ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ГЕОЛОГИИ И МИНЕРАЛОГИИ им. В.С. СОБОЛЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

САМДАНОВ Дмитрий Александрович

ГЕОМОРФОЛОГИЧЕСКИЕ И МИНЕРАЛОГИЧЕСКИЕ АСПЕКТЫ ПРОГНОЗИРОВАНИЯ КОРЕННОЙ АЛМАЗОНОСНОСТИ МУНО-МАРХИНСКОГО МЕЖДУРЕЧЬЯ (ЯКУТИЯ)

Специальность 25.00.11 – геология, поиски и разведка твердых полезных ископаемых, минерагения

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель:

д.г.-м.н. Афанасьев В.П.

НОВОСИБИРСК – 2016

оглавление

ВВЕДЕНИЕ	3
Глава 1. ИСТОРИЯ И СОВРЕМЕННОЕ СОСТОЯНИЕ ПОИСКОВЬ	IX РАБОТ .10
1.1 Геологическое строение и история формирования ореолов и	индикаторных
минералов и алмазов Муно-Мархинского междуречья	17
1.2 Поисковые обстановки Муно-Мархинского междуречья	21
Глава 2. ГЕОМОРФОЛОГИЧЕСКИЕ ПОДХОДЫ К ПРОГНОЗ	ИРОВАНИЮ
КОРЕННОЙ АЛМАЗОНОСНОСТИ	30
2.1 Методика геоморфологических исследований	
2.2 Связь рельефа и характера ореолов рассеяния индикаторных ми	нералов43
Глава 3. ПРОГНОЗ КИМБЕРЛИТОВЫХ ПОЛЕЙ В БАССЕЙНАХ	РЕК МУНО-
МАРХИНСКОГО МЕЖДУРЕЧЬЯ	
3.1 Определение парагенетической принадлежности гранатов	53
3.2 База данных «Гранаты Муно-Мархинского междуречья»	61
3.3 Минералогическое картирование Муно-Мархинского междуреч	ья65
3.4 Минералогическое районирование Муно-Мархинской площа,	ци на основе
парагенетического анализа гранатов	81
ЗАКЛЮЧЕНИЕ	98
СЛОВАРЬ ТЕРМИНОВ	101
СПИСОК ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЕ 1	112
ПРИЛОЖЕНИЕ 2	
ПРИЛОЖЕНИЕ 3	
ПРИЛОЖЕНИЕ 4	
ПРИЛОЖЕНИЕ 5	
ПРИЛОЖЕНИЕ 6	140

ВВЕДЕНИЕ

Актуальность исследования

В 50-х годах прошлого века в Западной Якутии были открыты несколько среднепалеозойских алмазоносных кимберлитовых полей – Далдынское и Алакитское в бассейне реки Марха и Верхнемунское в бассейне реки Муна. За последние 60 лет на всей остальной территории Муно-Мархинского междуречья периодически велись поиски коренных месторождений алмазов, но новых кимберлитовых полей выявлено не было. Также было установлено, что данная территория характеризуется двумя типами поисковых обстановок. Тип первый: кимберлитовые тела выходят на дневную поверхность; существовавшие древние промежуточные коллекторы ИМК и алмазов размыты, а их минералы сброшены в современную гидросеть. В этом случае в аллювии смешиваются ИМК прямого сноса с кимберлитов (при наличии кимберлитов) и ИМК, переотложенные из более древних коллекторов (минералы имеют признаки гипергенных изменений в среднепалеозойской латеритной коре выветривания и повышенный механический износ). Тип второй: кимберлитовые тела погребены под терригенными отложениями, вмещающими ореолы индикаторных минералов кимберлитов. Для этого типа поисковой обстановки характерно наличие водораздельных юрских отложений, являющихся коллекторами ИМК, под которыми могут быть погребены кимберлитовые тела [Афанасьев В.П., 1989; Афанасьев и др., 2001; Афанасьев и др., 2010].

В аллювии рек Марха и Муна, в верхнем течении которых имеются алмазоносные кимберлитовые поля, присутствуют ИМК как прямого сноса, так и переотложенные. В аллювии других крупных рек Муно-Мархинского междуречья (Тюнг, Хання и другие) пока обнаружены только переотложенные ИМК и алмазы. При отсутствии ИМК прямого сноса крайне сложно прогнозировать как само наличие, так и местоположение коренных источников ИМК, поскольку в результате неоднократного переотложения ИМК потеряли прямую связь со своими источниками.

Главным контролирующим фактором формирования современных потоков рассеяния кимберлитовых тел является активность современных эрозионных процессов, которая выражена в расчлененности рельефа. Активность эрозии определяет форму ореолов и дальность транспортировки минералов при современном сносе. В случае низкой активности эрозии кимберлитовое тело будет слабо будут разрушаться И, как следствие, формироваться малопротяженные, слабоконтрастные потоки рассеяния, содержащие ИМК прямого сноса. При несоответствующем данной ситуации подходе к минералогическим поискам – ИМК прямого сноса могут быть не обнаружены. В актуальными становятся исследование геоморфологической СВЯЗИ ЭТИМ С ситуации на данной территории, с точки зрения активности современной эрозии, а также решение вопроса о более локальном прогнозе коренных источников привлечения данных по химизму ИМК для алмазов путем выявления неоднородности минералогического поля.

Цель и задачи работы

Целью работы является развитие геоморфологических и минералогических критериев прогнозирования коренной алмазоносности Муно-Мархинского междуречья.

Для достижения цели решались следующие задачи:

1. Разработка и применение методики геоморфологического районирования для оценки поисковой обстановки на кимберлиты и потенциальной результативности опробования на ИМК и алмазы;

2. Изучение ИМК из шлиховых проб аллювия Муно-Мархинского междуречья;

3. Создание базы данных по химическому составу гранатов Муно-Мархинского междуречья;

4. Совершенствование методики минералогического картирования и районирования центральной части ЯАП для идентификации перспективных на

кимберлиты площадей и локализации местоположения коренных источников алмазов.

Фактический материал и личный вклад автора

В основу работы положены:

• Цифровая модель рельефа (ЦМР) центральной части Якутской алмазоносной провинции (ЯАП) с пространственным разрешением 200 м, построенная по векторной карте масштаба 1:1000000. ЦМР является основой для новой методики построения карт горизонтальной расчлененности рельефа для оценки поисковых обстановок на кимберлиты, разработанной автором совместно с сотрудниками Лаборатории геоинформационных технологий и дистанционного зондирования ИГМ СО РАН И.Д. Зольниковым и Н.В. Глушковой.

• Данные микрозондовых анализов гранатов из шлиховых проб аллювия Муно-Мархинского междуречья Лаборатории минералов высоких давлений и алмазных месторождений ИГМ СО РАН за многолетний период (всего 13721 анализ из 120 проб) и гранатов из кимберлитовых трубок Поисковая и Новинка Верхнемунского поля. Часть анализов гранатов из шлиховых проб (686 анализов) получены лично автором. Данные микрозодновых анализов после обработки автором были собраны в единую базу данных «Гранаты Муно-Мархинского междуречья», зарегистрированную в Федеральной службе по интеллектуальной База собственности. данных является основой для прогноза коренной алмазоносности Муно-Мархинского междуречья.

Методы исследования

1. Метод построения плотностных сеток. Этот метод позволяет считать суммы каких-либо объектов (в данном случае сумма линейно вытянутых групп пикселей, которые соответствуют максимальным перегибам рельефа, т.е. уступам) в скользящем окне определенного радиуса;

2. Отбор индикаторных минералов кимберлитов с помощью бинокулярного микроскопа МБС-10 из шлиховых проб и их физиографическое изучение;

3. Микрорентгеноспектральный анализ. Изучение элементного состава гранатов проводилось на приборе CABEMAX-MICRO;

4. Парагенетический анализ гранатов пироп-альмандинового ряда по химическому составу. Метод позволяет определять парагенетическую принадлежность любого зерна граната из шлиховых проб. Данным методом была определена парагенетическая принадлежность каждого из 13721 зерна граната из проб, а также из кимберлитовых трубок;

5. Статистический метод. В работе использовался метод кластерного анализа для группировки проб по схожими наборам значений содержаний парагенетических типов гранатов, а также метод сравнительного анализа выборок – критерий Стьюдента, на основе которого сравнивались выборки гранатов из проб по бассейнам рек.

Научная новизна и практическая значимость

Впервые разработана методика оценки степени расчлененности рельефа на основе анализа цифровых моделей рельефа методом плотностных сеток. Данная методика позволяет выявлять области благоприятные для высокой эффективности применения шлихо-минералогического опробования при поисковых работах на алмазы. Применение полученной методики для Муно-Мархинского междуречья позволило скорректировать участки поисковых работ полевых отрядов ИГМ СО РАН. Эта корректировка способствовала выявлению совершенно нового для данной территории ореола индикаторных минералов кимберлитов в бассейне реки Мархара. Также впервые был применен метод парагенетического анализа для гранатов из шлиховых проб территории Муно-Мархинского междуречья для выявления неоднородности минералогического поля. На его основе было проведено минералогическое районирование, позволившее выделить площади, перспективные на обнаружение новых кимберлитовых полей. Таким образом, сочетание геоморфологического подхода с точки зрения продуктивного шлихового опробования и через него эффективности поисков, а также усовершенствованной методики минералогического картирования И

районирования с использованием парагенетического анализа гранатов позволило локализовать перспективные алмазоносные площади. Такое сочетание является наиболее информативным для Муно-Мархинского междуречья и применимо для любых алмазоносных площадей с аналогичными условиями поисков.

Основные защищаемые положения

1. Муно-Мархинское междуречье дифференцировано по степени горизонтальной расчлененности рельефа, определяющей активность современных эрозионных процессов. В бассейне реки Муна, с сильно расчлененным рельефом и активной эрозией поисковая обстановка по выявлению кимберлитов является более благоприятной по сравнению с Хання-Тюнгским междуречьем, где активность эрозионных процессов низкая.

Муно-Мархинского 2. Среди гранатов междуречья выделены шесть парагенетических типов: глубинных лерцолитов, малоглубинных лерцолитов, эклогитов, мегакристовой ассоциации, гарцбургит-дунитов графитовой фации глубинности И гарцбургит-дунитов алмазной фации глубинности. Неоднородность их распределения использовать ПО площади позволяет распределение парагенетических типов в качестве критерия идентификации механических ореолов рассеяния кимберлитов.

3. По распределению гранатов различных парагенетических типов В шлиховых пробах из аллювия на Муно-Мархинском междуречье выделено пять площадей, которых (Тюнгская, Ханнинская, Мархинская, четыре ИЗ Правобережная) перспективны на открытие новых кимберлитовых полей. Расположение неизвестных кимберлитовых полей, ответственных за ореолы Тюнгской и Ханнинской площадей, наиболее вероятно к северо-западу от них в Далдыно-Оленекской кимберлитоконтролирующей зоне разломов.

Апробация работы

По теме диссертации опубликовано 10 работ, в том числе 3 из них в рецензируемых журналах из списка ВАК.

Результаты работы были доложены и опубликованы в материалах и тезисах Международных и Всероссийских научных конференций и совещаний: XLVIII Международной научной студенческой конференции «Студент и научнотехнический прогресс» (Новосибирск, 2010); Пятой Сибирской международной конференции молодых ученых по наукам о Земле (Новосибирск, 2010); XLIX Международной научной студенческой конференции «Студент и научнотехнический прогресс». (Новосибирск, 2011); VII Всероссийском совещании по четвертичного периода «Квартер во всем его многообразии. изучению Фундаментальные проблемы, итоги изучения и основные направления дальнейших исследований» (Апатиты, 2011); XV Международном симпозиуме студентов и молодых ученых им. академика М.А. Усова «Проблемы геологии и освоение недр» (Томск, 2011); The 6th International Siberian Early Career GeoScientists Conference (Novosibirsk, 2012).

База данных «Гранаты Муно-Мархинского междуречья» была зарегистрирована в Федеральной службе по интеллектуальной собственности (Свидетельство о государственной регистрации базы данных № 2013621023 от 28.08.13), а также опубликована в официальном бюллетене ФИПС «Программы для ЭВМ. Базы данных. Топологии интегральных схем».

Структура и объем диссертации

Диссертация состоит из введения, 3 глав, заключения, словаря терминов, списка литературы и 6 приложений, общим объемом 141 страница. В работе содержится 40 рисунков и 11 таблиц. Список литературы состоит из 69 наименований.

Соответствие диссертации паспорту научной специальности

Диссертация соответствует разделу 4 (Прогнозирование, поиски, разведка и геолого-экономическая оценка месторождений) паспорта научной специальности 25.00.11.

