,81	0.24 0.20		00.00 00.00		1,57 1,62				0,35 0,34			0,03 0,02			1	1.60 1.53		
Массив	Порода	O6p.	SiO_2	${ m TiO}_2$	Al_2O_3	Cr_2O_3	MgO	FeO	MnO	CaO	Na_2O	K20	Rb_2O	BaO	H	₅	Сумма	Формульные	Si	Ţ	$\mathbf{Al}^{(\mathbf{IV})}$	$\mathbf{Al}^{(\mathbf{VI})}$	Cr	Mg	${ m Fe}^{2+}$	Fe ³⁺ (Cymna)	$Fe^{3+}(T)$	$Fe^{3+}(M)$	Mn	Ca	Na	K	Rb	Ba	НО	H	{

	ИP	2
	He.	3
	Ħ	Ś
		į
	707	2
	<u>`</u>	7
Į	_	:
Į	•)
	±06	;
r	č	3

	•								Cabbyin	Саввушинский								
Порода							3CL	гранодиорит	ИТ								гранит	
Обр.				Γ -2/9							Γ-2	Γ -2/8					Γ -3/2	
SiO_2	38.5	38.3	38,1	38.5	37,4	38,4	38.8	38.6	39,0	38,1	38,1	38.5	33,5	38,3	38.6	38,0	38.3	37.9
TiO_2	1,48	1,20	1,61	2,07	1,53	1,43	1,49	1,44	1,38	1,57	1,37	1,63	99,0	1,21	1,42	2,64	2,06	3,02
Al_2O_3	13,10	12,75	13,39	12,52	12,71	14,17	13,34	13,23	13,42	12.98	13,61	13,15	15,73	13,30	12,99	12.67	14,09	13,31
Cr_2O_3	ı	ı	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
MgO	13,0	13,2	12,3	13,2	13,0	11,6	12,6	13,0	13,0	12,7	12,5	12,7	12,6	12,7	13,6	12,5	11,9	11,7
FeO	18,4	18,6	18,8	18,5	18,7	19,1	19,0	18,0	18,2	18,3	18,3	18,2	20,4	18,2	17,9	18,9	18,5	19,5
MnO	1,13	0.98	0.91	0,91	0,89	0,69	1,04	1,12	1,26	1,13	1.28	1.29	1,69	1,11	1,17	0,67	0.56	0.86
CaO	н.п.о.	0,06	н.п.о.	0.03	0,00	0,07	н.п.о.	0,05	0,05	0,04	0,08	0,03	0,16	0,02	0,04	0,03	н.п.о.	н.п.о.
$\mathrm{Na}_2\mathrm{O}$	0,03	0,08	0,06	0,04	0,05	0,06	0,06	0,05	0,06	0,03	0,06	0,04	0,06	0,04	0,06	0,02	0.03	90,0
$ m K_2O$	66.6	9,79	9.90	9,97	9,72	9,95	9,72	9,85	9,76	9,85	9,75	9.80	5,18	6,67	9,79	9.78	10,03	10,00
${ m Rb}_2{ m O}$	н.п.о.	0.09	н.п.о.	н.п.о.	н.п.о.	0.10	н.п.о.	н.п.о.	0,11	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,11	н.п.о.
BaO	Н.П.О.	Н.П.О.	н.п.о.	Н.П.О.	н.п.о.	Н.П.О.	Н.П.О.	н.п.о.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	н.п.о.	Н.П.О.	Н.П.О.	Н.П.О.
H	0,79	06.0	0.80	0,92	0,93	0,63	0,87	0,89	0,84	0,88	0,81	0,81	0,57	0,80	0,87	0,81	0,74	69.0
Cl	0,03	0,02	0,02	0,02	0,02	н.п.о.	0,02	0,03	0,02	н.п.о.	0,02	н.п.о.	0,02	0,02	0,02	0,05	0,06	0,07
Сумма	96,5	0,96	0.96	8,96	95,1	96,2	6.96	8.96	97,1	95.7	0.96	96,2	90,5	95.5	96,6	96,1	96,4	97,3
Формульные единицы. Расчёт на	е едини	цы. Рас	чёт на 1	1 атомов	в О (с помощь	ОМОЩЬЮ	MICA+	- [Yavuz	2003									
Si	2.93	2,94	2,92	2.93	2.91	2.93	2,94	2,94	2,94	2,93	2,62	2,94	2,70	2,94	2,93	2,91	2,91	2,88
Ï	0.09	0,07	0.00	0,12	0.09	0.08	0,09	0,08	0,08	0.09	0.08	0.09	0,04	0,07	0.08	0,15	0.12	0,17
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,07	1,06	1,08	1,07	1,09	1,08	1,06	1,06	1,06	1,07	1,08	1,06	1,30	1,06	1,07	1,09	1,09	1,12
$\mathbf{AI}^{(\mathrm{VI})}$	0,11	0.09	0.13	0,05	0.07	0,20	0,13	0,12	0,13	0,10	0,14	0,12	0,19	0,14	0.09	0.05	0,17	0.07
\mathbf{Cr}	1	1	1	,	,	1	,	'	1	1	,	1	1	1	,	1	1	1
Mg	1,47	1,51	1,41	1,50	1,50	1,32	1,42	1,47	1,47	1,46	1,43	1,44	1,51	1,45	1,54	1,43	1,35	1,33
Fe^{2+}	1,15	1,17	1,17	1,11	1,15	1,05	1,18	1,09	1,11	1,16	1,12	1,13	0,56	1,10	1,12	1,10	1,09	1,13
Fе ³⁺ (Сумма)	0.02	0,02	0.04	0,07	90.0	0,17	0.03	0,05	0,04	0,02	0,05	0.03	0.82	0,07	0,02	0,10	0.0	0,11
${ m Fe}^{3+}({ m T})$	000	0.00	0.00	0,00	0.00	0,00	0.00	0.00	0,00	0,00	0.00	0.00	0,00	0,00	0,00	000	0.00	0.00
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,02	0,02	0,04	0,07	90.0	0,17	0,03	0,05	0,04	0,02	0,05	0,03	0,82	0,07	0,02	0,10	0.09	0,11
Mn	0,07	0.06	90.0	90,0	90.0	0.05	0,07	0,07	0,08	0,07	0.08	0.08	0,12	0,07	0.08	0.04	0,04	90.0
Ca	0.00	0,01	0.00	0.00	0,01	0,01	0,00	0.00	0.00	0.00	0,01	0.00	0.01	0,01	0,00	0,00	0.00	0.00
Na	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
K	0.97	0,96	0,97	0,97	0,96	0,97	0,94	96'0	0,94	0,97	0,95	0.95	0,53	0,95	0,95	96'0	0,97	0,97
Rb	00.00	0.00	0.00	0.00	0.00	0,01	0,00	0,00	0,01	00.00	0,00	0.00	0.00	0,00	0,00	0.00	0,01	0,00
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,81	1,78	1.80	1,78	1,77	1.85	1,79	1,78	1,80	1,79	1,80	1.80	1,85	1,80	1,79	1,80	1,81	1,83
H	0,19	0,22	0.19	0,22	0.23	0,15	0,21	0,21	0,20	0,21	0.20	0.20	0,15	0,19	0.21	0,20	0,18	0,17
C	0,00	0.00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,01	0,01	0,01
f	0.59	0.58	09.0	0,58	0.59	0,62	0,00	0,58	0,58	0,59	0,59	0,59	0,62	0,59	0,57	09,0	0,61	0,62
1	0,16	0,15	0,16	0,15	0,16	0,17	0,16	0,16	0,16	0,16	0,16	0,16	0,19	0,16	0,16	0,15	0,17	0,16

	٩	;
	Ľ	Ξ
	ď	7
	þ	€
	٥	3
		ί
	ξ	3
Ì	Ξ	1
ι.		:
•	•	,
		į
•	٥	3
r		

Массив									1									
Порода					гранит								ле	йкогран	INT			
O6p.		Γ -3/2				Į-:	-3/1							8-13-57				
SiO_2	37.8	38,1	38.2	38.8	39.2	38,9	38.8	38.9	39.0	40,4	40,6	40,8	40,6	40,3	40,9	41.0	40.8	41,1
TiO_2	2,77	2.57	3,02	2,48	2.34	2,05	2,66	2,03	2,42	2,24	2,28	2,25	2,30	2,74	2.13	2,37	2,33	2,18
Al_2O_3	13,16	13,27	13,00	13,11	12,72	12.75	12,49	11,88	12,80	13.0	13,1	13.1	13,4	13.5	13,6	13,2	13.5	13.2
$\mathrm{Cr}_2\mathrm{O}_3$	ı	ı	ı	ı	ı	1	1	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	1
MgO	11,9	12,5	12,1	11,8	12,9	12,6	12,5	12,9	12,3	12,8	12,9	12,8	12,6	12,1	12,1	12,1	11,8	12,2
FeO	19,2	18,5	18,5	18,2	17,7	18,6	18,0	17,4	17,8	18,6	18,4	18,0	18,3	18,6	17,9	17.7	17,6	18,6
MnO	0,67	0,71	0.97	0,88	1,04	0,86	1,06	0,93	1,11	1,31	1,26	1,22	1,26	1,38	1,38	1.54	1,47	1,28
CaO	0,02	0,02	0,03	н.п.о.	н.п.о.	н.п.о.	0,08	0,12	0,04	н.п.о.	н.п.о.	Н.П.О.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	0,06	Н.П.О.
Na_2O	0,08	0,07	0,08	0,04	0,07	0,06	0,05	0,06	0,07	0,09	0,04	0,11	0,03	0,08	90.0	0,10	0,07	0,03
$ m K_2O$	9,79	9,87	9,63	10,12	9,91	10,03	9,85	9,34	96.6	9.6	8.6	10,0	6.6	8.6	9.5	9.2	9.3	9,2
$ m Rb_2O$	н.п.о.	н.п.о.	н.п.о.	0,22	0,13	0,14	0,10	0,12	0,12	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,26	0,25	0,0	н.п.о.	0,12	н.п.о.	н.п.о.	н.п.о.	0,09
H	0,71	0,68	0,67	1,19	1,18	1,28	1,19	1,29	1,26	3,17	2,90	3,17	3,02	2,85	3,09	3,19	2,96	3,06
Cl	0,03	0,05	0,07	0,05	0,04	0,06	0,05	0,05	0,04	0,04	0,04	0,05	0,06	0,05	0,03	0,05	0,05	0,05
Сумма	6.3	96,4	96.3	6'96	97.2	97,3	6.96	95.0	6.96	5.76	97,4	9.76	9.76	97.5	6.96	96,6	626	97,0
Формульные единицы. Расчёт на	іе едини	цы. Рас	чёт на 1	1 атомов		ЭМОЩЬЮ	ю МІСА+	⊦ [Yavuz	2003])									
Si	2,89	2,90	2,91	2,95	2.96	2,95	2,95	3,00	2,96	2,98	2,98	3.00	2,98	2.96	3,01	3,03	3,02	3,02
E	0,16	0,15	0.17	0,14	0,13	0,12	0,15	0,12	0,14	0,12	0,13	0,12	0,13	0.15	0.12	0,13	0,13	0,12
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,11	1,10	1,09	1,05	1,04	1,05	1,05	1,00	1,04	1,02	1,02	1,01	1,02	1,04	0,99	0,97	0,98	0,98
$\mathbf{AI}^{(\mathrm{VI})}$	0.08	0.09	0,07	0,13	0.09	0.09	0.07	0,08	0,11	0,11	0,11	0.13	0,14	0,13	0,19	0,17	0,20	0,17
\mathbf{Cr}	1	•	•				1		1	1				1	1			
Mg	1,36	1,41	1,37	1,34	1,45	1,43	1,42	1,48	1,39	1,41	1,41	1,40	1,38	1,33	1,33	1,33	1,30	1,34
${ m Fe}^{2+}$	1,15	1,12	1,08	1,06	1,11	1,14	1,13	1,08	1,06	1,12	1.08	0,98	1,04	1,10	0,94	0,97	0,91	1,05
Fе ³⁺ (Сумма)	0.09	0.06	0.09	0,10	0.01	0,04	0,01	0,04	0.08	0,02	0.05	0,12	0.08	0.04	0,16	0,13	0.18	0.09
$\mathrm{Fe}^{3+}(\mathrm{T})$	00.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0,00	0.00	0,00	00.00	0,00	0.00	0,00	00.00	0,00	0.00
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,09	0,06	0,09	0,10	0,01	0,04	0,01	0,04	0,08	0,02	0,05	0,12	0.08	0,04	0,16	0,13	0,18	0.09
Mn	0,04	0.05	90.0	0,06	0,07	90.0	0.07	90.0	0,07	0.08	0.08	0.08	0.08	0.09	0.00	0,10	0.09	0.08
Ca	0,00	0,00	0.00	0,00	0.00	0.00	0,01	0,01	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0,00
Na	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,00	0,01	0,01	0,01	0,01	0,00
K	0,96	0,96	0,94	0,98	0,95	0,97	0,95	0,92	0,96	06.0	0,92	0,94	0,93	0,92	0,89	0,87	0,88	98'0
Rb	000	0.00	0.00	0,01	0,01	0,01	0,01	0,01	0,01	0.00	0,00	0,00	0,00	0.00	0,00	00.00	0,00	0.00
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,82	1.83	1,83	1,71	1,71	1,69	1,71	1,68	1,69	1,26	1,32	1,26	1,29	1,33	1,28	1,25	1,30	1,28
H	0,17	0,16	0,16	0,29	0.28	0,31	0,29	0,32	0:30	0,74	0,67	0,74	0,70	99.0	0,72	0,75	0,69	0,71
Cl	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01
f	0,62	0,60	0,00	0,61	0,58	0,60	0,59	0,57	0,59	0,59	0,59	0,58	0,59	0,61	0,60	0,59	0,00	0,60
1	0,16	0,16	0,16	0,16	0,15	0,15	0,15	0,15	0,16	0,15	0,15	0,16	0,16	0,16	0,16	0,16	0,16	0,15

Табл. 5./. Продолжение.	кподоф	кение.													-			
Массив							CaB	Саввушинский	жий							ATV	Атуркольский	ий
Порода							леі	<u>лейкогранит</u>	INT							MOI	монцогранит	ИТ
. Обр.								8-13-57									9-4	
SiO_2	40,7	40,6	42,1	40,2	41,3	40,7	41.2	41.1	40,6	40,7	40,7	41,8	41,7	41,2	41,5	38.8	38,9	38,3
TiO_{2}	2,25	2,40	2,23	2,21	2,15	1,72	1,74	2,13	2,04	2,15	2,23	2,32	2,35	2,05	2,14	2,80	2,84	3,19
Al_2O_3	13.7	13.3	13.8	12,9	12,6	14,1	14,6	13,5	13,3	12,9	13.0	13,4	13.5	12.8	13,5	13.1	12,9	12.9
$\operatorname{Cr}_2\mathrm{O}_3$	ı	ı	1	1	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
MgO	12,2	12,6	12,2	12,2	12,6	11,9	11,7	12,4	12,8	12,7	12,5	12,6	12,7	12,8	12,6	13,9	13,6	13,7
FeO	18,6	18,5	17,2	18,4	17,8	18,3	18,3	18,8	18,3	18,9	19,0	17,9	17,2	18,4	18,1	18,0	18,1	18,2
$M_{\mathbf{n}0}$	1,33	1,28	1,17	1,22	1,10	1.17	1,12	1,33	1,27	1,13	1,11	1,38	1,30	1,28	1,29	0,69	0,65	0.63
CaO	Н.П.О.	н.п.о.	0,04	0,07	0,06	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.
Na_2O	0,05	0,07	0,05	0,05	0,10	0,02	0,04	0,06	0,06	0,10	0,10	0,04	0,03	0,05	0,05	0,09	0,06	0,02
$ m K_2O$	9,4	9,5	9,3	7.3	8.2	9,1	8.9	9.0	9.0	8,9	9,0	8.7	8,3	8.8	8,5	10,0	6.6	6,6
$ m Rb_2O$	н.п.о.	0,13	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0.08	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
BaO	Н.П.О.	0,10	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,16	н.п.о.	0,11	н.п.о.	0,20	0,12	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	0,18	0,11
드	2,92	3,22	3,42	3,32	3,54	3,22	2,82	2.68	2.73	3,07	3,39	3,36	3,19	3,35	3,14	1,43	1.51	1,35
Cl	0,06	0,05	0,05	0,03	0,05	0,04	0,04	0,06	0,03	0,03	0,04	0,05	0,05	0,04	0,04	-	-	1
Сумма	97.2	8.76	97.6	94,0	95.5	96.3	8.96	97.1	96,2	96,6	97.3	7.76	96.3	6'96	97.0	94,9	94,6	94,4
Формульные	іе едини	единицы. Расчёт на	чёт на 1	1 атомов	o) (c	помощью	o MICA+	+ [Yavuz,	z, 2003])									
Si	2.99	2,98	3,06	3,03	3,07	3,01	3,02		3,00	3,01	3,00	3,04	3,05	3,03	3,03	2,89	2,91	2.87
Ï	0.12	0,13	0,12	0,13	0,12	0.10	0,10	0,12	0,11	0,12	0,12	0,13	0,13	0,11	0,12	0,16	0,16	0.18
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,01	1,02	0,95	0,97	0,93	0,99	0,99	1,00	1,01	0,99	1,00	96'0	0,95	0,97	0,97	1,11	1,10	1,13
$\mathbf{AI}^{(\mathrm{VI})}$	0,17	0,13	0,24	0,18	0,17	0,24	0,27	0,17	0.15	0,13	0,13	0,19	0,21	0,15	0,19	0.04	0.04	0,01
\mathbf{Cr}	,	1	1	,	1		1	1	1				,	,	1		1	•
Mg	1,33	1,38	1,32	1,37	1,40	1,31	1,28	1,35	1,41	1,40	1,37	1,37	1,38	1,41	1,37	1,54	1,51	1,53
Fe^{2+}	1,07	1,11	0,79	1,06	1,05	0,96	0,92	1,11	1,12	1,16	1,16	1,02	1,00	1,11	1,07	0,95	0,99	06.0
$\mathrm{Fe}^{3+}_{(\mathrm{Cyman})}$	0,07	0,02	0,26	0,11	90.0	0.17	0.20	0.04	0,01	0,01	0,01	90.0	0.05	0,03	0,04	0,17	0,14	0,24
$\mathrm{Fe}^{3+}(\mathrm{T})$	00.00	0,00	00.00	00.00	00.00	0.00	0.00	0.00	0,00	0,00	0.00	00.00	0,00	00.00	0,00	00.00	0,00	0
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,07	0,02	0,26	0,11	0,06	0,17	0,20	0,04	0,01	0,01	0,01	90,0	0,05	0,03	0,04	0,17	0,14	0,24
Mn	0.08	0.08	0,07	0,08	0,07	0,07	0.07	0.08	0.08	0,07	0,07	0.09	0.08	0.08	0,08	0,04	0,04	0.04
Ca	00.00	0,00	00.00	0,01	0,01	0.00	0.00	0.00	0,00	0,00	0.00	00.00	0,00	00.00	0,00	00.00	0,00	0.00
Na	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01
K	0,88	0,89	0,86	0,70	0,78	0,86	0,83	0,84	0,85	0,84	0,85	0,81	0,77	0,83	0,79	0,95	0,94	0,95
$\mathbb{R}^{\mathbf{b}}$	0,00	0,01	0.00	0,00	00.00	0,00	0,00	0.00	0.00	0,00	0.00	000	0.00	0.00	0,00	0,00	0,00	0.00
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00
НО	1,32	1,25	1,21	1,20	1,16	1,24	1,34	1.37	1.36	1,28	1,20	1,22	1,26	1,21	1,27	1,66	1,64	1,68
F	0,68	0,75	0,79	0,79	0.83	0,75	0.65	0.62	0,64	0,72	0,79	0,77	0,74	0,78	0,73	0,34	0,36	0,32
CI	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,01	0,01	0,01	0,01	ı		ı
f	0,60	0,59	0,59	0,60	0,59	09.0	0,61	0,00	0.59	0,00	0,00	0,59	0,58	0,59	0,59	0,56	0,57	0,57
7	0,16	0,16	0,16	0,15	0,15	0,17	0,17	0,16	0,16	0,15	0,15	0,16	0,16	0,15	0,16	0,16	0,16	0,16