Благодарности

Автор выражает искреннюю благодарность за помощь, внимание и поддержку научному руководителю д.г-м.н. В.П. Афанасьеву. За постоянную поддержку автор выражает свою признательность академику РАН Н.П. Похиленко. За неоценимую помощь и постоянное внимание при подготовке диссертации хочется поблагодарить д.г-м.н. И.Д. Зольникова, к.т.н. Н.В. Глушкову, к.г-м.н. Н.С. Тычкова. За ценные замечания при подготовке публикаций автор благодарен академику РАН Н.В. Соболеву. За ценные советы автор выражает признательность к.г.-м.н. В.В. Хлестову, к.г.-м.н. В.А. Минину, к.г.-м.н. М.А. Вавилову, к.г.-м.н. А.В. Головину, д.г.-м.н. А.В. Корсакову, д.г.-м.н. О.М. Туркиной, д.г.-м.н. А.В. Толстову, к.г.-м.н. Е.И. Николенко, к.г.-м.н. И.С. Бажану, Е.О. Егоровой.

Глава 1. ИСТОРИЯ И СОВРЕМЕННОЕ СОСТОЯНИЕ ПОИСКОВЫХ РАБОТ

Территория Муно-Мархинского междуречья располагается в центральной части Якутской алмазоносной провинции на западе Республики Саха (Якутия) (рис. 1-1). Поиск коренных месторождений алмазов на данной территории ведется с середины прошлого века. За это время было открыто несколько продуктивных кимберлитовых полей среднепалеозойского возраста – Далдынское, Алакитское (бассейн р. Марха) и Верхнемунское кимберлитовое поле (в бассейне р. Улах-Муна – правом притоке р. Муна). Однако, проводимые здесь работы последние 20 лет позволили установить, что данная территория перспективна на обнаружение новых алмазоносных кимберлитовых полей.

История поисковых работ на Муно-Мурхинском междуречье (Рис. 1-2) начинается с 1950-х годов. Тогда на двух площадях – в верхнем течении реки Муна (начальник партии А.А. Горбунов) и верхнем течении реки Тюнг (начальник партии В.И. Немец) в Западной Якутии, отстоящих друг от друга на расстояние 110-140 км, работали две стационарные партии с примерно одинаковым уровнем квалификации специалистов, материальным обеспечением (наличие обогатительной фабрики), использовавшими однотипную технологию и методику ведения поисковых работ. Но партия, работавшая на реке Улах-Муна (приток реки Муна) нашла продуктивное кимберлитовое поле (Верхнемунское поле), тогда как партия, работавшая на реке Тюнг, добыла лишь 110 алмазов (с использованием обогатительной фабрики) на одном участке (Алексеевский) и даже не выявила контрастных ореолов индикаторных минералов [Афанасьев и др., 2012].

В дальнейшем работы по опробованию бассейнов рек Тюнг, Хання и других рек данной территории проводились неоднократно, но значимых результатов получено не было.

В 1991-1992 годах по притоку реки Тюнга – Далдыкану и от его устья ниже по течению реки Тюнг работы проводил К. Ивлиев (Ботуобинская экспедиция).

Однако количество ИМК, преимущественно пикроильменитов, не превышало первых десятков на пробу, в основном меньше. Минералы характеризовались средней степенью окатанности, были корродированы в коре выветривания. Материал был недостаточный и крайне невыразительный для прогнозных построений, что снова не дало оснований для оптимизма. В 1993 году в составе ЯНИГП ЦНИГРИ (руководитель Н.Н. Зинчук) была

Рис. 1-1. Географическое положение Муно-Мархинского междуречья. ВМП – Верхнемунское кимберлитовое поле; ДП – Далдынское кимберлитовое поле.

создана межведомственная лаборатория, включающая сотрудников ОИГГиМ СО РАН, в которую входили В.П. Афанасьев и Н.П. Похиленко. Тогда же и было согласовано с руководством ЯНИГП ЦНИГРИ проведение полевых работ сезона 1993 года в верховьях реки Тюнг (выше устья реки Далдыкан) для получения общей, целостной картины по реке Тюнг.

Результаты этих работ вызвали удивление даже у их авторов. Несмотря на очень плохие условия опробования (весь сезон стояла высокая вода) все три маршрутные группы, работавшие самостоятельно по реке Тюнг и реке Арга-Тюнг, сумели в ряде точек наработать представительные количества ИМК, а в одной точке выше устья реки

Рис. 1-2. Гидрография Муно-Мархинского междуречья

Далдыкан были сняты с лотков 16 алмазов [фондовая литература ИГМ СО РАН]. Это было достигнуто за счет усовершенствованной технологии шлихового опробования, которая заключалась в опробовании путем подбора оптимальных микрофаций с предварительным опробованием 1 – 2 лотками и, в случае обнаружения ИМК, наработкой пробы до получения представительных количеств ИМК, невзирая на объем. Этим гарантировалось и обнаружение алмазов.

Этот результат вызвал вопросы по двум направлениям: 1 – каковы все же реальные перспективы данной территории; 2 – причины низкой результативности предшествующих работ. Первый вопрос разрабатывается до сих пор на фоне высокой общей оценки потенциала коренной алмазоносности, а по второму ответ был получен отчасти в следующий сезон 1994 года.

Поскольку сезон 1993 года был неблагоприятен по условиям опробования, в 1994 году было принято решение повторить маршрут по реке Тюнг, но начать выше по течению, чем в предыдущем маршруте; одна маршрутная пара была высажена в верховьях реки Хання, с тем, чтобы после отработки верховьев перейти через водораздел и по ручью Атырджах спуститься в реку Тюнг для основным составом отряда. Условия опробования были встречи с благоприятными благодаря низкой воде. Результаты опробования по реке Тюнг вновь были необычными. На большей части маршрута (практически до устья ручья Атырджах), несмотря на самый тщательный подбор микрофаций и материала для взятия шлиха, ИМК встречались в редких шлихах в количестве единичных знаков, а в большинстве проб тяжелая фракция отсутствовала вовсе, не было даже лимонита и рудной пыли, весь материал уходил с лотка. Первые ИМК, причем в ураганном количестве, а также алмазы, появились в устье ручья Атырджах. В связи с необычностью ситуации В.П. Афанасьевым и Н.П. Похиленко была проведена ревизия уже отработанной части реки Тюнг примерно на 5 км выше устья ручья Атырджах, а также вниз по реке Тюнг и вверх по течению ручья Атырджах. Шлихи по реке Тюнг выше устья ручья Атырджах оказались пустыми и подтвердили предыдущий результат. Вниз от Атырджаха ИМК регулярно встречались в шлиховых пробах стандартного объема (20 л) на расстоянии около 1,5-2,0 км [Афанасьев и др., 2001] и постепенно перестали улавливаться в связи с быстрым падением концентрации, далее снова шли пустые

шлихи. Русло Атырджаха от верховьев до устья было опробовано маршрутной парой, шедшей с Ханни; результаты опробования были отрицательными. Новое опробование вверх по Атырджаху через 500 м дало отрицательный результат; возвращение назад и продолжение опробования по принципу дихотомии со все более коротким шагом показало, что ИМК исчезают сразу примерно в 150 м выше от места максимального содержания. Таким образом, источник ИМК оказался локальным и с малым дальнодействием. Состояние ИМК (износ и коррозия) не позволили считать его кимберлитовым телом. Единственным вариантом объяснения было предположение о карстовой природе данного объекта, причем карст в данном случае развивался по разлому, судя по наличию в шлихах совершенно «свежих» гидротермальных минералов (ограненный кальцит, барит).

Таким образом, именно тогда была впервые установлена минерагеническая роль карста на данной территории [Афанасьев и др., 2001] и сформулированы рекомендации по поискам коренных источников. Рекомендация предусматривала тотальную минералогическую заверку аэромагнитных аномалий, в большинстве своем на данной территории связанных с карстом, в расчете на то, что могут быть найдены карстовые депрессии, непосредственно связанные с кимберлитовыми телами.

Обнаружение продуктивного карста и определение его минерагенической роли позволило отчасти разобраться в неуспехах предыдущих поисков в районе верховьев Тюнга, Ханни, Эекита. Здесь существовал юрский коллектор, связанный с развитием Вилюйской синеклизы, но впоследствии он был полностью денудирован, от него остались лишь реликты в карстовых депрессиях [Афанасьев и др., 2001]. Материал коллектора сносился в юго-восточном направлении к внутренним частям Вилюйской синеклизы, что подробно описано М.И. Плотниковой с соавторами [Плотникова и др., 1963]. Карст с его малым минералогическим дальнодействием на фоне совершенно «голой» территории создал сложную обстановку для опробования, т.к. значительная часть шлихов была пустой. Помимо прочего, это создавало негативный психологический фон,

когда после серии пустых шлихов у геолога формируется отрицательный стереотип в отношении данной территории и внимание к опробованию снижается. Негативную роль играла и формальная система опробования с определенным шагом и определенным объемом.

На сегодняшний день усилиями геологов Ботуобинской экспедиции АК «АЛРОСА» при участии работников ЯНИГП ЦНИГРИ и ИГМ СО РАН опробована огромная территория между руслами рек Муна и Марха. Обобщенный опыт этих работ показывает, что неудачи прежних работ были связаны, с одной стороны, с излишней формализацией производственного процесса, предписывающей определенный шаг и объем опробования и способствующей тиражированию негативных результатов опробования, с другой стороны – со сложностью и спецификой шлихоминералогической поисковой обстановки [Николенко, 2008].

Понятие шлихоминералогической поисковой обстановки» «тип стало Пол ключевым лля поисковых работ на коренные алмазы. шлихоминералогической поисковой обстановкой понимаются условия ведения поисков месторождений алмазов, их возможности и ограничения, потенциальная результативность, организация поисковых работ [Афанасьев и др., 2010]. Поскольку каждый алмазоносный район дифференцирован по геологическому строению, истории развития, и кроме того коренные алмазоносные породы могут иметь разный возраст, соответственно формируемые за их счет россыпи и ореолы индикаторных минералов будут иметь разную седиментологическую историю, то будут различаться и типы поисковых обстановок.

Для Сибирской платформы выделяются четыре типа поисковых обстановок [Афанасьев, 1989; Липатова, Афанасьев, 1986; Афанасьев, Борис, 1984; Хмельков, 2008].

Тип 1. Коренные источники выходят на дневную поверхность; промежуточные коллекторы кимберлитовых минералов отсутствуют.

Особенностями этого типа поисковой обстановки являются: 1 - трубки взрыва обнажены в современном эрозионном срезе; 2 - не существовали древние коллекторы индикаторных минералов; 3 - материал размыва трубок взрыва присутствует только в тех водотоках, которые их дренируют; 4 - распределение индикаторных минералов носит линейный характер.

Tun 2. Кимберлитовые выходят тела на дневную поверхность; существовавшие древние промежуточные коллекторы размыты. Основными чертами второго типа минералогической поисковой обстановки являются: 1 обнаженность кимберлитовых тел в современном рельефе; 2 - существование древних периодов денудации кимберлитовых тел, продуцировавших древние ореолы индикаторных минералов; 3 - уничтожение современными эрозионными процессами древних промежуточных коллекторов кимберлитовых минералов, соответствующих предыдущим эпохам денудации; 4 - наличие в шлиховых ореолах двух групп кимберлитовых минералов: продуктов прямого современного сноса и древних переотложенных.

Тип 3. Кимберлитовые тела погребены под терригенными отложениями, вмещающими ореолы индикаторных минералов кимберлитов. Основными чертами данного типа шлихоминералогической поисковой обстановки являются: 1 - кимберлитовые тела погребены под древними осадками, являющимися коллекторами ИМК: 2 существовали среднепалеозойские коллекторы кимберлитовых минералов, полностью размытые в процессе верхнепалеозойской денудации; 3 - в шлиховом материале присутствуют две группы минералов: прямого сноса с кимберлитовых тел (верхнепалеозойского) и переотложенных (из среднепалеозойских коллекторов); 4 - существуют погребенные первичные потоки рассеяния верхнепалеозойского и мезозойского возраста; 5 - гетерогенные и гетерохронные ореолы достаточно локальны и "привязаны" к своим кимберлитовым телам.

Тип 4. Разновозрастные шлиховые ореолы кимберлитовых минералов, формировавшиеся в прибрежно-морских условиях. Выделяются трансгрессивный и регрессивный подтипы. Для трансгрессивного характерно: 1 - максимальная степень механической обработки кимберлитовых минералов, включая алмаз, обусловливающая накопление абразивно устойчивых их разностей, главным образом алмаза и пиропа; 2 - глубокая сортировка по гранулометрии, приводящая к относительному накоплению зерен узкого гранулометрического диапазона; более тяжелые рудные минералы имеют меньшие средние размеры, чем пироп и алмаз, вследствие согласования по гидравлической крупности; 3 - возможность формирования высоких концентраций минералов, в том числе алмаза, за счет естественного шлихования. Для регрессивного типа характерно: 1 - смесь ИМК с различной степенью износа; 2 - подпитка формирующегося ореола из береговой линии «свежим» материалом размыва кимберлитов

Для того, чтобы понять, какие типы шлихоминералогической поисковой обстановки характерны для Муно-Мурхинского междуречья, необходимо разобраться в геологическом строении и истории развития данной территории

1.1 Геологическое строение и история формирования ореолов индикаторных минералов и алмазов Муно-Мархинского междуречья

Территория Муно-Мархинского междуречья располагается на сочленении трех крупных региональных структур Сибирской платформы – Анабарской антеклизы, Тунгусской синеклизы и Вилюйской синеклизы [Прокопьев и др., 2001; Штех, 1965; Хаин, 1979, Розен и др., 2006]. Вся область перекрыта фанерозойским осадочным чехлом Сибирской платформы, представленным кембрийской, ордовикской И юрской отложениями систем (рис. 1-3) [Геологическая карта..., 2007; Геологическая карта..., 1999]. Кембрийская система, которая обнажается на большей части территории, представлена доломитами, известняками, мергелями, алевролитами, аргиллитами, И распространена на всей территории. Однако в некоторых частях области она перекрыта более молодыми отложениями. На правобережье реки Марха, кембрийская ордовикской системой, представленной система перекрыта доломитами, известняками, мергелями и песчаниками. На востоке в

Рис. 1-3. Геологическая карта Муно-Мархинского междуречья [по Геологическая карта..., 2007, с дополнениями]

долинах рек Чимидикян и Тюнкян (левый и правый приток реки Тюнг соответственно) на породы кембрийской системы со стратиграфическим несогласием налегают нижнеюрские осадочные комплексы пород, представленные песчаниками, алевролитами и аргиллитами, которые относятся к Вилюйскому осадочному бассейну.

Магматические комплексы пород представлены позднедевонскими (D₃) [Бобриевич и др., 1959; Агашев и др. 2004] кимберлитовыми трубками взрыва из Далдынского и Верхнемунского кимберлитовых полей, а также нижнетриасовыми габбро-диабазовыми некками и дайками на правобережье реки Марха и на востоке территории.

После внедрения кимберлитов началась их денудация: происходило формирование первичных прибрежно-морских коллекторов ИМК и алмазов в конце девона – начале карбона [Афанасьев и др., 1986; Афанасьев, 1991]. После началась эпоха образования латеритной коры выветривания, что нашло свое отражение в гипергенных изменениях на поверхности зерен ИМК в виде каплевидного рельефа и следов коррозионного растрескивания [Афанасьев и др., 2000; Афанасьев и др., 2001, Афанасьев, 1986; Афанасьев и др., 1980; Подвысоцкий и др., 2000]. Реликты первичных прибрежно-морских коллекторов, в которых сохранились ИМК без гипергенных изменений, имеются в бассейне реки Ыгыатта (Ыгыаттинская впадина Вилюйской синеклизы), а также они были вскрыты скважиной на дне Вилюйской синеклизы [Шамшина, 1979]. После формирования коры выветривания по первичным коллекторам начался период денудации и все ИМК и алмазы были переотложены в верхнепалеозойские отложения (С₂-Р₁). В мезозое начался размыв верхнепалеозойского коллектора, и все ИМК со следами гипергенных изменений и механического износа перешли в нижнеюрские терригенные отложения.

Осадконакопление на территории Муно-Мархинского междуречья напрямую зависело от поднятия и опускания Анабарской антеклизы и Вилюйской синеклизы соответственно. В мезозое шло интенсивное осадконакопление в Вилюйской синеклизе, в то время как на Анабарской антеклизе, которая воздымалась с конца палеозоя по настоящее время, наоборот преобладали процессы уничтожения ранее сформированных осадочных комплексов. Нижнеюрские отложения Вилюйской синеклизы были развиты раньше намного шире, чем сейчас, и, скорее всего, закрывали всю территорию Муно-Мархинского междуречья, о чем свидетельствуют их реликты в карстовых депрессиях [Афанасьев и др., 2001; Апродов, 1962; Кривонос, Федоров, 1971; Прокопчук и др., 1985]. Воздымание Анабарской антеклизы привело к размыву нижнеюрских отложений. В настоящее время на Муно-Мархинском междуречье в направлении с запада на восток меняется характер распространения юрских отложений от полностью открытых территорий (юрские отложения отсутствуют) через водораздельные эрозионные останцы к полностью закрытым территориям, где юрские отложения полностью перекрывают кембрий. Сейчас реликты юрских отложений на востоке области эродируются и все алмазы и ИМК переходят в современный аллювий.

Как указывает В.П. Афанасьев в своей работе [Афанасьев и др., 2001] – важно иметь представление, насколько смещены современной гидросетью алмазы и индикаторные минералы из размытых юрских отложений. На открытых площадях (отсутствуют юрские отложения) в верховьях рек Муна, Арга-Тюнг, Тюнг, Хання единственным источником ИМК и алмазов являются карстовые депрессии, а весь остальной материал снесен реками вниз. На реке Тюнг ниже по течению количество переотложенного материала возрастает, однако также присутствуют вспышки концентраций. Т.е. здесь материал поступает из сносимого вниз площадного юрского коллектора, который сейчас отсутствует, и из местных карстовых депрессий. На тех участках, где остались реликты нижнеюрских отложений [Афанасьев, Зинчук, 1996], имеется материал из реликтов площадного юрского коллектора, материал, сносимый с бассейна верхнего течения, и, вероятно, местный материал из карстовых депрессий. В поле сплошного развития юрских отложений, где врез рек не достигает продуктивных отложений, все индикаторные и сопутствующие им минералы являются снесенными реками с бассейнов их верхнего течения. Эти представления очень хорошо согласуются с работой М.И. Плотниковой [Плотникова и др., 1963], в которой доказано, что снос с периферии по направлению к внутренним частям Вилюйской синеклизы продолжался довольно длительное время, начиная с верхнего мела. Основными направлениями поступления обломочного материала в работе указаны северо-западное и северное. Следовательно, на юрский коллектор на закрытой площади наползали ИМК и алмазы из размытых юрских отложений по периферии синеклизы.

Всю историю формирования ореолов индикаторных минералов Муно-Мархинского междуречья можно представить в виде морфогенетической формулы ИМК [Афанасьев и др., 2010]:

 D_{2-3} (формирование кимберлита) $\to D_3$ - C_1 (разрушение кимберлита; окатывание ИМК при формировании первичных прибрежно-морских коллекторов) $\to D_3$ - C_1 (гипергенная коррозия при формировании латеритной

коры выветривания) $\rightarrow C_2$ - P_1 (размыв первичных коллекторов; переотложение ИМК в верхнепалеозойский коллектор) $\rightarrow J_1$ (размыв верхнепалеозойских коллекторов; переотложение ИМК в нижнеюрский коллектор) $\rightarrow Q$ (размыв нижнеюрских коллекторов; переотложение ИМК в современные аллювиальные отложения)

1.2 Поисковые обстановки Муно-Мархинского междуречья

Ha классификации основании шлихоминералогических поисковых обстановок, геологического строения и истории развития ореолов ИМК и алмазов Муно-Мархинского междуречья можно констатировать, что для этой области характерен второй и третий типы поисковых обстановок. Для той части территории, где полностью отсутствуют юрские отложения и нижнепалеозойские породы обнажаются на дневной поверхности, характерен второй тип поисковой обстановки, т.е. в этом случае кимберлитовые тела (при их наличии) обнажены в современном эрозионном срезе (что характерно для Верхнемунского и Далдынского кимберлитовых полей). Это означает, что в шлиховых ореолах будут присутствовать две группы ИМК: 1) прямого сноса (при наличии источника прямого сноса) (рис. 1-4) и 2) переотложенные, имеющие на поверхности зерен среднепалеозойской следы гипергенных изменений латеритной коры выветривания в виде каплевидного рельефа и повышенный механический износ (рис. 1-5, рис. 1-6). От кимберлитовых тел в процессе размыва будут формироваться линейные потоки рассеяния с ИМК прямого сноса. В линейных потоках рассеяния по мере удаления от коренного источника осуществляется гидравлическая ИМК дифференциация по гранулометрии (крупные гранулометрические классы выпадают вблизи коренного источника, мелкие транспортируются дальше) и по плотности (более тяжелые, в первую очередь пикроильменит, концентрируются вблизи коренного источника, более легкие силикатные минералы транспортируются дальше). По мере удаления от коренного источника концентрация ИМК падает по экспоненциальному закону.

Закономерности транспортировки описываются уравнением [Афанасьев, Бабенко, 1988]:

$$P=P_0e^{-bx},$$

где P_0 – исходная концентрация минералов в коренном источнике, P – их концентрации после переноса на расстояние *x*, *b*–коэффициент инертности, показывающий вероятность отставания единичной частицы или комплекса частиц данной размерности на элементарном отрезке пути. Данное уравнение по форме схоже с уравнением Штернберга, для расчета потери веса гальки в процессе истирания при переносе [Девдариани, 1967].

Проведенные специальные исследования [Егорова и др., 2013] потока рассеяния ИМК кимберлитов Верхнемунского поля с использованием методики постоянного увеличения объемов проб полевым отрядом ИГМ СО РАН позволили проследить зерна оливина из кимберлитовых трубок на расстояние около 150 км до устья левого притока реки Муна – реки Эгелиндэ. Изучение оливинов с точки зрения механического износа показало, что на их зернах из россыпи Аэродромная коса вблизи кимберлитового поля механический износ не фиксируется, а на оливинах из пробы, взятой в районе устья реки Эгелинде видны лишь незначительные потертости на ребрах и вершинах. Подробнее об этом говорится в Главе 2.

Наличие индикаторных минералов прямого сноса с кимберлитовых тел являются прямым доказательством существования коренного источника, эродирующегося в данное время. Таким образом, ИМК прямого сноса являются прямым поисковым признаком кимберлитовых тел. Характер потоков ИМК прямого сноса сильно зависит от современного рельефа и активности современных эрозионных процессов.

Рис. 1-4. Пироп прямого сноса из аллювия р. Муна: а – общий вид кристалла; б – полированные грани без существенного механического износа

Рис. 1-5. Пироп, переотложенный из аллювия р. Муна: а – общий вид кристалла; б – гипергенная коррозия и следы травления на поверхности

Рис. 1-6. Пикроильменит, переотложенный из аллювия р. Муна: а – общий вид кристалла; б – гипергенная коррозия и следы травления на поверхности

Характер потоков рассеяния второй группы индикаторных минералов – переотложенных, значительно отличается от первой. Их пространственное положение совершенно не зависит от современного рельефа и активности эрозионных процессов.

Источниками переотложенных минералов являются древние промежуточные коллекторы, которые к настоящему времени полностью размыты. В связи с этим переотложенные минералы не могут являться прямым поисковым признаком, поскольку в процессе переотложения была потеряна пространственная связь с коренным источником. Таким образом, результативность поисков будет напрямую зависеть от соотношения активности древней и современной эрозии, и, в случае преобладания первой, минералы прямого сноса будут теряться на фоне переотложенных минералов.

В тех областях Муно-Мархинского междуречья, где нижнеюрские отложения с несогласием перекрывают нижнепалеозойские породы, поисковая ситуации кимберлитовые тела (при их наличии) погребены под несколько иная: нижнеюрскими терригенными отложениями, вмещающими ореолы ИМК. В связи с этим продуктивными будут являться базальные горизонты нижнеюрских отложений. В шлиховых ореолах, как и во втором типе поисковых обстановок, могут присутствовать как переотложенные минералы, так и минералы прямого сноса. Если тела перекрыты мезозойскими породами, то масштабы современной денудации кимберлита весьма малы, и соответственно общий фон ИМК прямого сноса будет гаснуть на фоне массы переотложенных минералов из размытых палеозойских коллекторов и тех переотложенных минералов, которые наползли на эти территории из верхних течений рек и карстовых депрессий. Основываясь на истории формирования шлиховых ореолов, можно утверждать, что в период после формирования латеритной коры выветривания до момента формирования нижнеюрских отложений, которые захоронили кимберлитовые тела, от тел существовали потоки рассеяния как позднепалеозойского возраста, так и мезозойского. При этом ИМК из позднепалеозойских коллекторов были

унаследованы нижнеюрскими отложениями. А в том случае, когда мезозойские горизонты, содержащие ИМК, представлены фациями ближнего переноса (озерными, делювиальными, пролювиальными), то переотложение происходило без значительного смещения и их распределение соответствует положению в наследуемом коллекторе. Но как показывают исследования [Афанасьев, Яныгин, 1983] в Мало-Ботуобниском районе, где кимберлитовая трубка Мир перекрыта мезозойскими отложениями, в мезозойских коллекторах практически все минералы (99,26% – определение по пиропу) имеют признаки гипергенных изменений и являются переотложенными, а первичный поток рассеяния раннеюрского возраста в базальном горизонте маломощен, быстро затухает и фиксируется только лишь вблизи трубки. Та же ситуация наблюдается вблизи трубки Амакинская и ряда других.