	ИP	2
	He.	3
	Ħ	Ś
		į
	707	2
	<u>`</u>	7
Į	_	:
Į	•)
	±06	;
r	č	3

	-							ATY	Атуркольский	сий							
Порода								MOL	монцогранит	ИТ							
Oép.				9-4								8-13-88/1	88/1				
SiO_2	38,1	38.5	38.2	38.6	38,4	38.0	36,4	37.3	37.9	38.5	38.7	38.3	38.5	38.9	38.7	38,3	38.8
${ m TiO}_2$	3,24	2,73	2,70	2,70	2,70	2,69	2,80	3,03	3,10	2,27	2,43	2,84	2,60	2,33	2,23	2,17	2,14
Al_2O_3	13,2	13.1	13,2	13.2	13,3	13,0	13.2	13.6	13.6	13.2	13.1	13.0	13.0	13,1	13,3	13.2	13,2
$\operatorname{Cr}_2\mathrm{O}_3$	1	ı	ı	ı	1	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	ı
$M_{\mathbf{g}O}$	13,6	13,9	14,1	14,3	14,5	14.5	14,7	13,3	12,9	14,2	14,0	13,2	14,0	14,2	14,6	14,9	14,6
FeO	18.5	17.8	17.9	17.9	17.5	17.5	17,4	19.1	18,9	18,0	17.9	18,8	18,6	17.5	17.5	17.5	17.7
MnO	0,65	0,67	0,60	0,63	0.59	0.58	0,57	0,72	0,70	0,77	0,72	99'0	0,66	0,70	0,67	0,64	0,60
CaO	н.п.о.	0.027	0,011	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0.02	н.п.о.	н.п.о.	0.044	0.034	0.014
Na_2O	0,09	0,04	0,12	0,05	0,11	0,08	0,06	0,07	0,07	90.0	0.05	90,0	0,00	0,06	0,03	0,05	0,04
K_2O	6.6	9.2	9.5	9.6	6.6	9,7	10,0	8.6	9,6	9,8	6.6	6.7	8.6	9.3	9,3	9.5	9,4
Rb_2O	н.п.о.	0,09	0,11	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0.09	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,08	0,08	н.п.о.	0,00	0,10
BaO	0,23	н.п.о.	0,09	0,22	н.п.о.	0,18	н.п.о.	0,75	0,79	0,21	0,19	0,46	0,14	0,36	0,12	0,14	0,12
	1,37	1,43	1,45	1,50	1,45	1,61	1,4	1,47	1,32	1,41	1,48	1,41	1,4	1,55	1,48	1,65	1,62
ひ	1	ı	1	1	1	ı		ı	ı	1	ı	ı		ı	ı	ı	ı
Сумма	94.9	93.5	94.0	94.7	94.6	93.8	92.6	95.1	95.0	94.6	94.5	94.3	94.9	94.1	93.9	94.3	94.4
Формульные единицы. Расчёт на	ле единк	щы. Рас	чёт на 1	1 атомов	0 (с п	ō											
Si	2,85	2,89	2.89	2.88	2,86	2,86		2,81		2.88	2,62	2,88	2,88	2,91	2.89	2,87	2,90
Ï	0,18	0,15	0.15	0.15	0,15	0.15	0,16	0,17	0.18	0,13	0,14	0,16	0,15	0,13	0,13	0,12	0,12
$\mathbf{Al^{(IV)}}$	1,15	1,11	1,11	1,13	1,14	1,14	1,19	1,20	1,16	1,12	1,08	1,12	1,12	1,09	1,11	1,13	1,10
$\mathbf{A}\mathbf{I}^{(\mathrm{VI})}$	0,01	0,05	0,07	0.03	0,03	0,01	0,00	0,01	0.05	0.04	0.09	0,03	0,02	0,07	0.06	0.04	0.06
\mathbf{Cr}	,	1	1	1	1	1	,			1				1	,	,	
Mg	1,52	1,56	1,49	1.59	1,61	1,63	1,68	1,49	1,4	1,58	1,47	1,48	1,56	1,58	1,63	1,66	1,63
Fe^{2+}	0,90	0,88	1,00	0.88	0,87	0,84	0,74	0.92	0,98	0,95	1,10	1,01	0.93	0,94	0.88	0,85	0,90
$\mathrm{Fe}^{3+}_{(\mathrm{Cyman})}$	_	0,24	0,14	0.24	0,22	0,26	0,38	0.28	0,21	0,18	0,03	0,18	0,23	0,16	0,22	0,25	0,20
$\mathrm{Fe}^{3+}(\mathrm{T})$	000	0.00	0.00	0.00	0,00	0.00	0,03	0.00	0,00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	000
$\mathrm{Fe}^{3+}(\mathrm{M})$	_	0,24	0,14	0,24	0,22	0,26	0,35	0,28	0,21	0,18	0,03	0,18	0,23	0,16	0,22	0,25	0,20
Mn	0,04	0,04	0,04	0,04	0,04	0.04	0,04	0.05	0.04	0.05	0.05	0,04	0,04	0,04	0,04	0.04	0,04
දි	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00	0,00
Na	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01
K	0,94	0,88	0,92	0,91	0,94	0,93	0,98	0,94	0,92	0,94	0,95	0,93	0,93	0,89	0,89	0,91	0,00
$\mathbb{R}^{\mathbf{b}}$	0.00	0,00	0,01	0.00	0.00	0.00	0,00	0.00	0,00	0.00	0.00	00.00	0,00	0,00	0.00	0.01	0,01
Ba	0,01	0,00	0.00	0,01	0,00	0,01	0,00	0,02	0,02	0,01	0,01	0,01	0,00	0,01	0,00	0,00	0,00
НО	1,68	1,66	1,65	1,65	1,66	1,62	1,65	1,65	1,69	1,67	1,65	1,66	1,66	1,63	1,65	1,61	1,62
丘	0,32	0,34	0.35	0.35	0,34	0.38	0.35	0.35	0,31	0,33	0,35	0.34	0,34	0.37	0,35	0,39	0,38
ご	'	ı	ı	1	ı	ı	-	1	1	1	1	1	1	1	ı	ı	
f	0,58	0,56	0,56	0.56	0,55	0,55	0,54	0.59	0.59	0,56	0,56	0,59	0,57	0,55	0,54	0,54	0,55
1	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,15	0,16	0,16	0,16	0,16

абл. 5.7. Продолжение			
5.7. Продс		onno.	
5.7. II		N L C L	
	ļ	5	2
абл.	ן נ	_	:
	1		5

37.8 37.5 2.84 2.85 14.7 14.6 10.9 10.8 20 20,1 0.96 0.93 H.II.O. H.II.O. 0.12 0.15 9.7 9.6 H.II.O. H.II.O. H.II.O. H.II.O. 1.93 2.07 H.II.O. H.II.O. 1.93 2.07 H.II.O. H.II.O.	3.3 3.3 3.3 3.4 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	8-11-02 1.3 37.3 1.1 3.06 1.9 14.7 1.3 10.3 1.5 20.6 92 0.93 1.0 H.II.0. 1.7 9.6 1.0 H.II.0. 1.0 H.II.0.		37.3 2.85 14.6 - 10.3 20.4 0.9	36.5 2.81 14.7	36,6 2,69	8-11-05 36,2	36.7	36,8	36,9	36,3	8-11-05/1 35,8 35,	.0 5/1 35.8	36.7	36,3
3 37.5 1 2.86 7 14.0 - 9 10.3 5 0.9 6 0.0 10.0	37. 10.00.00.00.00.00.00.00.00.00.00.00.00.0			2,85 14,6 10,3 20,4 0,9	36.5 2.81 14.7		36.2	36.7	36.8	36,9	36,3	35.8	35.8	36.7	36,3
14.6 14.6 14.6 10.8				2,85 14,6 - 10,3 20,4 0,9	2.81	2,69	, ,		2 2 1				,	,	2 89
7 14.0 9 10.8 20. 20. 20. 10.9 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9				14.6 - 10.3 20.4 0.9	14,7		2,47	3,19	7,71	2,58	3,06	m	7,86	2,81	1,0,1
9 10.8 5 0.9 6 0.9 6 0.1 9.6 6 H.II. 1 94.4 1 94.4				10.3		14,5	14,7	13.9	14,1	15.2	15.2	15,3	15.8	14,6	14,8
20. 20. 20. 3. H.II. 9. H.II. 9. H.II. 9. H.II. 1. 944.				10,3 20,4 0,9	ı	ı	1	1	-	ı	ı	1	1	ı	ı
20,1 20,1 20,1 20,1 20,1 30,1 30,1 31,2 31,2 31,2 31,2 31,2 31,2 31,2 31				20,4	10,3	10,7	6,6	10,9	10,7	10,8	10,5	6.6	10,2	10,6	10,7
5 0.95 1. H.II. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				6.0	20	19,6	20.9	19.8	19,9	19.5	20.1	21.1	20.2	20.5	20,4
9.6 9.6 0. H.II. 0. H.II. 0. H.II. 1. 94 <u>4</u>				0	0,93	0,92	0.97	6.0	0,93	0,83	0,82	0,91	0,91	0.94	0,93
2 0,15 9,6 0. H.II. 0. H.II. 0. H.II. 1 94 <u>5</u>				0.023	0.022	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о
9.6 9. H.II. 9. H.II. 9. H.II. 1. 94.				0.07	0.13	0.14	0.18	0.14	0.17	0.00	0.09	0.12	0.00	0.11	0.15
5. H.II.(3. 2.0 6. H.II. 1. 94.				9.5	9.4	9.4	9.4	9.3	9.4	9.6	9.5	9.4	9.4	9.3	9.4
5. H.П. 3 2,0° 0. H.П. 1 94,′				0,08	н.п.о.	0.09	0.09	н.п.о.	н.п.о.	0.08	0,00	н.п.о.	0,10	0,11	0,13
3 2,0° 0. H.II. 1 94.				н.п.о.	н.п.о.	н.п.о.	0,20	0,28	0,27	н.п.о.	0,00	0,34	0,29	0,12	0,12
э. н.п. 1 94.		1,77		1,92	2,28	2,44	2,52	2,45	2,64	2,5	2,21	2,22	2,02	2,95	2,96
1 94.	0. Н.П.О.	н.п.о.		н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о
ļ		94,8		94.0	93,2	93,1	94.5	93.6	94,2	94,1	94,0	94,2	93.6	94,7	94.8
ницы. Ь	асчёт на	11 атомо	О (с п	ОМОЩЬЮ	MICA+	[Yavuz,	_								
2,85 2,84	4 2,83		2,83	2,85	2,82	2,83		2,83	2,83	2.82	2,78	2,76	2,76	2,82	2,79
				0,16	0,16	0,16		0,19	0.19	0.15	0,18	0,17	0,17	0.16	0,17
			1,18	1,15	1,18	1,17		1,17	1,17	1,18	1,22	1,24	1,24	1,18	1,21
0.15 0.15	5 0,16	0,15	0.13	0,16	0,16	0,15		0,10	0,11	0,19	0,16	0,15	0,19	0,14	0,13
	1	1	- 1	1					-	1		1	1	1	1
	2 1,16	1,17		1,17	1,19	1,23	1,14	1,25	1,23	1,23	1,20	1,14	1,17	1,21	1,23
		1,21		1,23	1,20	1,17	1,15	1,10	1,13	1.19	1,12	1,18	1,14	1,15	1,12
	_	0,10		0,07	0.09	0.09	0,19	0,18	0.15	0.06	0,17	0,18	0,16	0,17	0,19
		0,00	0.00	0,00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
		0,10		0,07	0,09	0.09	0,19	0,18	0,15	0.06	0,17	0,18	0,16	0,17	0.19
		90.0		0,06	90.0	90.0	90.0	0,06	0.06	0.05	0.05	0,06	0,06	90.0	0,06
		00.00		00.00	0.00	00.00	0,00	0,00	0.00	0.00	0,00	00.00	0,00	0.00	0,00
		0,02		0,01	0,02	0,02	0,03	0,02	0.03	0,01	0,01	0,02	0,01	0,02	0,02
		0,93		0,93	0,93	0,93	0,92	0,92	0,92	0,94	0,93	0,93	0,92	0,91	0,92
		0,01		0,00	0,00	00.00	0,01	0,00	0,00	00.00	0,00	0.00	0,01	0,01	0,01
		00,00		0,00	0.00	0,00	0,01	0,01	0,01	00.0	0,00	0,01	0,01	0.00	0,0
		1,52		1,54	1,44	1,40	1,39	1,40	1,36	1,40	1,46	1,46	1,51	1,28	1,28
		0,48		0,46	0.56	09.0	0,61	09.0	0,64	0,61	0,54	0,54	0,49	0.72	0,72
				0,00	0,00	0,00	0,00	0,00	0,00	00.00	0,00	0,00	0,00	0,00	0,00
			0,36	0,34	0,34	0,35	0,32	0,36	0,35	0,36	0,34	0,32	0,34	0,34	0,34
			0,18	0,18	0,18	0,18	0,18	0,17	0,17	0,18	0,19	0,19	0,19	0,18	0,18
	95.1 94.7 2.85 2.85 2.85 2.85 2.85 0.16 0.15 1.12 1.19 1.19 1.19 0.07 0.07 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <th>2,84 2,84 2,84 2,84 1,16 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00</th> <th>94,7 94,8 11 2,84 2,83 2,84 2,83 0,16 0,18 1,17 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00</th> <th>94.7 94.8 94.8 94.3 94.7 94.8 94.8 94.3 2.84 2.83 2.83 2.83 2.83 0.06 0.16 0.18 0.18 0.16 0.16 0.15 0.13 0.13 0.15 0.10 0.10 0.10 0.10 0.00 0.00 0.00</th> <th>94.7 94.8 94.8 94.3 IMILEI. Pactér Ha II atromos O (c II 2.84 2.83 2.83 2.83 2.83 0.16 0.16 0.18 0.18 0.16 0.16 0.15 0.13 0.15 0.16 0.15 0.13 0.13 0.08 0.10 0.10 0.14 0.14 0.00 0.00 0.00 0.00</th> <th>94.7 94.8 94.8 94.3 94.0 ищы. Расчёт на 11 атомов О(с помощью № 2.84 2.84 2.83 2.83 2.85 2.84 2.83 2.83 2.85 0.16 0.18 0.18 0.16 0.16 1.16 1.17 1.17 1.18 1.15 1.20 1.20 1.21 1.17 1.23 0.08 0.10 0.10 0.14 0.07 0.08 0.10 0.10 0.14 0.07 0.08 0.10 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</th> <th>94.7 94.8 94.8 94.3 94.0 93.2 1016. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>94.7 94.8 94.8 94.3 94.0 93.2 93.1 mttbi. Pacyër ha 11 atomob O(c flowdilling) MICA+ [Yavuz, 2.84 2.83 2.83 2.83 2.85 2.82 2.83 2.84 2.83 2.83 2.85 2.82 2.83 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15</th> <th>94.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 IMILEI Pacqet Ha II aromos O (c nonounts) MICA+ [Yavuz, 2003]). 2.84 2.83 2.85 2.85 2.87 2.79 0.16 0.18 0.16 0.16 0.16 0.16 0.20 1.16 1.17 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.11 1.21 1.17 1.18 1.15 1.11 1.21 1.11 1.17 1.18 1.15 1.14 1.15 1.14 1.19 1.20 1.21 1.13 1.23 1.20 1.14 1.19 1.20 1.21 1.13 1.23 1.20 1.14<th> 1.15</th><th> 1.15</th><th>94.7 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 IMIB. Pacyër Ha I I arromob O (c nowouths) MICA+ [Yavuz, 2003]). 2.84 2.83 2.83 2.83 2.83 2.83 0.16 0.18 0.16 0.16 0.16 0.19 0.19 0.19 1.16 1.17 1.17 1.18 1.15 1.18 1.17 1.17 1.17 0.15 0.16 0.15 0.16 0.16 0.15 0.10 0.10 1.10 1.17 1.18 1.15 1.18 1.17 1.17 1.16 1.17 1.18 1.15 1.18 1.17 1.17 1.20 1.16 1.17 1.26 1.17 1.19 1.23 1.14 1.25 1.23 1.19 1.20 1.21 1.13 1.23 1.20 1.17 1.15 1.11 1.15 1.18 1.17 1.15 1.13 1.23 1.14 <</th><th>94.7 94.8 94.8 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 1.84.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 2.84 2.83 2.83 2.82 2.83 2.79 2.83 2.83 2.82 2.78 0.16 0.18 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.18 0.18 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.10 0.10 0.10 0.10 0.10 0.10<th>94.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 1016. Pacuét Ha II arromos OC fromoutisto MICA+ I Yavuz, 20031). 2.84 2.83 2.83 2.83 2.83 2.83 2.83 2.85 2.76 0.16 0.18 0.16 0.16 0.16 0.16 0.17 1.17 1.18 1.17 1.14 1.15 1.14 1.15 1.14 1.15 1.17 1.18 0.15 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.19 0.15 0.17 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14</th><th> 1947 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 93.6 94.2 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 </th></th></th>	2,84 2,84 2,84 2,84 1,16 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00	94,7 94,8 11 2,84 2,83 2,84 2,83 0,16 0,18 1,17 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	94.7 94.8 94.8 94.3 94.7 94.8 94.8 94.3 2.84 2.83 2.83 2.83 2.83 0.06 0.16 0.18 0.18 0.16 0.16 0.15 0.13 0.13 0.15 0.10 0.10 0.10 0.10 0.00 0.00 0.00	94.7 94.8 94.8 94.3 IMILEI. Pactér Ha II atromos O (c II 2.84 2.83 2.83 2.83 2.83 0.16 0.16 0.18 0.18 0.16 0.16 0.15 0.13 0.15 0.16 0.15 0.13 0.13 0.08 0.10 0.10 0.14 0.14 0.00 0.00 0.00 0.00	94.7 94.8 94.8 94.3 94.0 ищы. Расчёт на 11 атомов О(с помощью № 2.84 2.84 2.83 2.83 2.85 2.84 2.83 2.83 2.85 0.16 0.18 0.18 0.16 0.16 1.16 1.17 1.17 1.18 1.15 1.20 1.20 1.21 1.17 1.23 0.08 0.10 0.10 0.14 0.07 0.08 0.10 0.10 0.14 0.07 0.08 0.10 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	94.7 94.8 94.8 94.3 94.0 93.2 1016. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94.7 94.8 94.8 94.3 94.0 93.2 93.1 mttbi. Pacyër ha 11 atomob O(c flowdilling) MICA+ [Yavuz, 2.84 2.83 2.83 2.83 2.85 2.82 2.83 2.84 2.83 2.83 2.85 2.82 2.83 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	94.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 IMILEI Pacqet Ha II aromos O (c nonounts) MICA+ [Yavuz, 2003]). 2.84 2.83 2.85 2.85 2.87 2.79 0.16 0.18 0.16 0.16 0.16 0.16 0.20 1.16 1.17 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.17 1.21 1.16 1.17 1.18 1.15 1.11 1.21 1.17 1.18 1.15 1.11 1.21 1.11 1.17 1.18 1.15 1.14 1.15 1.14 1.19 1.20 1.21 1.13 1.23 1.20 1.14 1.19 1.20 1.21 1.13 1.23 1.20 1.14 <th> 1.15</th> <th> 1.15</th> <th>94.7 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 IMIB. Pacyër Ha I I arromob O (c nowouths) MICA+ [Yavuz, 2003]). 2.84 2.83 2.83 2.83 2.83 2.83 0.16 0.18 0.16 0.16 0.16 0.19 0.19 0.19 1.16 1.17 1.17 1.18 1.15 1.18 1.17 1.17 1.17 0.15 0.16 0.15 0.16 0.16 0.15 0.10 0.10 1.10 1.17 1.18 1.15 1.18 1.17 1.17 1.16 1.17 1.18 1.15 1.18 1.17 1.17 1.20 1.16 1.17 1.26 1.17 1.19 1.23 1.14 1.25 1.23 1.19 1.20 1.21 1.13 1.23 1.20 1.17 1.15 1.11 1.15 1.18 1.17 1.15 1.13 1.23 1.14 <</th> <th>94.7 94.8 94.8 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 1.84.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 2.84 2.83 2.83 2.82 2.83 2.79 2.83 2.83 2.82 2.78 0.16 0.18 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.18 0.18 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.10 0.10 0.10 0.10 0.10 0.10<th>94.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 1016. Pacuét Ha II arromos OC fromoutisto MICA+ I Yavuz, 20031). 2.84 2.83 2.83 2.83 2.83 2.83 2.83 2.85 2.76 0.16 0.18 0.16 0.16 0.16 0.16 0.17 1.17 1.18 1.17 1.14 1.15 1.14 1.15 1.14 1.15 1.17 1.18 0.15 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.19 0.15 0.17 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14</th><th> 1947 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 93.6 94.2 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 </th></th>	1.15	1.15	94.7 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 IMIB. Pacyër Ha I I arromob O (c nowouths) MICA+ [Yavuz, 2003]). 2.84 2.83 2.83 2.83 2.83 2.83 0.16 0.18 0.16 0.16 0.16 0.19 0.19 0.19 1.16 1.17 1.17 1.18 1.15 1.18 1.17 1.17 1.17 0.15 0.16 0.15 0.16 0.16 0.15 0.10 0.10 1.10 1.17 1.18 1.15 1.18 1.17 1.17 1.16 1.17 1.18 1.15 1.18 1.17 1.17 1.20 1.16 1.17 1.26 1.17 1.19 1.23 1.14 1.25 1.23 1.19 1.20 1.21 1.13 1.23 1.20 1.17 1.15 1.11 1.15 1.18 1.17 1.15 1.13 1.23 1.14 <	94.7 94.8 94.8 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 1.84.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 2.84 2.83 2.83 2.82 2.83 2.79 2.83 2.83 2.82 2.78 0.16 0.18 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.18 0.18 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.10 0.10 0.10 0.10 0.10 0.10 <th>94.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 1016. Pacuét Ha II arromos OC fromoutisto MICA+ I Yavuz, 20031). 2.84 2.83 2.83 2.83 2.83 2.83 2.83 2.85 2.76 0.16 0.18 0.16 0.16 0.16 0.16 0.17 1.17 1.18 1.17 1.14 1.15 1.14 1.15 1.14 1.15 1.17 1.18 0.15 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.19 0.15 0.17 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14</th> <th> 1947 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 93.6 94.2 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 </th>	94.7 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 1016. Pacuét Ha II arromos OC fromoutisto MICA+ I Yavuz, 20031). 2.84 2.83 2.83 2.83 2.83 2.83 2.83 2.85 2.76 0.16 0.18 0.16 0.16 0.16 0.16 0.17 1.17 1.18 1.17 1.14 1.15 1.14 1.15 1.14 1.15 1.17 1.18 0.15 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.19 0.15 0.17 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14 1.15 1.14	1947 94.8 94.8 94.3 94.0 93.2 93.1 94.5 93.6 94.2 94.1 94.0 94.2 93.6 94.2 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8