Таким образом при данном типе поисковой обстановки в шлиховых ореолах будут присутствовать две группы минералов – незначительное количество прямого сноса (при наличии источников) и огромное количество переотложенных.

Индикаторные минералы кимберлитов прямого сноса являются прямым поисковым признаком, который позволяет локализовать коренной источник (кимберлитовое тело). Отсутствие ИМК прямого сноса практически лишает возможности выйти на тело и, казалось бы, показывает отсутствие источников сноса (кимберлитов). По публикациям [Афанасьев и др, 2001; Афанасьев и др., 2010;] и фондовым источникам [фондовая литература АК «АЛРОСА»] на территории Муно-Мархинского междуречья в бассейнах таких крупных рек как Тюнг, Арга-Тюнг, Тюнкян, Хання, Чимидикян до сих пор не были найдены минералы прямого сноса. При этом до 2012 года полностью отсутствовали данные по правобережным притокам реки Марха (река Мархара). По устному сообщению начальника Тематической партии Ботуобинской ГРЭ АК «АЛРОСА» Ю.Т. Яныгина в первых километрах вверх по течению от устья реки Мархара вообще отсутствовали какие-либо ИМК. Только в бассейнах двух рек Марха (р.

Далдыкан) и Муна (р. Улах-Муна) были найдены минералы прямого сноса по которым и были локализованы Далдынское и Верхнемунское кимберлитовые

Рис. 1-7. Распределение россыпей алмазов и пиропов «алмазной ассоциации» Муно-Мархинского междуречья (по материалам [Афанасьев и др., 2011] с дополнениями) поля. На всей остальной части территории было обнаружено только лишь большое количество переотложенных ИМК, включая субкальциевые высокохромистые пиропы, и алмазы кимберлитового типа, что, несомненно, говорит о перспективной алмазоносности данной территории [Афанасьев и др., 2011, Соболев и др., 1969] (рис. 1-7). Однако, являются ли переотложенные ИМК этих площадей индикаторами Далдынского и Верхнемунского полей или эти ИМК совершенно другого коренного источника алмазов? Также остается не ясной причина отсутствия ИМК прямого сноса.

Как указывалось выше, главным контролирующим фактором формирования современных потоков рассеяния кимберлитовых тел является активность современных эрозионных процессов. Именно активность эрозии и определяет форму ореолов и дальность транспортировки минералов при современном сносе. В случае низкой активности эрозии кимберлитовое тело не будет разрушаться и, как следствие, будут отсутствовать линейные потоки рассеяния, содержащие ИМК прямого сноса.

В следующей главе при помощи разработанной нами новой методики оценки активности современных эрозионных процессов с использованием ГИС (географические информационные системы) определим причину отсутствия индикаторов прямого сноса на территории Муно-Мархинского междуречья.

Глава 2. ГЕОМОРФОЛОГИЧЕСКИЕ ПОДХОДЫ К ПРОГНОЗИРОВАНИЮ КОРЕННОЙ АЛМАЗОНОСНОСТИ

Одним из важных факторов, определяющих поисковую обстановку, является современная геоморфологическая ситуация и характер формирующих ee геологических процессов. От нее в значительной мере зависят условия и результативность минералогических поисков месторождений алмазов, поскольку геоморфологическая ситуация определяет условия современной эрозии кимберлитов и более древних промежуточных коллекторов и, соответственно, эффективность шлихового опробования при прослеживании ореолов индикаторных минералов и алмазов. Исследования, приведенные в данной главе, опубликованы в статье [Афанасьев, Самданов и др., 2012; Егорова, Афанасьев, Самданов, 2013], а также были доложены и опубликованы в материалах конференций [Самданов, Глушкова, 2010; Самданов, 2011; Самданов, Глушкова, 2011; Samdanov et al., 2012].

Одной из предпосылок детального исследования геоморфологического фактора в характере поисковой обстановки послужили резкие различия в строении и условиях формирования ореолов индикаторных минералов кимберлитов на сопредельных площадях – в верхнем течении реки Муна и верхнем течении реки Тюнг в Западной Якутии, выявленные в процессе ведения поисковых работ [Афанасьев и др., 1984; Афанасьев и др., 2001 и др.]. Как указывалось в Главе 1, на этих двух площадях, отстоящих на 110-140 км работали две стационарные партии со специалистами одинакового уровня с использование однотипной технологии и методики ведения поисковых работ. Партия, работавшая на правом притоке реки Муна реке Улах-Муна выявила продуктивное кимберлитовое поле. Их коллеги на реке Тюнг намыли лишь 110 кристаллов алмазов. Между тем, работы полевых отрядов ОИГГиМ СО РАН 90-х годов прошлого века по реке Тюнг и ее притокам, благодаря использованию усовершенствованной опробования, технологии шлихового позволили

обнаружить большое количество алмазов и индикаторных минералов и отчасти выяснить причины их пропуска предыдущими работами, что позволило резко повысить перспективность данных площадей на коренную алмазоносность и обосновать наличие неизвестных кимберлитовых тел, отличающихся от Верхнемунских. Тем самым по перспективам коренной алмазоносности бассейн реки Тюнг примерно сравнялся с бассейном реки Муна. Но остался открытым вопрос результативности поисков на этих территориях.

Исследования в данном направлении заставили обратить внимание на два обстоятельства.

1. От Верхнемунского поля, представляющего собой компактную группу кимберлитовых тел в бассейне реки Улах-Муна, обнажающихся на дневной поверхности и эродируемых в настоящее время, формируется современный поток рассеяния по рекам Улах-Муна и Муна, протягивающийся в современном аллювии на расстояние по меньшей мере 110 км до устья левого притока реки Муна – реки Чукар [Афанасьев и др., 1984] (полевыми работами отрядом ИГМ СО РАН 2010 года этот поток рассеяния прослежен до устья реки Эгелиндэ на 150 км и есть основания предполагать его продолжение несколько далее [Егорова и др., 2013]), однако из-за экспоненциального падения концентрации минералов прямого сноса по мере удаления от кимберлитовых тел [Афанасьев, Бабенко, 1988] объем опробования приходилось также увеличивать по экспоненте. При этом в русловом аллювии присутствует смесь индикаторных минералов: а) минералов прямого сноса с кимберлитов; б) переотложенных из ранее существовавших здесь, но к настоящему времени размытых древних коллекторов индикаторных минералов и алмазов. Данные группы минералов различаются по степени и формам механического износа, составу минеральной ассоциации, формам физико-химических экзогенных изменений. В то же время в бассейне реки Тюнг пока найдены лишь переотложенные минералы; они свидетельствуют о наличии здесь кимберлитовых тел, но из-за отсутствия минералов прямого сноса с кимберлитов невозможно локализовать их местоположение.

2. Найденная в устье ручья Атырджах (правый приток реки Тюнг в ее верховьях) карстовая воронка позволила выяснить минерагеническую роль карста как остаточного коллектора индикаторных минералов [Афанасьев и др., 2001]. Однако опробование руслового аллювия реки Тюнг вниз по течению от карстовой воронки стандартными шлиховыми пробами (20 л) показало, что шлейф разноса индикаторов от нее прослеживается лишь на 1,5 км, далее индикаторы малыми объемами опробования не улавливаются. Для сравнения: по реке Муна индикаторные минералы прямого сноса от Верхнемунского поля 20-литровыми пробами можно проследить на расстоянии не менее 30-40 км.

Таким образом, кимберлиты Верхнемунского поля, по образному выражению Г.Х.Файнштейна, «кричат» о себе, тогда как в бассейне Тюнга «отмалчиваются». Одной из вероятных причин этого может быть различная активность современных эрозионных процессов, более активных в бассейне реки Муна и обеспечивающих более дальний и обильный снос индикаторных минералов, в сравнении с рекой Тюнг. Для проверки этого предположения проведены исследования на обширной площади, охватывающей бассейны реки Муны и реки Тюнг и их окрестностей.

2.1 Методика геоморфологических исследований

В настоящее время при различных геологических исследованиях широко применяются геоинформационные системы (ГИС) и цифровые модели рельефа (ЦМР). ГИС-технологии применяются при геологической съемке, геохимических поисках, при поисках неотектонических структур, перспективных на нефть и газ и т.д. [Давыденко, 2008; Соколов, Юрченко, 2010]. В нашей работе используется ГИС и ЦМР для оптимизации поисков месторождений алмазов. Уже имеются работы, посвященные геоморфологии центральной части Якутской алмазоносной провинции (ЯАП) [Новиков, 1995; Новиков, 1997], однако разработанные нами подход, методика и результаты в региональном аспекте являются новыми. В данных геоморфологических исследованиях анализируется территория несколько шире, чем Муно-Мархинское междуречье. Это сделано для того, чтобы избежать «краевых эффектов» на периферических частях территории. В целом эту территорию можно обозначить как центральная часть Якутской алмазоносной провинции.

Активность современных эрозионных процессов прямо связана со степенью расчлененности, контрастности рельефа. Поэтому необходимо использовать характеристики рельефа, достаточно полно отражающие данный параметр. В нашей методике для определения активности современной эрозии МЫ анализируем горизонтальную расчлененность рельефа. Под горизонтальной расчлененностью понимается не только плотность долинной сети [Тимофеев и др., 1977], но и плотность хребтов на водоразделах, что позволяет более полно охарактеризовать активность эрозионных процессов. Исходным материалом (ЦMP) послужила цифровая модель рельефа 2-1) (рис. территории С пространственным разрешением 200 м, построенная по векторной карте масштаба 1:1000000. Такого разрешения достаточно для региональных мелкомасштабных моделей, поскольку кроме изолиний и отметок высот при построении ЦМР используется векторная гидросеть с водотоками первого, второго и третьего порядка (первый порядок – реки Оленек, Лена). При этом длина водотоков третьего порядка превышает в среднем 100 км. Построение ЦМР по векторной карте предпочтительнее использования ЦМР, полученных с космических снимков Aster с точки зрения точности модели, так как исключает возникновение «артефактов» на ЦМР.

Рис. 2-1. Цифровая модель рельефа Муно-Мархинского междуречья и окрестностей

Поскольку основной задачей является районирование территории по степени горизонтальной расчлененности рельефа, то первым этапом является получение по ЦМР различных геоморфологических карт, анализ которых позволяет выйти на расчлененность рельефа. Первой является карта экспозиции склонов (рис. 2-2), на которой отображается морфометрическая характеристика пространственной ориентации элементарного склона, численно равная азимуту проекции нормали склона на горизонтальную плоскость, т.е. азимуту падения склона. Следующий

этап заключается в построении на основе экспозиции склонов карты уступов рельефа. Карта уступов строится как градиент экспозиции склонов (рис. 2-3). Математический смысл уступов рельефа – это первая производная по направлению от экспозиции склонов, т.е. она отображает «быстроту» смены азимутов падения склонов.

Все линейные объекты этой схемы должны совпадать с уступами рельефа, т.к. именно на них происходит изменение азимута падения склона. Значения для областей с протяженными склонами должны быть близки к нулю, а для областей с частой сменой склонов, меняющих угол, иметь максимальное значение. Это подтверждается на примере протяженных склонов северо-западного простирания на юго-востоке области исследования. Эти склоны на схеме уступов рельефа имеют нулевые значения. На карте (рис. 2-3) выделяются два типа уступов. Первый тип – это уступы на одном склоне между двумя частями с разными углами. Второй тип – это уступы между двумя плоскостями склонов, т.е. там ребро является границей смены «положительного» угла на «отрицательный». Поэтому на схеме уступов будут отображаться русла рек первого порядка, русла рек второго порядка, русла временных потоков, суходолы, хребты на водоразделах, а также уступы, связанные с резкими перегибами (например, бровки и тыловые швы уступов).