TOTOTA	JIMOIRIO.
ř	4
7	7
2	٠
5	2
	٠.
_	-
	٠
┖	•
_	:
4	,
<u> </u>	
Ç	3
_	4

Массив								Син	Синюшенский	кий							
Порода						кр.з грани	ранит								аплит		Ī
Обр.			8-11	1-09					Γ -4/1	./1					Γ -6/1		Í
SiO_2	38,3	37,3	37.6	38,1	37.9	37.3	36,19	37.03	36,08	36,62	35,72	37.27	36,34	35.86	35.21	36,56	36,58
TiO_{2}	1,72	1,81	2,22	2.26	2,08	2,13	2,57	2,27	2,75	2,7	2,91	2,33	2,63	2,66	2.68	2,58	2,76
Al_2O_3	15.8	16,1	16,3	16,7	16	15.9	19,1	18,22	19,47	18,76	19,22	18,46	18,65	19.24	18,63	18.52	18,98
Cr_2O_3	1	1	ı	ı	ı	,	1	1	1	1	1	,	1	1	1	1	1
MgO	10,3	10,3	6,6	6,7	10,4	10,6	5,5	6,07	5.26	5,46	5.7	5,98	5.87	5.6	5,96	5,96	5,8
FeO	16,9	16,6	16,8	16,9	17,2	16,9	24,1	23.2	23,2	23,1	23.7	21,5	22,6	23,2	23.2	22,7	22,7
MnO	1,26	1,24	1,06	96.0	1,33	1,33	0,75	0,81	0,76	0,82	0,86	0,84	0,79	0,75	0,64	0,67	69.0
CaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,025	н.п.о.	0,113	н.п.о.	Н.П.О.	н.п.о.	Н.П.О.
Na_2O	0,1	0,00	0,06	н.п.о.	0.16	0,19	н.п.о.	н.п.о.	0,04	0,03	0,04	0,04	0,04	0,04	н.п.о.	0,04	0,04
K_2O	9,3	9,2	9,3	9,5	9,3	9,2	9,91	86'6	10,05	9.88	9,33	9,59	9,83	6,97	10.06	9,92	10,03
Rb_2O	0,17	0.15	0,13	0,12	0,18	0,22	0,10	0,18	н.п.о.	0,17	0.08	0,25	н.п.о.	0,13	0,14	0,15	н.п.о.
BaO	н.п.о.	0,11	0,15	н.п.о.	0.10	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.
	3,03	2,77	2.58	2.26	3,71	3,74	0,61	0,84	0,51	0,82	0,43	0,94	0.5	0,4	0,56	0,57	0,75
Cl	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	0,03	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.
Сумма	6.76	91,7	92,1	92.6	94,4	93.6	6,16	94,6	94,2	94,4	94,0	93,3	93,4	93,9	93,1	93.6	94,4
Формульные единицы. Расчёт на	е едини	цы. Рас	чёт на 1	1 атомов	O (c I	ІОМОЩЬЮ	MICA+	F [Yavuz	20031								
Si	2,93	2.89	2.89	2.90	2,89	2.87	2,74	2.81	2,74	2,78	2,71	2.84	2,77	2,73	2,72	2.78	2,76
Ė	0,10	0,11	0.13	0,13	0,12	0,12	0,15	0,13	0,16	0,15	0,17	0,13	0,15	0,15	0,16	0,15	0,16
$\mathbf{A}\mathbf{I}^{(\Gamma\!V)}$	1,07	1,11	1,11	1,10	1,11	1,13	1,26	1,20	1,27	1,22	1,29	1,16	1,23	1,27	1,29	1,22	1,24
$\mathbf{AI}^{(\mathrm{VI})}$	0,36	0.36	0.37	0.39	0,32	0,31	0,44	0,43	0,48	0,46	0,43	0,49	4.0	0,45	0,41	0,44	0,46
Ċ	1	1	1	1	1	-		1	1	1	1	-					-
Mg	1,18	1,19	1,13	1,10	1,18	1,21	0,62	0,69	0,59	0,62	0,65	99.0	0,67	0,64	0,69	89,0	0,65
Fe^{2+}	0,77	0,82	08'0	0,75	0,88	0,93	1,32	1,16	1,19	1,18	1,41	0,97	1,15	1,24	1,32	1,15	1,15
$\mathrm{Fe}^{3+}_{(\mathrm{Cymma})}$	0,32	0,26	0.28	0.33	0.22	0,16	0.21	0:30	0.28	0,29	0,0	0,40	0,29	0,23	0,17	0,29	0,29
$\mathrm{Fe}^{3+}(\mathrm{T})$	00.00	0,00	0.00	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00
$Fe^{3+}(M)$	0,32	0,26	0,28	0,33	0,22	0,16	0,21	0;30	0.28	0,29	0,0	0,40	0,29	0,23	0,17	0,29	0,29
Mn	0.08	0.08	0,07	90.0	0.09	0.09	0.05	0,05	0.05	0.05	90,0	0.05	0,05	0,05	0,0	0,04	0,04
Ça	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0.00	0,01	00.00	0,00	00.00	00.00
Na	0,02	0,01	0,01	0.00	0,02	0,03	00.00	0,00	0,01	0.00	0,01	0,01	0,01	0,01	0,00	0,01	0,01
K	0,91	0,91	0,91	0,92	0,90	0.90	96'0	96.0	0,97	96'0	0,90	0,93	96.0	0,97	0,99	96'0	0,97
$\mathbf{R}\mathbf{b}$	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0.01	0.00	0,01	0,00	0.01	0,00	0.01	0,01	0.01	0,00
Ba	0,00	0.00	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,27	1,32	1.37	1,46	1,11	1,09	1,85	1.80	1,88	1,80	1,90	1,77	1,88	1,90	1.86	1,86	1,82
H	0,73	0.68	0,63	0.54	0.89	0,91	0,15	0,20	0,12	0.20	0,10	0,23	0,12	0,10	0,14	0,14	0,18
C	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
f	0,38	0,38	0,37	0,36	0,38	0,39	0,19	0,21	0,18	0,19	0,19	0,22	0,21	0,19	0,20	0,21	0,20
1	0,19	0,20	0,20	0,21	0,20	0,20	0,22	0,22	0,23	0,22	0,23	0,22	0,22	0,23	0,22	0,22	0,23

	4	ز.	
	OT TO THE PERSON		
ļ	1		
ו			
E			

Macair Carrier Carrier	1,00,000 - 	Chine.	7						Ĺ			2)				
Порода		CAHIOL	<u>Син ЮШСНСКИИ</u> ап пит						2Mica	GIOKYDE Teŭkoli	релокурихинскии 2 Міся пейкогранит (3 с	іи 8 фаза)				
Ofp.		Γ-6/1	-6/1							3-J	[-8/5	(hcha)				
SiO_2	36,31	35,77	36,53	36.87	38.2	38,1	38.3	37.6	38,4	37.6	37.5	37.8	38.1	37.6	38.1	37.5
TiO_2	2,76	2,77	2,7	2,78	1,43	1,64	1,70	2,47	1,89	1,83	1,81	1,85	1,86	1,81	1,62	1,79
Al_2O_3	18.67	18.9	19,02	19,41	19.8	19.9	19,5	19.0	19,6	20,4	19.3	19,3	19.2	19,4	19.7	19,0
$\mathrm{Cr}_2\mathrm{O}_3$	ı	,	,	,	ı	ı	,	ı	ı	ı	ı	ı	ı	ı	ı	1
MgO	5,93	5,68	6,08	5,73	3,87	3,95	3,81	5,84	3,79	3,66	4,20	4,25	4,12	3,94	4,67	4,96
FeO	23,0	23,1	22,4	22,0	18,0	19,1	17.9	20.2	18.5	18,0	18,9	18,4	18,9	19,4	17.9	18,4
MnO	0,7	0,69	0,67	0,68	3,40	3.54	3.50	1,04	3,79	3,69	3,97	4.05	3,96	3.98	3,65	3.71
CaO	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	0.04	н.п.о.	0,04	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	0,04
Na_2O	н.п.о.	н.п.о.	0,03	0,07	0,11	0,14	0,13	0,00	0,15	0,10	0,14	0,20	0,15	0,11	0,11	0,12
$ m K_2O$	10,02	9.98	66.6	10,01	9.85	96.6	9.65	96.6	9,48	68.6	9.79	69.6	69.6	9,62	10,00	96.6
$ m Rb_2O$	0,10	0,20	0,14	0,12	0,15	н.п.о.	0,10	0,12	0,35	0,36	0,11	0,40	0,27	0.29	0,16	0,19
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
H	0,76	0,55	0,72	0,49	3,22	3,19	3,02	1,64	2,44	2,60	2,62	2,60	2,79	2.53	2,46	2,56
CI	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	н.п.о.	0,02	н.п.о.	0,03	0,05	0,03	0,03	н.п.о.	0,03	0,03
Сумма	94,3	93.7	94,3	94,1	94,1	92.6	93,7	94,1	94,5	94,2	94,4	94,5	95,1	94,7	94,4	94,3
Формульные	те единицы.		Расчёт на 1	1 atomob	в О (с по	ОМОЩЬЮ		- [Yavuz	., 2003])							
Si	2,76		2,76	2,77	2,92	2,89	2,93	2,84	2,91	2,87	2,87	2.88	2,89	2,87	2,89	2,87
Ë	0,16	0,16	0.15	0,16	0.08	0.09		0,14	0,11	0,11	0,10	0,11	0,11	0,10	0,00	0,10
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,24	1,27	1,24	1,23	1.08	1,08 1,11		1,16	1,09	1,13	1,13	1,12	1,11	1,13	1,11	1,13
$\mathbf{A}\mathbf{I}^{(\mathbf{V}\mathbf{I})}$	0,43	0,44	0,46	0,49	0,71	99.0	- :	0.54	0,67	0,70	0,61	0,62	0,62	0,62	0,65	0.59
$\mathbf{c_r}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mg	0,67	0,65	69.0	0,64	0,44	0,45	0,44	0,66	0,43	0,42	0,48	0,48	0,47	0,45	0,53	0.57
Fe^{2+}	1,23	1,26	1,13	1,03	0,23	0.40	0,26	0,75	0,39	0,33	0,52	0,46	0,49	0.57	0,35	0,50
${ m Fe}^{3+}_{({ m Cymma})}$	0,23	0,22	0.28	0,36	0.92	0.81	0.89	0,53	0,79	0,82	0,69	0,71	0,71	0,67	0,79	0.68
$\mathrm{Fe}^{3+}(\mathrm{T})$	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0,00	0,00	0,00	0,00	0.00	0,00	0.00	0,00	0.00
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,23	0,22	0,28	0,36	0,92	0,81	0,89	0,53	0,79	0,82	0,69	0,71	0,71	0,67	0,79	0,68
$\mathbf{M}\mathbf{n}$	0.05	0.05	0.04	0,04	0.22	0.23	0.23	0,07	0,24	0,24	0,26	0.26	0,26	0.26	0,24	0,24
Ca	0.00	0.00	0.00	0,00	0.00	0.00	0.00	00.00	00.00	0,00	0,00	0.00	0,00	0.00	0,00	0,00
Na	0,00	0,00	0.00	0,01	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,02
K	0,97	0,97	96'0	0,96	96.0	0,96	0,94	96'0	0,92	96'0	0,96	0,94	0,94	0,94	0,97	0,97
Rb	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,02	0,02	0,01	0,02	0,01	0.01	0,01	0,01
Ва	0,00	0,00	00.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,82	1,87	1,83	1,88	1,22	1,23	1,27	1,61	1,41	1,37	1,36	1,37	1,33	1,39	1,41	1,38
¥	0,18	0,13	0,17	0,12	0,78	0,77	0,73	0,39	0.59	0,63	0,64	0,63	0,67	0,61	0,59	0,62
C	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
f	0,20	0,20	0,21	0,21	0,82	0,83	0,82	0,78	0,83	0,83	0,82	0,81	0,82	0,83	0,79	0,79
1	0,22	0,23	0,23	0,23	0,25	0,25	0,25	0,23	0,24	0,26	0,24	0,24	0,24	0,24	0,24	0,24

Поводо								ָם ס	t mount	Delion ypnannernn Dt froum (1 dele)								
Порода Обр.								P	<u>г грани</u> Г-2	БСГранит (1 фаза) Г-24/1	a)							
SiO_2	38,9	39.2	39,1	38.7	37.9	39,3	38.7	39.3	39.3	39.0	38.7	39.5	39.2	39,0	38.8	39,3	38.8	38.7
TiO_2	2,02	1,61	1,76	2,03	1,95	1,93	1,84	1,83	1,70	1,71	1,88	2,06	1.58	1,86	2.03	1,97	2,13	1,8
Al_2O_3	14,2	14,0	13,7	13.7	13.3	13,6	13.7	13.8	13.5	13,4	14.3	14.2	13.6	14,2	13.1	14,2	14,1	13.5
Cr_2O_3	1	1	1	,	1		1	ı	1	ı	ı	ı	1	1	1	1	1	ı
MgO	13,1	13,0	13,4	13,8	13.5	13,5	13.1	14,1	13,8	14,4	12,6	13,9	14,2	13,6	13.8	13,1	13,4	13,
FeO	17.4	17.5	17.0	17.6	17.7	16.9	18.1	16.9	17.7	17.4	17.8	16.5	17.7	17.0	18.1	17.0	17.2	17.6
MnO	0.93	0.63	1.00	0.97	0.98	0.95	0.70	0.72	0.79	0.86	0.81	0.84	69.0	0.66	0.86	0.64	0.90	0.87
CaO	н.п.о.	0.07	0.00	Н.П.О.	0.07	Н.П.О.	н.п.о.	н.п.о.	0.0	н.п.о.	0.05	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Na ₂ O	0.07	0.05	0.07	0.08	0.06	0.07	0.05	0.05	0.06	0.07	0.00	0.08	0.04	0.04	0.05	0.04	0.09	н.п.о
$\mathbf{K}_2\mathbf{O}$	9.88	9.29	9,45	9.83	9.40	9.79	9.65	9.81	9.57	9.62	89.6	9.80	89.6	10.04	9.80	9.75	6.67	9.60
Rb,O	н.п.о.	0.15	н.п.о.	0.14	0.08	н.п.о.	н.п.о.	0.00	0.12	0.08	н.п.о.	0.00	0.13	н.п.о.	0.00	0.11	н.п.о.	н.п.о.
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0.21	0.25	н.п.о.	0.36	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0.42	0.3
¥	1.88	1.78	2.09	2,12	1.96	2.02	1.79	2.28	2.20	2,42	2.06	2.33	2.10	2.20	2.10	2.08	2.08	2,06
C	н.п.о.	0.02	0.03	0.02	0.02	Н.П.О.	0.02	0.02	0.02	0.02	н.п.о.	0.03	н.п.о.	0.02	0.03	н.п.о.	0.02	н.п.
Сумма	96.5	95.5	95.8	97.0	95.1	96.3	96.1	97.3	97.0	97.2	0.96	97.3	97.1	96.7	6.96	96.4	97.0	7.96
Формульные единицы. Расчёт на	ые единк	пы. Рас	чёт на 1	1 атомо	атомов О (с помощью	ЭМОЩЬК	MICA+	- [Yavuz	20031									
Si	2.91	2.95	2.94	2.90	2.90	2.94		2.92	2.93	2.91	2.92	2.92	2.92	2.91	2.91	2.93	2.90	2.91
Ë	0,11	0.09	0,10	0,11	0,11	0,11	0,10	0.10	0,10	0,10	0,11	0.12	0.09	0,10	0,12	0,11	0,12	0,11
$\mathbf{AI}^{(\mathbf{IV})}$	1,09	1,05	1,06	1,11	1,10	1,06	1,09	1,08	1,07	1,09	1,08	1,08	1,08	1,09	1,09	1,07	1,10	1,09
$\mathbf{Al}^{(\mathrm{VI})}$	0,16	0,19	0,16	0,10	60'0	0,14	0,14	0.13	0,12	0.09	0.18	0,16	0,12	0,16	0,07	0,19	0,14	0,10
رز	,	ı	ı	1	1		1	1	ı	,	1	ı	1	1	,	'	,	1
$\mathbf{M}_{\mathbf{g}}$	1,46	1,46	1,50	1,54	1,53	1,51	1,47	1,56	1,54	1,60	1,41	1,53	1,58	1,51	1,55	1,46	1,49	1,55
${ m Fe}^{2+}$	1,06	1,02	1,03	1,01	1,01	1,02	1,14	1,04	1,08	1,01	1,05	0.99	1,05	1,00	1,02	0,97	1,07	1,0
Fе ³⁺ (Сумма)	_	0.08	0,04	0.09	0,11	0,04	000	0,01	0,03	0,07	0.07	0.03	0,05	0,05	0,12	0.09	0,00	0.0
$\mathrm{Fe}^{3+}(\mathrm{T})$	_	0,00	000	0.00	0,00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	000	0,00	0.00	0.00	0.00
$\mathrm{Fe}^{3+}(\mathrm{M})$		0.08	0,04	0.09	0,11	0,04	0,00	0,01	0,03	0,07	0,07	0,03	0.05	0,05	0,12	0,09	0,00	0,0
Mn	0,06	0,04	90.0	0.06	90.0	0,06	0.05	0.05	0.05	0.05	0.05	0.05	0,04	0,04	0,06	0,04	0.06	0.0
Ca	00.00	0,01	0,01	0.00	0,01	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	000	0,00	0.00	0.00	0.0
Na	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,0
K	0,94	0,89	0,91	0,94	0,92	0,94	0,93	0,93	0,91	0,92	0,93	0,93	0,92	96'0	0,94	0,93	0,92	0,0
$\mathbf{R}\mathbf{b}$	0.00	0,01	00.00	0,01	00.00	0,00	00.00	0.00	0,01	0.00	0.00	00.00	0,01	00.00	0,01	0,01	000	0.0
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01
НО	1,55	1,57	1.50	1,50	1,52	1,52	1,57	1,46	1,48	1,43	1,51	1,45	1,50	1,48	1,50	1,51	1,51	1.5
ഥ	0,45	0,42	0.50	0.50	0,47	0,48	0,43	0.54	0.52	0.57	0,49	0.55	0.50	0,52	0,50	0,49	0,49	0,4
C	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00
f	0,57	0,57	0,56	0.56	0.57	0.56	0.58	0.54	0.56	0.55	0 20	740	0.55	0.55	75.0	950	950	0.56
,				7 - 7				ر د د	0,0	ر رورو	, C, C	, t		ر درور	ر رون رون	0,0	0,0	

Табл. 5.7. Продолжение.