Таким образом, карта уступов рельефа по своей сути уже является характеристикой, отражающей расчлененность рельефа. Однако в таком «сыром» виде она достаточно сложна для интерпретации и использования для районирования, поэтому на следующем этапе по уступам рельефа строится плотностная сетка. Поскольку все уступы представлены в виде линейных объектов, то предварительно необходимо представить растровую схему уступов в виде точек (рис. 2-4), по которым строится плотностная сетка. Для лучшего представления все значения для плотностной сетки пересчитаны в проценты, которые обозначают процент от площади окружности с радиусом скользящего окна, занимаемой уступами. Это делается следующим образом. Строится

векторный круг с радиусом больше радиуса скользящего окна, переводится в растровое изображение и представляется в виде точечных объектов. Затем по полученным точкам строится плотностная сетка с теми же параметрами, что и плотностная сетка для схемы уступов рельефа и выявляется максимальное значение, которое берется за 100 %. После этого, все значения плотностной сетки ребер пересчитываются в проценты.

Рис. 2-2. Карта экспозиции склонов Муно-Мархинского междуречья и окрестностей

Рис. 2-3. Карта уступов рельефа Муно-Мархинского междуречья и окрестностей

Предварительно были использованы радиусы скользящего окна 10 км и 100 км. Плотностная сетка с радиусом скользящего окна 10 км является чрезмерно детальной и не дает возможности объективно охарактеризовать региональную расчлененность рельефа.

Рис. 2-4. Фрагмент схемы уступов рельефа Муно-Мархинского междуречья: а – растровое изображение уступов (условные обозначения см. рис. 2-3; черный прямоугольник положение участка на рисунке «б»); б – векторное изображение уступов в виде точечных объектов

Радиус 100 км, наоборот, «загрубляет» схему. Поэтому был выбран радиус скользящего окна 50 км, который является оптимальным для наших задач. Полученная плотностная сетка с радиусом скользящего окна 50 км наиболее адекватна для выбранного масштаба исследований и отражает горизонтальную расчлененность рельефа (рис. 2-5).

Рис. 2-5. Карта горизонтальной расчлененности рельефа Муно-Мархинского междуречья и окрестностей

Плотностная сетка проклассифицирована по алгоритму естественных границ Дженкса (Jenk's Natural Breakes), при котором границы между классами проводятся так, чтобы сгруппировать близкие значения, но так чтобы между группами были максимальные различия. В итоге получены три группы, каждая из которых характеризует тип горизонтальной расчлененности рельефа (слабая, средняя и сильная). Для иллюстрации типов областей со слабой, средней и сильной степенью горизонтальной расчлененности рельефа построены теневые модели рельефа с положением освещения на севере (0°) и углом наклона освещения над горизонтом 40° и сопоставлены со спутниковыми снимками Landsat (рис 2-6 а, б, в).

Рис. 2-6. Эталонные участки: а - слабой расчлененности рельефа; б - средней расчлененности; в - сильной расчлененности

Таким образом, приведенная выше методика позволяет решать ряд вопросов по комплексному морфометрическому анализу рельефа территории, на основе которого можно проводить районирование по различным морфометрическим показателям. Основным преимуществом данной методики является то, что исходным материалом является только ЦМР, которая построена по векторной карте. В зависимости от задач можно использовать различные варианты представления схем. Изменения могут касаться радиуса скользящего окна, классификации степени расчлененности, градаций значений плотностной сетки, выбора пограничных значений районов с разным типом расчлененности рельефа и выбора эталонных участков.

Ниже приводится блок-схема данной методики (рис. 2-7).

Рис. 2-7. Технологическая схема построения карты горизонтальной расчлененности рельефа

2.2 Связь рельефа и характера ореолов рассеяния индикаторных минералов

Районы к северу от реки Муна в целом можно охарактеризовать как районы с сильной расчлененностью рельефа, например, бассейн реки Оленек. В областях повышенной расчлененности рельефа расположены также река Линде и русло реки Марха на участке юго-восточного простирания долины. Районы сильной расчлененности небольшой протяженности встречаются на юге центральной части ЯАП. Это верхнее течение реки Конончан, водораздел рек Тюнг и Тюкян, а также бассейны рек Аламдьа и Олгуйдах (за исключением верхних течений).

К районам средней расчлененности относятся самые верховья реки Марха, русло которой проходит по границе районов сильной и средней расчлененности. В районах средней расчлененности располагаются реки Тюнг и Арга-Тюнг, самые верховья реки Хання. Небольшой по площади район со средней расчлененностью рельефа расположен на самом северо-востоке области исследования и по геологической позиции отвечает юго-восточной части Анабарского щита.

Все остальные районы относятся к районам со слабой расчлененностью рельефа. Минимальные значения плотностной сетки приходятся на самое верховье реки Тюкян, Тюнкян, Тюнг-Тюкянское междуречье и междуречье рек Хання и Тюкян. Таким образом, результаты геоморфологического районирования показали, что бассейн реки Муна находится преимущественно в области повышенной горизонтальной расчлененности рельефа, тогда как Муно-Мархинское междуречье в целом характеризуется пониженной горизонтальной расчлененностью рельефа и, соответственно, низкой эрозионной активностью водотоков.

Бассейн реки Муна и Муно-Мархинское междуречье ранее были закрыты юрскими терригенными отложениями Вилюйской синеклизы, содержавшими индикаторные минералы кимберлитов из среднепалеозойских кимберлитов [Афанасьев и др., 2001]. Однако, в связи с воздыманием Анабарской антеклизы

мезозойские отложения постепенно размывались и территория освобождалась от них. В настоящее время территория относится на большей части к категории открытых (кимберлиты экспонированы на дневной поверхности, второй тип поисковой обстановки) или полузакрытых ближе к современному полю развития мезозойских отложений (третий тип поисковой обстановки) в Вилюйской синеклизе (реликты юрских отложений на водоразделах). По мере размыва юрских отложений индикаторные минералы кимберлитов (ИМК), содержавшиеся в них, постепенно перемещались к внутренним частям синеклизы в южных, юговосточных румбах [Плотникова и др., 1963]. В настоящее время ИМК, переотложенные из размытых юрских отложений, содержатся главным образом в современном аллювии (единичные зерна можно обнаружить на водоразделах), а также остались, часто в высоких концентрациях, в карстовых депрессиях [Афанасьев и др., 2001; Апродов, 1962; Кривонос, Федоров, 1971; Прокопчук и др., 1985]. Для этих минералов характерны «признаки древности», отражающие длительную седиментологическую историю с момента формирования ИХ кимберлитовых тел в фамене. К ним относятся разнообразная степень износа пиропов и пикроильменитов, главным образом средняя и сильная, и признаки гипергенной коррозии в латеритной коре выветривания, развивавшейся в позднем девоне – раннем карбоне. В этом отношении вся рассматриваемая территория однотипна. Вместе с тем, в шлиховых пробах по реке Муна присутствует другая группа минералов _ минералы прямого сноса с кимберлитовых тел Верхнемунского кимберлитового поля, трубки которого размещены в долине притока Муны реки Улах-Муна и активно эродируются в настоящее время.

Для изучения потока рассеяния ИМК кимберлитов Верхнемунского поля полевым отрядом ИГМ СО РАН было проведено специализированное шлиховое опробование от кимберлитового поля вниз по реке Муна на 150 км до устья реки Эгелиндэ – левого притока реки Муна. Верхнемунское поле было выбрано в связи с уникальной особенностью кимберлитов – изобилием свежего (не серпентинизованного) оливина: именно оливин служит надежным индикатором современного размыва кимберлитов, поскольку из-за физико-химической неустойчивости не сохраняется ОН В древних ореолах, прошедших среднепалеозойскую латеритную кору выветривания, И отсутствует В переотложенном состоянии [Егорова и др., 2013].

Пробы отбирались по руслу реки Муна с интервалом 5-10 км. Объем проб варьировал от 20 до 600 л для получения представительного количества оливина; остальные минералы (пиропы и пикроильмениты) при таком условии были представлены в избытке. После лабораторной обработки полученных шлиховых проб были построены графики изменения концентрации оливинов. На графике видно, что по мере удаления от коренного источника концентрация оливина резко падает по закону, близкому к экспоненциальному (рис. 2-8). Наиболее хорошо данная зависимость видна на примере зерен оливина класса крупности -1+0.5 мм. Более крупные классы прослеживаются на незначительное расстояние, что не позволяет выявить характер распределения. Максимальные темпы падения наблюдаются 30-50 концентрации оливинов первых Крупные на КМ. гранулометрические классы выпадают вблизи кимберлитового поля. Зерна класса -1+0.5 мм и меньше прослежены на расстояние более 150 км. Необходимо отметить, что ранее оливин считался крайне нетранспортабельным минералом. Так по данным В.В. Грицика [Бобриевич и др., 1959] оливин от трубок Верхнемунского поля разносится на расстояние не более 6 км. Столь резкие различия в оценке дальности транспортировки обусловлены подходом к опробованию. Прежние оценки основывались на одинаковых и малых объемах опробования (стандартный объем шлиховой пробы – 20 л), поэтому оливин скоро переставал улавливаться в силу чисто статистических причин, что приводило к ошибочным выводам относительно низкой абразивной устойчивости оливина.

Рис. 2-8. Изменение концентрации оливина различных классов крупности по мере удаления от коренного источника [Егорова и др., 2013]

Распределения пиропа имеет другой характер (рис. 2-9). Зерна класса -2+1 мм прослеживаются на всем протяжении опробования, т.е. концентрация пиропа падает медленнее, чем концентрация оливина, несмотря на то, что близки их плотности и соответственно гидравлические свойства также близки. Эта ситуация связана с тем, что уже в 2 км ниже устья реки Улах-Муна в россыпи Аэродромная коса появляется большое количество ИМК и алмазов, не принадлежащих Верхнемунскому полю; это хорошо видно и по отличиям алмазов, и по пикроильмениту, который доминирует в россыпи при его незначительном количестве в трубках поля. Соответственно появляется и дополнительное количество пиропов из неизвестных источников, чем и объясняются более низкие темпы падения концентрации.

Рис. 2-9. Изменение концентрации пиропа различных классов крупности по мере удаления от коренного источника [Егорова и др., 2013]

Следующий важный момент – очень слабый механический износ как оливинов, так и других индикаторных минералов Верхнемунского поля на изученном расстоянии. В районе устья реки Эгелиндэ износ оливинов размера -2+1 мм можно оценить как очень слабый, выражающийся лишь в слабом округлении контрастных элементов рельефа (рис. 2-10). Аналогично пиропы имеют лишь щербинки на ребрах и вершинах «первичных» (сформированных в кимберлите) сколов. Можно утверждать, что в аллювиальных условиях перенос на 150 км индикаторных минералов песчаной размерности не приводит к износу выше слабого, что полностью согласуется с моделью континентального (аллювиального) литодинамического типа ореолов [Афанасьев и др., 1984; Афанасьев, Зинчук, 1999; Афанасьев и др., 2010; Афанасьев и др., 2008]. Это экспериментальными данными согласуется также С ПО моделированию аллювиального износа минералов: по данным Кюнена, потеря массы в среднезернистом кварцевом песке при транспортировке на 200 тыс. км составит не больше 1 %, что визуально не фиксируется [Kuenen, 1959; Kuenen, 1960]. Все обстановки, в которых достигается более высокая степень износа, связаны с волноприбойной деятельностью в бассейновых условиях и не отражают удаленность коренных источников [Афанасьев и др., 2010; Афанасьев и др., 1986].

Рис. 2-10. Зерна оливина из шлиховых проб аллювия: а – из россыпи Аэродромная коса, в 2 км от устья реки Улах-Муна; б – из пробы МН-069, в 136 км от устья реки Улах-Муна [Егорова и др., 2013]

В бассейне реки Тюнг, несмотря на большие объемы опробовательских работ, до сих пор не удалось идентифицировать минералы прямого сноса с кимберлитов, иначе кимберлитовые тела уже можно было бы обнаружить. Следовательно, активность современных эрозионных процессов на данной территории ниже, чем в бассейне реки Муна, что отражается в слабой расчлененности рельефа.

В итоге можно предполагать, что одной из важных причин низкой результативности поисков в бассейне реки Тюнг и, более широко, на Муно-Мархинском междуречье, служит слабая расчлененность рельефа. Выстраивается следующая цепочка причинно-следственных связей: низкая активность современных эрозионных процессов — слабая расчлененность рельефа пониженный в целом фон индикаторных минералов и их контрастное распределение, связанное в значительной мере с распределением карстовых ловушек минералов — низкая результативность опробования — низкая результативность поисков. При ЭТОМ ПО минералогическим оценкам на территории Муно-Мархинского междуречья имеются продуктивные кимберлитовые поля.