Массив	ссив							Be B	Белокурихинский В строите (2 ферс)	<u>хински</u>	Ä							
06p.								10	Г-8.	77 mass	4)							
SiO_2	36,4	36,1	36,1	36,2	36.7	36,5	35,8	36,3	36,1	36,0	36,0	35,9	36,1	36,2	35,8	36,0	36,0	36,3
TiO_2	2,80	2,77	2,87	2,84	2,82	2,93	2,63	2,74	2,89	2,89	2,98	3,07	3,08	3,12	3,06	2,94	3,04	2,76
Al_2O_3	19,4	19,7	19,6	19,2	19,5	19,5	19,2	18,6	19,5	19,5	19,7	19,2	19,6	19,3	19,3	19,5	18,8	19,1
$\mathrm{Cr}_2\mathrm{O}_3$	1	ı	ı	1				ı	ı	ı	ı	ı		1		ı		ı
MgO	6,13	5,90	6,05	6,01	5,91	6,14	5,94	6,24	5,92	5,94	5,97	5,94	5,76	5,79	5,55	5,87	6,01	6,27
FeO	22,2	22,7	22,5	22,4	22,4	22,0	22,7	22,6	22,9	22,4	22,5	22,3	22,5	22,3	22,7	22,8	22,9	22,5
MnO	0,46	0,46	0.50	0,49	0,49	0,48	0,49	0,46	0,51	0,46	0,49	0,45	0,49	0,52	0,52	0,46	0,40	0,49
CaO	н.п.о.	н.п.о.	Н.П.О.	Н.П.О.	н.п.о.	н.п.о.	0,03	0,02	Н.П.О.	0,08	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03
Na_2O	0,04	0,04	н.п.о.	0,04	0,04	н.п.о.	0,04	0,05	0,07	0,04	0,08	н.п.о.	0,05	90,0	0,08	Н.П.О.	н.п.о.	0,03
K_2O	9,83	6,66	9,95	9,93	9,82	9,95	9,78	9,65	6,66	9,49	9,84	9,85	9,86	9,92	9,91	9,86	6,66	9,76
${ m Rb}_2{ m O}$	0,10	0,08	0,14	Н.П.О.	0,10	н.п.о.	0,08	0,13	0,0	н.п.о.	0,08	н.п.о.	0,15	0,10	н.п.о.	0,12	0,11	0,12
$\overline{\mathrm{BaO}}$	н.п.о.	н.п.о.	Н.П.О.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	Н.П.О.	н.п.о.	н.п.о.
Ţ	0,63	0,71	0,55	0,54	0,47	0,54	0,62	0,58	0,55	0,68	0,42	0,42	0,63	0,43	0,47	0,65	0,62	0,56
CI	Н.П.О.	Н.П.О.	0,02	Н.П.О.	Н.П.О.	0,02	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	Н.П.О.	0,03	Н.П.О.	Н.П.О.	Н.П.О.
Сумма	94,0	94,4	94,2		94,2	94,1	93,4	93,5	94,2	93,5	94,0	93,3	94.3	93,7	93,5	94,2	93,9	94,0
Формульные	единиць	л. Расчёт	на 11	атомов (моп э) С	ощью М	ICA+[Y]	$\langle avuz, 2 \rangle$	0031).									
Si	2,75	2,72	2,73	2,74	2,76	2,75	2,73	2,76	2,73	2,73	2,72	2,73	2,73	2,74	2,73	2,72	2,74	2,75
Ë	0,16	0,16	0,16	0,16	0,16	0,17	0,15	0,16	0,16	0,17	0,17	0,18	0,18	0,18	0,18	0,17	0,17	0,16
$\mathbf{Al}^{(\mathbf{IV})}_{(\mathbf{II})}$	1,25	1,28	1,27	1,26	1,24	1,25	1,27	1,24	1,28	1,27	1,28	1,27	1,27	1,26	1,27	1,28	1,26	1,25
$\mathbf{Al}^{(VI)}$	0,47	0,48	0,47	0,46	0,49	0,48	0,46	0,43	0,46	0,47	0,47	0,46	0,47	0,46	0,46	0,46	0,42	0,45
Ċ	1	ı	ı	ı				ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
Mg	0,69	0,66	0,68	0,68	0,66	0,69	0,68	0,71	0,67	0,67	0,67	0,67	0,65	0,65	0,63	99,0	0,68	0,71
${ m Fe}^{2+}$	1,14	1,18	1,19	1,17	1,12	1,11	1,22	1,23	1,25	1,20	1,20	1,20	1,18	1,15	1,20	1,24	1,26	1,20
Fe ²⁺ (Cymma)	0,26	0.25	0,24	0.26	0,28	0,27	0.23	0,22	0,20	0,22	0,22	0,22	0.23	0,26	0,24	0,20	0,20	0,22
$\mathbf{Fe}^{T}(\mathbf{T})$	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
$\mathbf{Fe}^{2+}(\mathbf{M})$	0,26	0.25	0,24	0.26	0.28	0.27	0.23	0.22	0.20	0.22	0,22	0.22	0.23	0.26	0,24	0.20	0.20	0.22
Mn	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
చ్చ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00 ?	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
\mathbf{z}	0.01	0,01	0,00	0,01	0,01	0,00	0,01	0.01	$0.01_{0.01}$	0,01	0,01	0,00	0,01	0.01	0.01	0,00	0.00	0,00
¥	0,95	0,96	0,96	0,96	0,94	0,96	0,95	0,94	0,93	0,92	0,95	96,0	0,95	96,0	0,96	0,95	0,97	0,94
Rb	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,01	0,01
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,85	1,83	1,87	1,87	1,89	1,87	1,85	1,86	1,87	1,84	1,90	1,90	1,85	1,90	1,88	1,84	1,85	1,87
Œ i	0,15	0.17	0.13	0,13	0,11	0.13	0.15	0.14	0.13	0.16	0,10	0,10	0.15	0,10	0,11	0,16	0.15	0,13
CI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
-	0,78	0,79	0,79	0,79	0,79	0,79 0,78 0,79	0,79	0,78	0,79	0,79	0,79	0,79	0,80	0,79	0,80	0,80	0,79	0,78
7	0,23	0,73	0,73	0,23	0,73	0,73	0,23	0,77	0,73	0,73	0,73	0,73	0,23	0,23	0,73	0,23	0,77	0,73

	a	;
	Ì	
	Į.	2
		3
		1
	ξ	2
	=	7
Ţ	_	:
Ļ	^	ì
	=	;
_	ç	3

	[-							P	Белокурихинский	хински	й							
Порода				020				Вt л(Вт леикогранит (3 фаза)	нит (э д) (1)		100					
Cop.	0.10	L 20	0.10	C/C7-1		0.20	0.10	0.10	L 20	000	220	0 30	57.7.	3 40	1 11	2 20	0.10	0.70
SIO 2	2,7c	30.7	57.5 12.0	50.9	23.7	0,75	2,7¢	2,7°C	30./ 0.50	30.3	30.0 07.0	33.8 27.0	4.7.0 20.0	5,7¢	3/.1	0,70	رد/ در در در	5/5 0/5
100_2	2,08	4,7	15.51	2,91	2,70	7,07	06,7	17,7	40.7	7.80	2,//	2,73	2,03	2,30	14,7	15.7	7,40	7,40
$Al_2 O_3$	18.0	17.3	18,0	19.1	1./.1	18,9	17.8	18.8	19,0	19,9	19.6	19.4	19.7	18.7	19.7	19.7	19.3	19,4
$\operatorname{Cr}_2 O_3$,	1	,	,	1	,	1	,	,		1	1		1	1	1	ı	1
$M_{\mathbf{g}O}$	5,82	5,55	5,77	5,46	5,27	5,47	5,33	5,50	5,14	4,68	4,99	4,71	5,55	5,73	4,97	5.13	5,34	5,38
FeO	22,5	22,5	22,4	20,6	23.5	21,7	22.8	22,4	22,7	22,7	22,6	22,4	22,1	22,2	22,2	21.3	20,8	20,8
MnO	1,28	1.28	1,19	0,98	0.93	1,19	1,28	1,13	1,21	1,32	1,43	1,40	1,00	1,03	1,20	1,22	1,11	1,19
CaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,10	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,03	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
$\mathrm{Na}_2\mathrm{O}$	0,07	0,00	0,06	0,11	0,08	0,08	0,11	Н.П.О.	н.п.о.	0,10	0.08	0,07	н.п.о.	Н.П.О.	0,04	н.п.о.	0.03	90,0
$ m K_2O$	9,63	9,84	9,73	9.85	9,44	9.90	9,78	9,88	9,91	6,87	9,92	9,84	6,67	9,92	9,90	9,71	9,94	9,79
$ m Rb_2O$	0,19	0,14	0,32	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,32	н.п.о.	0,16	н.п.о.	н.п.о.	0,16	0,24	0,22	0.24	0.32	0,28
\mathbf{BaO}	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
H	1,95	1,86	2,16	1,95	2,05	1,89	2,01	1,15	1,32	0,98	1,11	1,27	0,94	1,02	0,67	0,88	1,25	1,11
Cl	0,02	0,05	н.п.о.	0,03	0,03	н.п.о.	0,02	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.	Н.П.О.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Сумма	97,4	96,2	97,3	0,96	95,2	97,0	97,5	94,7	94,5	94,8	95,1	93.8	94,0	94,2	93,8	93,7	94,3	94,2
Формульные единицы. Расчёт на	е едини	щы. Рас	чёт на 1	1 атомов		О (с помощьк	o MICA+	⊦ [Yavuz,	_									
Si	2,82	2.83	2,84	2,81	2.80	2.80	2,83	2,82	2,79	2,75	2,76	2,75	2,82	2,84	2,81	2,85	2,85	2,84
Ï	0,15	0,16	0,13	0,17	0,16	0,15	0,17	0,13	0,15	0,16	0,15	0,16	0,12	0,14	0,14	0,14	0.14	0,14
$\mathbf{AI^{(IV)}}$	1,18	1,17	1,16	1,19	1,20	1,20	1,17	1,19	1,21	1,25	1,24	1,25	1,18	1,16	1,19	1,16	1,15	1,16
$\mathbf{A}\mathbf{I}^{(\mathrm{VI})}$	0,43	0,40	0,45	0.52	0,38	0,49	0,42	0,49	0,49	0,52	0.50	0.50	0,53	0,47	0,52	0.55	0.56	0.56
Ç	,	1	,	,	,		,	,	•	,	,	1	,	1	•	•	1	•
Mg	99,0	0,64	99,0	0,62	0,62	0,62	09.0	0,62	0,58	0,53	0,56	0.54	0,63	0,65	0,56	0.58	09.0	09'0
Fe^{2+}	1,14	1,14	1,07	0,86	1,31	0,98	1,13	1,03	1,09	1,09	1,08	1,10	0,96	1,00	0,96	0,84	0,76	0,78
$\mathrm{Fe}^{3+}_{\mathrm{(Cymma)}}$	0;30	0,31	0,36	0,45	0,23	0,40	0,33	0,39	0,35	0,34	0,35	0,34	0,44	0,41	0,45	0.51	0.55	0.53
$\mathrm{Fe}^{\mathrm{3+}}(\mathrm{T})$	00.00	0.00	00.00	0,00	0.00	0.00	0.00	0,00	000	0,00	0,00	0.00	0,00	00.00	0,00	0.00	0.00	0.00
$\mathrm{Fe}^{3+}(\mathbf{M})$	0,30	0,31	0,36	0,45	0,23	0,40	0,33	0,39	0,35	0,34	0,35	0,34	4,0	0,41	0,45	0,51	0,55	0,53
Mn	0.08	0.08	0.08	0,06	0.06	0.08	0.08	0,07	0,08	0,09	0,09	0.09	0,06	0,07	0.08	0.08	0,07	80.0
Ca	000	0,00	0.00	0,00	0.01	00.00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0.00	0.00	0.00	000
Na	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,00	0,00	0,02	0,01	0,01	0,00	0,00	0,01	0.00	0,00	0,01
K	0,93	0,97	0,95	0,96	0,94	0.96	0,95	0,95	0,96	0,95	0,95	96'0	0,93	96'0	0,96	0.94	0.95	0,94
$\mathbb{R}^{\mathbf{b}}$	0,01	0,01	0,02	0.00	0.00	0.00	000	0,02	0,00	0,01	0,00	0.00	0,01	0,01	0,01	0,01	0,02	0,01
Ba	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
НО	1,53	1,54	1,48	1,53	1,49	1,55	1.51	1,73	1,68	1,77	1,74	1,69	1,78	1,76	1,84	1,79	1,70	1,74
	0,47	0,45	0.52	0,47	0.51	0,45	0,48	0,28	0,32	0,23	0,27	0,31	0,23	0,25	0,16	0.21	0:30	0,26
Cl	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
f	0,79	0,80	0,80	0,79	0,82	0,80	0,81	0,80	0,81	0.83	0,82	0.83	0,80	0,79	0.82	0,81	0,80	0,79
1	0,22	0,21	0,22	0,23	0,21	0,23	0,21	0,22	0,23	0,24	0,23	0,24	0,23	0,22	0,23	0,23	0,23	0,23

Табл. 5.7. Окончание.

IVIACCIIB			DE	JION'S DE	Белоку рихинскии	IIII		
Порода			Вt ле	лейкогранит	нит (3	фаза)		
Обр.				L-	□-8/3			
SiO_2	37.3	37.3	36.8	37.1	36,7	37.1	36.5	36.9
TiO_2	2,4	2,49	2,74	2.58	2,48	2,43	2,64	2,40
Ab_0	19.6	19.0	20,1	19,3	19,1	19,1	19.7	19,3
Cr_2O_3	'	ı	ı	ı	ı	ı	ı	ı
Mg0	5,53	5.32	4.93	5.27	4.88	5,14	4,76	5.07
FeO	21.1	21.4	21.2	20.9	21.5	20.8	22.5	21.9
MnO	1,25	1,19	1,08	1,16	1,32	1,25	1,36	1,25
CaO	н.п.о.	0.02	н.п.о.	0.05	н.п.о.	н.п.о.	н.п.о.	н.п.о.
Na_2O	0,04	0,03	0,07	0,04	0,05	0,06	н.п.о.	0,03
K20	9.76	9.74	9.95	9.57	9.84	9.83	9.82	9.82
Rb_2O	0,37	0,17	0,14	0,17	0,08	0,37	0,13	0,23
BaO	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.
压	1,18	0,94	0,75	0,84	1,21	1,16	0,67	0,74
IJ	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	н.п.о.	0,02	н.п.о.
Сумма	94.6	93.6	93.7	93.0	93.2	93.2	94.1	93.7
Формульны	e		Расчёт на	11 aron	atomob O (с помог	помощью МІ	ICA+
S		2.83	2.78	2.82	2.81	2.83	2.77	
Ï	0.14	0.14	0.16	0.15	0.14	0.14	0.15	0.14
$\mathbf{A}\mathbf{I}^{(\mathbf{IV})}$	1,20	1,17	1,22	1,18	1,19	1,17	1,23	1,19
$\mathbf{Al}^{(\mathrm{VI})}$	0.54	0,53	0.57	0.55	0,53	0,55	0.52	0,53
Ç	,	ı	ı	ı	ı	ı	ı	ı
Mg	0,62	0,60	0,56	0,60	0,56	0,59	0,54	0,57
${ m Fe}^{2+}$	0.00	06.0	0,87	0,86	0,91	0,81	1,07	0.96
Fе ³⁺ (Сумма)	0,43	0,46	0,47	0,47	0,47	0,52	0,36	0. 4
$\mathrm{Fe}^{3+}(\mathrm{T})$	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
$\mathrm{Fe}^{3+}(\mathrm{M})$	0,43	0,46	0,47	0,47	0,47	0,52	0,36	0,44
Mn	0.08	0.08	0.07	0.08	0.09	0,08	0.09	0.08
Ca	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
Na	0,01	0,00	0,01	0,01	0,01	0,01	0,00	0,00
K	0,94	0,94	0,96	0,93	0,96	0,96	0,95	0,95
Rb	0,02	0,01	0.01	0.01	0.00	0,02	0,01	0.01
Ba	0,00	0,00	0,00	0,0	0,00	0,00	0,00	0,00
Н0	1,72	1,78	1,82	1,80	1,71	1,72	1,84	1,82
Ŀ	0.28	0,23	0.18	0.20	0,29	0,28	0,16	0.18
Cl	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00
f	0.79	0.80	0.81	0.80	0.82	0.80	0.83	0.81
7	0.23	0.23	0.24	0.23	0.23	0.23	0.24	0.23

l | 0,23 | 0,24 | 0,23 | 0,23 | 0,23 | 0,23 | 0,23 | 0,23 | 0,23 | 0,24 | 0,24 | 0,

Табл. 5.8. Состав светлых слюд из пород пермо-триасовых интрузивных серий Алтая.

				•	and provent					
Порода				Ms J	тейкогря	Мѕ лейкогранит (3 фаза)	na3a)			
Образец					Γ -2	Γ -22/1				
${ m SiO}_2$	47,8	47,3	48,7	48,2	47,9	48,6	48,0	48,0	47,3	47,2
TiO_2	0,20	0,51	0,38	0,52	0,53	0,39	0,44	0,42	0,68	0,49
Al_2O_3	33,05	34,04	34,36	34,13	34,49	34,95	33,12	34,25	34,07	34,01
MgO	0,79	0,74	0,89	0,78	0,85	0,78	0,83	0,67	0,70	0,70
FeO	4,45	3,81	4,07	4,01	3,89	3,79	4,17	3,85	3,58	4,09
MnO	0,28	0,16	0,24	0,21	0,18	0,21	0,25	0,19	0,17	0,20
Na_2O	0,47	0,62	0,58	0,52	0,60	0,60	0,59	0,49	0,56	0,49
K_2O	9,94	9,92	9,80	9,93	9,64	10,09	9,85	10,03	88'6	9,74
Rb ₂ O	0,19	0,16	0,17	0,07	0,09	90,0	0,13	0,12	0,04	0,11
BaO	0,01	0,00	0,00	0,01	0,03	0,00	0,01	0,00	0,00	0,04
Œ	0,64	0,92	0,59	0,52	0,72	0,47	0,53	0,53	0,76	0,45
Сумма	100,6	100,8	102,6	101,7	101,6	102,8	100,7	101,3	100,5	100,3
бормульн	Формульные единицы. Расчёт на 11	цы. Расчё		атомов О (с помощью МІСА+ [Yavuz, 2003]	(с помог	цью MIC	A+ [Yav	uz, 2003]).	
\mathbf{Si}	3,161	3,116	3,143	3,136	3,117	3,125	3,16	3,133	3,118	3,115
Ţi	0,01	0,025	0,018	0,025	0,026	0,019	0,022	0,021	0,034	0,024
$\mathbf{AI}^{(\mathbf{IV})}$	0,839	0,884	0,857	0,864	0,883	0,875	0,84	0,867	0,882	0,885
$\mathbf{AI}^{(\mathbf{VI})}$	1,737	1,76	1,754	1,753	1,763	1,772	1,731	1,77	1,764	1,762
Mg	0,078	0,073	0,086	0,076	0,082	0,075	0,081	0,065	0,069	0,069
Fe^{2+}	0,246	0,21	0,219	0,218	0,212	0,204	0,23	0,21	0,197	0,226
Mn	0,016	0,009	0,013	0,012	0,01	0,011	0,014	0,011	0,009	0,011
Na	0,06	0,079	0,073	990,0	0,076	0,075	0,075	0,062	0,072	0,063
K	0,839	0,834	0,806	0,824	0,801	0,827	0,828	0,836	0,83	0,82
Rb	0,008	0,007	0,007	0,003	0,004	0,002	0,006	0,005	0,002	0,005
Ba	0	0	0	0	0,001	0	0	0	0	0,001
НО	1,866	1,808	1,88	1,893	1,852	1,904	1,89	1,889	1,839	1,905
F	0,134	0,192	0,12	0,107	0,148	0,096	0,11	0,11	0,158	0,094
f	0,85	0,84	0,82	0,84	0,82	0,83	0,83	0,85	0,84	0,85
7	0.384	0.396	0.390	0.392	0.396	0.396	0.385	0.395	0.398	0 396

Табл. 5.8. Окончание.

					DCIONS	DCIONYPHANHUNN	MIN				
Порода		Мs лейк	Мѕ лейкогранит (3 фаза)	3 ф аза)			Bt J	Вt лейкогранит	нит (3 ф	(3 фаза)	
Образец			Γ-22/1					Γ-2	Γ-25/3		
SiO_2	48,69	48,70	48,29	48,38	47,42	46,81	48,74	47,22	47,99	47,30	49,03
TiO_2	0,64	0,18	0,26	0,51	0,40	0,87	0,62	0,85	0,70	0,69	0,76
Al_2O_3	34,83	34,16	34,14	34,81	33,78	30,70	30,56	28,78	29,33	29,18	29,75
MgO	0,79	0,76	0,84	0,72	0,74	1,43	2,06	1,84	1,89	1,76	2,09
FeO	3,64	3,86	4,20	3,74	3,92	4,97	5,78	5,69	5,77	5,51	5,54
MnO	0,17	0,24	0,26	0,15	0,19	0,15	0,21	0,20	0,20	0,17	0,19
Na_2O	0,58	0,44	0,50	0,58	0,53	0,38	0,38	0,31	0;30	0,25	0,26
$ m K_2O$	9,70	10,22	10,25	9,82	9,50	6,77	10,33	68'6	9,73	9,59	10,39
Rb_2O	0,05	0,18	0,02	0,11	0,11	0,07	0,04	0,10	0,12	0,00	0,08
BaO	0,00	0,00	0,00	0,00	0,01	0,04	0,01	0,00	0,04	0,02	0,00
Ŀ	0,49	0,46	0,74	0,54	0,48	1,43	1,40	1,31	1,36	1,13	1,41
Сумма 102,38 102,01 102,19	102,38	102,01	102,19	102,14	76,66	99,05	102,55	98,67	99,85	98,13	101,91
Формуль	ные едини	цы. Расчё	т на 11 ат	атомов О (с помощью МІСА+ [Yavuz,	помощ:	ы МІС	4+ [Yavu	[z, 2003]).		
Si	3,131	3,158	3,137	3,126	3,134	3,172	3,201	3,227	3,234	3,232	3,237
Ţ	0,031	0,009	0,013	0,025	0,02	0,044	0,031	0,044	0,035	0,035	0,038
$\mathbf{Al}^{(\mathbf{IV})}$	0,869	0,842	0,863	0,874	0,866	0,828	0,799	0,773	0,766	0,768	0,763
$\mathbf{Al}^{(ext{VI})}$	1,771	1,769	1,751	1,776	1,766	1,625	1,566	1,546	1,563	1,582	1,552
Mg											
Fe^{2+}	0,076	0,073	0,081	0,069	0,073	0,144	0,202	0,187	0,19	0,179	0,206
Mn	0,196	0,209	0,228	0,202	0,217	0,282	0,317	0,325	0,325	0,315	0,306
Na	0,009	0,013	0,014	0,008	0,011	600,0	0,012	0,012	0,011	0,01	0,011
K	0,072	0,055	0,063	0,073	0,068	0,05	0,048	0,041	0,039	0,033	0,033
Rb	0,796	0,845	0,849	0,809	0,801	0,845	0,865	0,862	0,836	0,836	0,875
Ba	0,002	0,008	0,001	0,005	0,005	0,003	0,002	0,004	0,005	0	0,003
НО	0	0	0	0	0	0,001	0	0	0,001	0,001	0
Ŀ	1,899	1,906	1,847	1,89	1,898	1,693	1,708	1,716	1,709	1,756	1,704
f	0,1	0,094	0,152	0,11	0,1	0,307	0,291	0,283	0,29	0,244	0,295
1	0,82	0,84	0,83	0,84	0,84	82'0	0,74	0,76	0,75	0,76	0,73
Si	0,396	0,391	0,390	0,397	0,393	0,366	0,351	0,345	0,345	0,348	0,344

Примечание. Данные электронно-зондового анализа (мас. %). н.п.о. - ниже предела обнаружения, прочерк – не определялся.