Использование данной методики построения карт горизонтальной расчлененности рельефа для оценки поисковых обстановок позволило решить

другую немаловажную задачу, которая была поставлена в 2011 году. Как уже упоминалось в Главе 1 – геологам Тематической партии Ботуобинской ГРЭ не удалось обнаружить ни одного индикатора в приустьевых частях правых опробовании реки Mapxa. При аллювия самой реки притоков Mapxa стандартными пробами по мере удаления от Далдынского кимберлитового поля не наблюдалось заметного падения концентраций ИМК. Такая ситуация могла означать только то, что русло реки Марха подпитывается индикаторами из левых приток, поскольку в приустьевых частях правых притоков индикаторные минералы отсутствовали. Но проблема заключалась в том, что химизм ИМК левых притоков сильно отличался от химизма мархинских минералов [фондовая литература Ботуобинской экспедиции, база данных лаб. №451 ИГМ СО РАН «Гранаты Муно-Мархинского междуречья»] Поэтому и возник вопрос о неизвестных источниках, питающих русло реки Марха. Ответ был получен после построения схемы расчлененности рельефа. На этой схеме выделяется область сильной расчлененности вдоль русла реки Мархи шириной 50-30 км от приустьевых частей левых притоков до 30 км вверх по течению правых притоков (рис. 2-5). Анализ схемы расчлененности рельефа и ЦМР показывает следующее: верховья правых притоков реки Марха располагаются в области слабой расчлененности и при этом находятся в области самых максимальных абсолютных отметок данной территории (500-750 м), затем идет уклон с высокой расчлененностью (та самая область высокой расчлененности протяженностью ~ 50 км в бассейне реки Марха), а затем опять область слабой расчлененности, но уже с достаточно низкими высотными отметками (200-300 м). На рисунке 2-11 представлена трехмерная модель рельефа этой области, где четко виден уклон в области высокой расчлененности рельефа.

Рис. 2-11. Трехмерная модель рельефа и профиль рельефа Муно-Мархинского междуречья (соотношение горизонтального масштаба и вертикального 1:200)

Данную область Марха-Тюнгского междуречья можно рассматривать как импровизированную «лестницу» слабой две ровные площадки co расчлененностью рельефа, которые соединены уступом с высокой расчлененностью. Таким образом, все минералы-индикаторы, попадающие в зону уступа высокой расчлененности, выносятся оттуда в восточном направлении в зону слабой расчлененности Муно-Мархинского междуречья.

Именно эта ситуация послужила причиной отрицательных результатов обнаружения ИМК геологами Тематической партии Ботуобинской ГРЭ. В связи с этим можно предположить, что ИМК правобережных притоков (река Мархара) располагаются западнее области высокой расчлененности рельефа. Для проверки этих предположений в 2011 году в верховья реки Мархара был отправлен полевой

отряд ИГМ СО РАН. Отряду удалось обнаружить ИМК в приустьевых частях реки Делингдэкан (правый приток реки Мархара), который расположен западнее зоны высокой расчлененности рельефа. Найденные там ИМК по химизму отличаются от ИМК Муно-Мархинского междуречья, что дает возможность прогнозировать новые кимберлитовые поля на правобережье реки Марха. Подробнее об этом изложено в Главе 3.

Суммируя все вышесказанное, констатировать следующее: можно проведенные исследования показали зависимость характера ореолов индикаторных минералов, условий опробования руслового аллювия на открытых площадях ОТ рельефа, В первую очередь ОТ степени горизонтальной расчлененности рельефа, отражающей активность современных эрозионных процессов. Различия в степени расчлененности рельефа в бассейнах рек Муна и Тюнг объясняют разницу в отмеченной выше результативности поисковых работ. Отсутствие любых спутников в приустьевых частях правобережных притоков реки Марха объясняется интенсивным выносом ИМК за счет сильной расчлененности рельефа и уклоном между двумя спокойными областями верховьем реки Мархара и Хання-Тюнгским междуречьем. Таким образом, методика анализа горизонтальной расчлененности по схеме плотности ребер рельефа позволяет оценить поисковые обстановки и оптимизировать подходы к ведению поисковых работ.

Глава 3. ПРОГНОЗ КИМБЕРЛИТОВЫХ ПОЛЕЙ В БАССЕЙНАХ РЕК МУНО-МАРХИНСКОГО МЕЖДУРЕЧЬЯ

Исследованиями геоморфологической ситуации на данной территории было показано, что отсутствие ИМК прямого сноса объясняется низкой активностью современной эрозии кимберлитов в связи со слабой расчлененностью рельефа. Бассейны рек Хання и Тюнг являются областями пониженной расчлененности рельефа по сравнению с окружающими территориями [Афанасьев и др., 2012]. Поэтому решение вопроса о существовании на данной территории коренных источников алмазов нельзя связывать с наличием или отсутствием ИМК прямого сноса, эту задачу целесообразно решать с привлечением данных по химизму ИМК выявления неоднородности минералогического Исследования ДЛЯ поля. приведенные в данной главе частично опубликованы в статье [Самданов и др., 2016].

В кимберлитах присутствует смесь гранатов различных парагенезисов. При близости наборов парагенезисов кимберлиты различаются их количественным соотношением. Это использовать характер распределения позволяет парагенетических типов гранатов в механических ореолах рассеяния кимберлитов для их прогноза. Прогноз кимберлитовых тел основывается на решении двух основных задач: 1 – идентификация ореола индикаторных минералов, т.е. установление принадлежности минералов **(B** данном случае гранатов) кимберлитовому телу (телам, кимберлитовому полю); 2 – конкретному локализация на площади искомого объекта [Афанасьев и др., 2010]. Решение задач прогнозирования требует использования методов минералогического картирования и районирования. Основным материалом для этого служит химический состав индикаторных минералов, основы использования которого для целей поисковых работ были разработаны Н.В. Соболевым [Соболев и др., 1969]. До сих пор основным методом интерпретации остается анализ распределения составов гранатов на диаграмме Н.В. Соболева [Соболев и др., 1969], на которую

выносятся точки составов пиропов в координатах CaO-Cr₂O₃. Этот метод весьма информативен и успешно применяется и будет применяться в будущем, но при этом для гранатов используются только два основных окисла, тогда как остальные фактически опускаются при массовой обработке анализов, необходимой при прогнозных построениях. Это заставляет искать пути повышения информативности данных химического состава гранатов при прогнозных построениях.

Одним из таких путей является определение парагенетической принадлежности гранатов на основе полных анализов гранатов, и изучение их распределения в шлиховых пробах. Этот метод пока не применялся и в данной работе представлен первый опыт его использования.

3.1 Определение парагенетической принадлежности гранатов

Алгоритм определения парагенезиса материнских пород по составу гранатов учитывает разновидности только мантийного происхождения. Алгоритм основан на ряде опубликованных ранее методик [Соболев, 1964; Dawson & Stephens, 1975; Schulze, 1997; Schulze, 2003; Тычков и др., 2008]. Гранаты мантийных пород подразделяются на типы, характерные для: эклогитов, мегакристовой ассоциации и перидотитов (по методике, предложенной [Schulze, 2003] с дополнениями автора). Согласно D.J. Schulze [Schulze, 2003] мегакристовые гранаты отделяются от перидотитовых и от эклогитовых по содержанию TiO₂ мас. % (рис. 3-1).

Рис. 3-1. Вариации содержаний Са\(Са+Mg+Fe) – TiO₂ мас.% для эклогитовых и мегакристовых гранатов; Cr₂O₃ мас.% – TiO₂ мас.% для мегакристовых и перидотитовых гранатов [Schulze, 2003]

MEGACRYSTS

Поскольку в работе используются данные неполных микрозондовых анализов гранатов, был найден другой подход разделения вышеназванных парагенезисов без использования содержания TiO₂ мас. %.

На основе данных микрозондовых анализов мегакристовых гранатов [Schulze, 1997] и перидотитовых гранатов (из архива лаб. № 451 ИГМ СО РАН) было установлено, что мегакристовые гранаты содержат FeO > 8,3 мас. %. при содержании CaO от 4,2 до 5,2 мас. % (рис. 3-2 а) и при содержании Cr₂O₃ от 1 до 2,5 мас. % (рис. 3-2 б). Данные границы являются эмпирическими. Они были установлены путем определения значения, при котором имеет место наименьший процент «смешения» значений точек на графике из разных парагенезисов.

Рис. 3-2. Вариации содержаний CaO – FeO мас. % (а) и Cr₂O₃ – FeO мас. % (б) для перидотитовых и мегакристовых гранатов из кимберлитов (по [Schulze, 1997] с дополнениями)

Рассмотрим пример определения границы между мегакристовыми И перидотитовыми гранатами по FeO. Сначала необходимо визуально по плотности скоплений оценить примерную границу, а точнее диапазон значений, где эта граница находится. По графику на рисунке 3-2 (а) эта граница определяется как 8 +\- 1. T.e. при значении FeO > 8 это будут мегакристовые гранаты, а при FeO < 8 - 1перидотитовые. Но на графике имеется небольшое количество точек, отвечающих мегакристовым гранатам при FeO <8 и точек, отвечающих перидотитовым гранатам при FeO>8. Затем берется первое значение границы (в данном случае 7) и считается процент точек, отвечающих мегакристовым гранатам, находящихся ниже этой границы и процент точек, отвечающих перидотитовым гранатам выше этой границы. После чего значения суммируются. Полученное число является процентом «чужих» точек составов гранатов, т.е. точек составов гранатов выпавших из поля состава своего реального парагенезиса. Далее операция повторяется с определенным шагом (нами выбран шаг 0,2). Значение итоговой границы будет располагаться между двумя ближайшими значениями с наименьшими процентами «чужих точек». В данном конкретном примере наша граница располагается между 8,2 (28,31 % «чужих» точек) и 8,4 (27,98 % «чужих точек»). Однако, для проведения более точной границы в заданном диапазоне необходимо уменьшить шаг до 0,1, т.е. проверить значение границы 8,3. При таком значении границы «чужих» точек будет 27,96 %. Таким образом, искомой границей оказалось значение 8,3.

Необходимо отметить, что левые границы по CaO и Cr₂O₃ для мегакристовых гранатов, т.е. 4,2 мас. % и 1 мас. % соответственно проведены по последним точкам составов мегакристовых гранатов, т.к. со стороны левых границ почти полностью отсутствуют смешения с перидотитовыми гранатами. Правые границы проведены по описанной выше методике определения «чужих» точек. После проведения границ составов мегакристовых гранатов на диаграммах CaO – FeO мас. % и Cr₂O₃ – FeO мас. %, было посчитано, что в указанное «окно» попадает меньше 6 % перидотитовых гранатов. В поле перидотитовых гранатов оказывается около 20 % мегакристовых.

Ниже приводятся графики соответствия эмпирических границ с процентом «чужих» точек (рис. 3-3).

5.4

5.5

При изучении вариаций содержаний CaO мас. % – MgO мас. % мегакристовых гранатов [Schulze, 1997] и эклогитовых гранатов (из архива лаб. № 451 ИГМ СО РАН) было установлено, что содержание MgO в мегакристовых гранатах колеблется от 16,9 мас. % до 20,7 мас. % при содержании CaO 4,2 - 5,7 мас. % (рис. 3-4). Эти границы проведены визуально по плотности скоплений точек, отвечающих мегакристовым гранатам, ложащихся в вышеуказанных узкий диапазон вариаций составов в осях CaO мас. % - MgO мас. %. В указанный диапазон вариаций составов мегакристовых гранатов попадает меньше 3 % эклогитовых гранатов. За пределы выделенного диапазона – попадет около 13% мегакристовых гранатов.

Рис. 3-4. Вариации содержаний CaO – MgO мас. % для эклогитовых и мегакристовых гранатов из кимберлитов (по [Schulze, 1997] с дополнениями)

Среди перидотитов выделяются группы гранатов из лерцолитов, гарцбургитдунитов графитовой фации глубинности и гарцбургит-дунитов алмазной фации глубинности (по методике [Pokhilenko, Sobolev, 1995; Grütter et al., 2006]) (рис. 3-5). Лерцолитовые гранаты разделены на типы, характерные для малоглубинных и глубинных гранатовых лерцолитов (по методике [Тычков и др., 2008]). Гранаты верлитового парагенезиса встречаются на исследуемых площадях крайне редко и не учитываются в данной работе.

Рис. 3-5. Состав пиропов, ассоциирующих с хромитом И энстатитом ксенолитов ИЗ алмазосодержащих (черные квадраты) И графит-содержащих (звездочки) перидотитов. Узкое поле с вертикальной штриховкой отделяет область пиропов, сосуществующих с алмазом [Pokhilenko, Sobolev, 1995]

Коровые гранаты являются закономерным седиментологическим продуктом и поступают в разновозрастные осадки из эродируемых выступов гранатсодержащих кристаллических пород докембрия. Вместе с тем, в некотором количестве они могут содержаться в кимберлитах в качестве ксеногенной примеси и поступать из них в ореолы. Эти гранаты, как правило, удаляются в процессе подготовки проб к анализу. Но часть из них может остаться. Поэтому коровые гранаты в работе не рассматриваются.

Все вышеуказанные вариации составов различных парагенезисов сведены в одну общую схему разделения пироп-альмандиновых гранатов на парагенетические группы по составу (рис. 3-6). На схеме в прямоугольниках указаны оксиды и их значения. В случае, если определяемое значение больше значения оксида в прямоугольнике, то необходимо переходить по стрелке справа от значения, если меньше – слева. Если указана пара значений оксида, а определяемое значение попадает между ними, то необходимо перейти по стрелке между ними. По этой схеме было проанализировано каждое зерно граната из базы данных «Гранаты Муно-Мархинского междуречья».

Ниже в качестве примера будет показан парагенетический анализ трех зерен граната. В таблице 3-5 представлены неполные анализы граната (4 элемента). На рисунках 3-7, 3-8, 3-9 красными стрелочками отмечены пошаговые пути разделения на парагенетические группы гранатов по составу.

Рис. 3-6. Схема разделения пироп-альмандиновых гранатов на генетические группы по составу [по Соболев, 1964; Соболев и др., 1969; Соболев, 1971; Dawson&Stephens, 1975; Pokhilenko, Sobolev, 1995; Schulze, 1997; Schulze, 2003; Grütter et al., 2006; Тычков и др., 2008]

Анализы	Cr2O3	MgO	CaO	FeO
1	13,02	20,55	4,88	6,84
2	0,16	20,32	5,13	9,17
3	1,68	21,82	4,34	7,63

Табл. 3-1. Результаты микрозондового анализа трех зерен гранатов

Рис. 3-7. Схема разделения на парагенезисы пироп-альмандинового граната № 1 из табл. 3-1

Рис. 3-8. Схема разделения на парагенезисы пироп-альмандинового граната № 2 из табл. 3-1

Рис. 3-9. Схема разделения на парагенезисы пироп-альмандинового граната № 3 из табл. 3-1

3.2 База данных «Гранаты Муно-Мархинского междуречья»

В данной работе рассматриваются гранаты из аллювия водотоков Муно-Мархинского междуречья. Материалом для исследования послужила база данных лаборатории № 451 ИГМ СО РАН «Гранаты Муно-Мархинского междуречья (Республика Саха)» [Гранаты Муно-Мархинского междуречья..., 2013].

База данных (БД) была создана с целью обобщения всего накопленного материала по гранатам из тяжелой фракции аллювия за долгие годы собственных и договорных полевых работ ИГМ СО РАН. В ней систематизирован обширный фактический материал по микрозондовому анализу и парагенетическому анализу гранатов из шлиховых проб аллювия территории Муно-Мархинского междуречья. Приведены данные по химическому составу гранатов (мас. %) (4, 6 либо 9

элементов), диаграммы по соотношению содержания мас. % CaO-Cr₂O₃, диаграммы процентного содержания парагенетического типа гранатов в пробе.

БД содержит в себе информацию о составе 13721 зерен гранатов из 120 шлиховых проб аллювия. Из них полных анализов на 9 элементов (SiO₂, TiO₂, Al₂O₃, Cr₂O₃, MgO, CaO, FeO, MnO, Na₂O) 6187 (53 пробы), частичных анализов на 6 элементов (Cr₂O₃, MgO, CaO, FeO, Al₂O₃, SiO₂) 5647 (54 проб) и частичных анализов на 4 элемента (Cr₂O₃, MgO, CaO, FeO) 1887 (13 проб) (Приложение 1).

Особенностью этой БД является: 1) компактность (один файл, включающий огромное количество листов с различной информацией. БД представляет собой один файл формата *.xls. Такой подход упрощает ее перенос и использование; 2) быстрая навигация (Существует возможность быстрого перехода от общей сводной таблицы со всеми пробами к листу с конкретной пробой и обратно).

БД содержит в себе следующую информацию:

- Лист со сводной таблицей (Приложение 1), в которой содержатся следующие данные: название пробы, номер МВД (внутренний номер микрозондового анализа в лаборатории № 451 ИГМ СО РАН), место отбора, координаты GPS, количество проанализированных зерен в пробе, количество пиропов, количество проанализированных элементов в гранате.
- Таблица парагенетических типов гранатов. В ней содержится информация о названии пробы, координатах GPS, процентом содержании генетического типа граната в пробе.
- Таблица хромистости гранатов (Приложение 2)
- Карта фактического материала. Представляет собой карту пространственного распределения проб с гранатами на территории Муно-Мархинского междуречья (рис. 3-10)

Лист с данными о пробе (рис. 3-11). Содержит в себе первичные данные о химическом составе гранатов (4, 6 и 9 элементов) (Приложение 3), о хромистости гранатов, диаграммы по соотношению содержания мас. % СаО-Сг₂О₃, диаграммы процентного содержания парагенетического типа гранатов в пробе.

БД зарегистрирована Федеральной службой по интеллектуальной собственности в Реестре баз данных 28 августа 2013 года.

Рис. 3-11. Фрагмент листа с данными о пробе из БД «Гранаты Муно-Мархинского междуречья»

3.3 Минералогическое картирование Муно-Мархинского междуречья

Минералогическое картирование представляет собой один из способов моделирования геологического пространства. Минералогическое картирование обслуживает процедуру районирования, идентифицируя И локализуя нижележащие объекты иерархического ряда на площади вышележащих. Основным видом минералогического картирования является топоминералогическое картирование [Афанасьев, 1989; Афанасьев и др., 2010].

Топоминералогическое картирование дает основу для районирования и требует еще процедуры генерализации информации, которая позволит расчленить изучаемое пространство на однородные в заданном отношении участки, т. е. осуществить районирование. Картирование в рамках топоминералогии представляет собой отражение на карте имеющейся у исследователя информации о распространенности минералов и минеральных ассоциаций, а также их свойств, выраженное в той или иной знаковой или знаково-цифровой форме [Афанасьев и др., 2010; Юшкин, 1982, Афанасьев и др., 1991].

Минералогическое картирование Муно-Мархинского междуречья основано на парагенетическом анализе гранатов из шлиховых проб, который базируется на ряде методик, приведенных в разделе 3.1. Основной задачей картирования является показать распределение гранатов каждого парагенетического типа в отдельности.

Для этого для каждой пробы рассчитана доля каждого парагенетического типа граната. Анализ распределения в пробах парагенетических типов гранатов проводился при помощи построения гистограмм в программном пакете Statistica 6.0. На основе анализа гистограмм проводилось разделение всего диапазона содержания изучаемого парагенетического типа гранатов в пробах на три категории: 1) пониженного; 2) умеренного; 3) повышенного содержания. Существует множество статистических методов разделения (естественные разрывы, квантильи, стандартное отклонение и мн. др.). Однако адекватность

выбора способа статистического разделения все равно проверяется посредством визуального анализа частотных диаграмм. Поэтому проведение границ между разными категориями проведено без использования специальных статистических методов на основе визуального анализа гистограмм (рис. 3-12). Границы ставились либо в участках разрыва между плотностью значений, либо там, где происходил резкий перепад в плотности значений (контрастное увеличение или уменьшение высоты столбиков на гистограммах). После этого выделенные группы разными знаками визуализированы на карте, что позволяет оценить их пространственные взаимоотношения.

Гранаты глубинных лерцолитов. Распределение бимодальное (граница между двумя модами 34,50), слегка асимметричное, смещенное вправо (рис. 3-12 а). Минимальное значение – 0,00, максимальное значение – 76,24. Выделенные группы: 0,00 – 34,50 (перепад плотности значений); 34,51 – 60,00 (перепад плотности значений); 60,01 – 76,24.

Пониженные содержания гранатов глубинных лерцолитов в основном локализуются в центре изучаемой территории Муно-Мархинского междуречья (рис. 3-13 а). Это бассейны рек Тюнг, Тюнкян, Хання, Эекит. Повышенные содержания таких гранатов в тяжелой фракции аллювия встречаются на реках Муна, Мархара, Чимидикян. Умеренные содержания гранатов наблюдаются на реках Марха и Арга-Тюнг.

Гранаты малоглубинных лерцолитов. При визуальном анализе гистограммы (рис. 3-12 б) выявлено минимальное значение – 0,00, максимальное значение – 40,00. Распределение полимодальное, асимметричное, смещенное влево. Выделены группы: 0,00 – 13,60 (перепад плотности значений); 13,61 – 30,00 (разрыв плотности значений); 30,01 – 40,00.

Пробы аллювия из бассейнов рек территории Муно-Мархинского междуречья содержат главным образом пониженное количество гранатов малоглубинных лерцолитов (рис. 3-13 б). Пробы с лерцолитовыми гранатами

локализуются в бассейне реки Тюнг: возле устья реки Тюнкян, на северных притоках, в реке Арга-Тюнг. В бассейне реки Чимидикян большинство проб содержат умеренное количество гранатов малоглубинных лерцолитов. Также пробы с умеренным содержанием данных гранатов локально встречаются в бассейне реки Хання.

Гранаты эклогитов. Из гистограммы (рис. 3-12 в) видно: минимальное значение – 0,00, максимальное значение – 52,30. Распределение унимодальное, резко смещенное влево. Выделенные группы: 0,00 – 1,20 (перепад плотности значений); 1,21 – 16,00 (разрыв плотности значений); 16,01 – 52,30.

Повышенное содержание эклогитовых гранатов наблюдается всего в нескольких пробах – две пробы в верхнем течение реки Марха и по одной пробе в бассейнах рек Хання и Тюнкян (рис. 3-13 в). На всей остальной территории присутствуют пробы с умеренным содержанием эклогитовых гранатов. Бассейны двух рек – Мархара и Чимидикян имеют пониженное содержанием гранатов из эклогитов.

Гранаты мегакристовой ассоциации. При анализе гистограммы (рис. 3-12 г) выявлено следующее: минимальное значение – 0,00, максимальное значение – 36,00. Распределение полимодальное, асимметричное, слегка смещенное влево. Выделенные группы 0,00 – 8,20 (перепад плотности значений); 8,21 – 18,60 (перепад плотности значений); 18,61 – 36,00.

Пробы с повышенным содержанием гранатов мегакристовой ассоциации локализуются в бассейне реки Муна и реки Андай (рис. 3-13 г). На остальных участках распределение контрастное, за исключением реки Марха, на которой отсутствуют пробы с повышенным содержанием гранатов мегакристовой ассоциации.

Гранаты верлитов. Распределение унимодальное, асимметричное, резко смещенное влево (рис. 3-12 д). Минимальное значение – 0,00, максимальное

значение – 12,50. Выделенные группы: 0,00 – 0,30 (перепад плотности значений); 0,31 – 5,00 (разрыв плотности значений); 5,01 – 12,50.

Верлитовые гранаты встречаются главным образом в бассейне реки Марха (от умеренного до повышенного содержания) (рис. 3-13 д). Повышенные содержания наблюдаются в пробе рядом с устьем реки Мархара, а также на реке Делингдэкан. Несколько проб с умеренным содержанием наблюдаются на реках Муна, Чимидикян, Тюнг и Хання. На остальной территории отмечены пониженные содержания верлитовых гранатов (близкие к нулю).

Гранаты гарцбургит-дунитов графитовой фации глубинности. Распределение полимодальное, асимметричное, смещенное влево (рис. 3-12 е). Минимальное значение – 0,00, максимальное значение – 14,29. Выделенные группы: 0 – 3,00 (перепад плотности значений); 3,01 – 7,00 (разрыв плотности значений); 7,01 – 14,29.

Повышенные содержания гранатов данного парагенетического типа наблюдаются в бассейнах рек Мархара, Даныра, Эекит, Муна и Чимидикян (рис. 3-13 е). Пониженные содержания отмечены в бассейнах рек Тюнг (притоки – реки Арга-Тюнг, Тюнкян) и Хання.

Гранаты гарцбургит-дунитов алмазной фации глубинности. Распределение бимодальное, асимметричное, смещенное влево (рис. 3-12 ж). Минимальное значение – 0,00, максимальное значение – 18,75. Выделенные группы: 0 – 3,60 (перепад плотности значений); 3,61 – 8,00 (разрыв плотности значений); 8,01 – 18,75.

Повышенные содержания присутствуют лишь в бассейне реки Марха – в реке Даныра и реке Мархара (рис. 3-13 ж). Все остальные реки показывают, в целом, пониженный фон гранатов данного парагенетического типа. Пробы со средним содержанием локализуются в реках Чимидикян (4 пробы), Муна (2 пробы), Тюнг (1 проба), Тюнкян (2 проба), Хання (2 проба), Марха (6 проб). Однако, в целом, фон гранатов этого парагенезиса является пониженным.

Результаты анализа пространственного распределения парагенетических типов гранатов сведены в таблицу (табл. 3-2), в которой цифрами указано содержание парагенетического типа граната и преобладающий парагенетический тип в тяжелой фракции аллювия из бассейнов рек.

Рис. 3-12. Продолжение

Рис. 3-12. Продолжение

Рис. 3-12. Гистограммы распределения гранатовых парагенезисов в пробе (вертикальная ось – количество проб, горизонтальная ось – процентного содержание парагенезиса): а – глубинных лерцолитов, б – малоглубинных лерцолитов, в – эклогитов, г – мегакристовой ассоциации, д – верлитов, е – гарцбургит-дунитов графитовой фации глубинности, ж – гарцбургит-дунитов алмазной фации глубинности

Рис. 3-13. Продолжение

Рис. 3-13. Продолжение

Рис. 3-13. Продолжение

3.4 Минералогическое районирование Муно-Мархинского междуречья на основе парагенетического анализа гранатов

Выделение на Муно-Мархинском междуречье районов, однородных по распределению парагенетических типов гранатов в пробе, позволяет локализовать участки предположительного нахождения коренных источников. Данная задача решается в два этапа. Первый этап – выделение групп проб со схожим соотношением мантийных парагенетических типов гранатов. Второй этап – локализация площадей распределения этих проб.

Перед проведением районирования необходимо провести генерализацию всей имеющейся информации по пробам. Суть ее заключается в объединении

	1	2	3	4	5	6	7
Муна	2+	1	2	3	1+	2	1
Арга-Тюнг	2	1+	2	2	1	2	1
Тюнг	2	1	2	2	1	1	1
Тюнкян	1	1	2	2	1	1	1
Чимидикян	2+	2	1	2	1	2	2+
Андай	2	1	2	3	1	2	1
Даныра	3	1	1+	2	1	2	2
Эекит	2	1	2	2	1	1	1
Mapxapa	3	1	1	1	1+	3	3
Mapxa	2	1	2	2	2	1+	1
Хання	2	1	2	2	1	1	1
Дюлюспар	1	1	2	2	1	1	1

Табл. 3-2. Распределение парагенетических типов гранатов в бассейнах рек Муно-Мархинского междуречья. Содержание парагенетического типа граната в пробе: 1 – пониженное, 2 – умеренное, 3 – повышенное (знаком "+" обозначено переходное содержание; темным цветом показаны преобладающие парагенетические типы гранатов). Верхняя строка обозначает парагенетический тип гранатов: 1 – глубинных лерцолитов, 2 – малоглубинных лерцолитов, 3 – эклогитовый, 4 – мегакристовой ассоциации, 5 – верлитовый, 6 – гарцбургит-дунитовый графитовой фации глубинности.

близкорасположенных проб с малым количеством анализов в одну пробу с количеством анализов больше 100. Пробы с количеством анализов от 100 и выше

являются оптимальной выборкой. Таким образом, после процедуры генерализации из имеющихся изначально 120 проб получилась 81 проба. В таблице в Приложении 4 указаны названия новых проб, полученных путем объединения прежних. В Приложении 5 приводится таблица парагенетических типов гранатов для всех проб, включая новые объединенные. На рисунке 3-14 приводится карта положения новых объединенных проб.

На первом этапе необходимо разделить пробы так, чтобы внутри групп пробы были максимально схожи, а между собой группы (плотности сгущений) максимально различались. Для этого применен метод кластерного анализа по методу К-средних с предварительной стандартизацией. Количество кластеров задано 7 (Приложение 6). Предварительно было использовано 3, 4, 5 и 10 кластеров, однако указанное количество кластеров не позволяло корректно проинтерпретировать результат. При количестве кластеров < 7 группируются заведомо различные пробы (например, пробы р. Муна и р. Марха), при количестве кластеров > 7 в крупных водотоках (р. Марха, р. Хання, р. Тюнг) пробы сильно отличаются друг от друга, что не дает возможности проводить районирование. Семь кластеров дают оптимальный результат. На втором этапе пробы, соответствующие выделенным кластерам, были вынесены на карту и оконтурены площади, относительно однородные по распределению проб соответствующих кластеров. Оказалось, что такие площади охватывают бассейны рек и вытянуты вдоль них. Поэтому границы между площадями проведены по водоразделам, за исключением предполагаемой границы между Тюнгской И Ханнинской площадями, которая проведена частично по водоразделам, а частично на основе пространственного положения точек опробования (рис. 3-15). Необходимо отметить, что после проведения первичной кластеризации, выяснилось, что в отдельный кластер сгруппировались пробы, имеющие хотя бы одно зерно граната верлитового парагенезиса. Но на самом деле проб, содержащих гранаты

верлитового парагенезиса очень мало. При этом в таких пробах зачастую содержится всего несколько зерен граната верлитового парагенезиса (рис. 3-13 д), что можно рассматривать как статистическую ошибку, поэтому такие зерна были исключены из рассмотрения и кластеризации. Таким образом, были прокластеризованы лишь наборы из 6 парагенезисов: глубинных лерцолитов, малоглубинных лерцолитов, эклогитов, мегакристовой ассоциации, гарцбургитдунитов графитовой фации глубинности и гарцбургит-дунитов алмазной фации глубинности).

На втором этапе были локализованы области площадей более-менее однородных по распространению набора-кластера парагенетических групп гранатов. Все границы проведены по водоразделам, за исключением предполагаемой границы между Тюнгской и Ханнинской площадями, которая проведена частично по водоразделам, а частично на основе пространственного положения точек опробования.

Во время процедуры районирования не рассматривались два кластера: кластер 1, содержащий только одну пробу из ручья, дренирующего трубку Иреляхская Далдынского кимберлитового поля, поскольку источник данной пробы изначально известен, и кластер 6, содержащий 5 проб, который распределен по площади весьма хаотично, присутствует практически во всех районах и является статистическим выбросом. На полученной схеме видно, что районы Хання-Тюнгского междуречья, бассейна реки Муна, бассейна реки Марха правобережья распределению основных И реки Марха различаются по парагенетических типов гранатов, что позволяет выделить 5 перспективных на кимберлиты площадей: Мунская, Тюнгская, Ханнинская, Мархинская, Правобережная. Для каждой площади рассчитаны средние доли парагенезисов и дисперсии по доминирующим пробам (табл. 3-3, рис. 3-16). При подсчете средних значений рассматривались только те пробы, которые пространственно расположены внутри соответствующих площадей.

Плошаль	Кол-во		Парагенезисы						
площадв	проб		1	2	3	4	5	6	
Мархинская	14	ср. значение	58,50	7,54	11,86	14,09	4,38	3,62	
площадь	11	дисперсия	15,37	8,58	9,70	9,64	2,38	1,09	
Мунская	8	ср. значение	56,27	3,19	7,92	25,92	4,88	1,82	
площадь	0	дисперсия	16,34	2,10	16,16	7,88	0,84	2,06	
Правобережная	1	ср. значение	65,96	4,26	0,00	5,32	10,64	13,83	
площадь	1	дисперсия	-	-	-	-	-	-	
Тюнгская	16	ср. значение	59,54	19,33	2,97	12,85	2,99	2,32	
площадь	10	дисперсия	26,50	20,78	12,02	16,67	3,00	2,88	
Ханнинская	17	ср. значение	47,71	13,38	10,50	24,14	2,61	1,66	
площадь	площадь		35,38	8,46	16,84	17,88	2,42	1,04	

Табл. 3-3. Средние значения и дисперсии парагенезисов гранатов выделенных площадей. Парагенетические типы гранатов: 1 – глубинных лерцолитов; 2 – малоглубинных лерцолитов; 3 – эклогитов; 4 – мегакристовой ассоциации; 5 – гарцбургит-дунитов графитовой фации глубинности; 6 – гарцбургит-дунитов алмазной фации глубинности.

Таким Муно-Мархинское образом, междуречье ПО результатам парагенетического гранатов ИЗ кимберлитов анализа делится на ПЯТЬ относительно однородных площадей, что позволяет предполагать для каждой из них существование своих кимберлитовых тел или групп тел.

Все выделенные площади перспективны на коренную алмазоносность, поскольку на них найдены алмазы кимберлитового типа [Афанасьев и др., 2011] и присутствуют алмазной ассоциации [Соболев, 1971]. Различие гранаты выделенных площадей ПО набору парагенетических типов гранатов свидетельствует о различии коренных источников в их пределах. Вместе с тем, учитывая масштабы этих площадей, изученные шлиховые пробы являются интегральными и отражают наиболее вероятно не единичные кимберлитовые тела, а их кластеры или поля.

Из таблицы 3-3, рисунка 3-16 и 3-19 видно, что Мархинская, Мунская, Правобережная площади различаются между собой и каждая из них отличается от пары Ханнинская-Тюнгская площади. При этом проба из Правобережной

Рис. 3-16. Начало

Рис. 3-16. Графики средних значений содержаний парагенезисов на площадях. Вертикальная ось – содержание парагенезиса; горизонтальная ось – парагенетический тип: 1 – глубинных лерцолитов, 2 – малоглубинных лерцолитов, 3 – эклогитов, 4 – мегакристовой ассоциации, 5 – гарцбургит-дунитов графитовой фации глубинности, 6 – гарцбургит-дунитов алмазной фации глубинности

площади выделяется особенно, поскольку в ней полностью отсутствуют гранаты эклогитовых парагенезисов, а содержание гранатов гарцбургит-дунитов алмазной фации глубинности составляет 13,83% – самое большое из всех проб для данной территории.

На диаграммах CaO-Cr₂O₃ (рис. 3-17), построенных для гранатов каждой площади, также хорошо видно, что пробы Тюнгской и Ханнинской площадей отличаются от проб всех остальных площадей по наличию тренда гранатов малоглубинных лерцолитов (верхняя ветвь «вилки» в распределении точек

составов гранатов в лерцолитовом поле). При этом между собой Тюнгская и Ханнинская площади практически не различимы на диаграмме CaO-Cr₂O₃. Но различия между ними хорошо видны по распределению парагенетических типов гранатов (рис. 3-18). Для их сопоставления был посчитан t-критерий (критерий Стьюдента) для каждого парагенезиса по формуле:

$$t = (\overline{X_a} \cdot \overline{X_b}) * 1 \sqrt{\sigma_a^2 / N_a + \sigma_b^2 / N_b},$$

где $\overline{X_a}$ – среднее значение выборки *a* (пробы Тюнгской площади), $\overline{X_b}$ – среднее значение выборки *b* (пробы Ханнинской площади), σ_a – дисперсия выборки *a*, σ_b - дисперсия выборки *b*, N_a – количество проб Тюнгской площади, N_b - количество проб Ханнинской площади.

Принимая во внимание количество степеней свободы К=33 (16 проб по Тюнгской площади и 17 проб по Ханнинской площади), критические значения tкритерия Стьюдента принимаются равными 2,035 (при значениях меньше 2,035 сходство считается применимым) и 2,733 (при значениях больше 2,733 сходство считается отвергнутым) [Крамер, 1975]. Полученные значения t-критерия представлены в таблице 3-4.

Парагенетический тип гранатов	1	2	3	4	5	6
t _{ĸp}	6,12	4,44	5,70	7,80	0,66	1,34

Табл. 3-4. t-критерий для проб Тюнгской и Ханнинской площадей. Парагенетические типы гранатов: 1 – глубинных лерцолитов; 2 – малоглубинных лерцолитов; 3 – эклогитов; 4 – мегакристовой ассоциации; 5 – гарцбургит-дунитов графитовой фации глубинности; 6 – гарцбургит-дунитов алмазной фации глубинности.

Рис. 3-17. Начало

Рис. 3-17. Продолжение

Рис. 3-17. Состав гранатов из шлиховых проб Муно-Мархинского междуречья, графики по [Соболев, 1971]: а – Мархинская площадь, б – Мунская площадь, в – Правобережная площадь, г – Тюнгская площадь, д – Ханнинская площадь

Рис. 3-18. Графики средних значений содержаний парагенезисов на Тюнгской и Ханниской площадях. Вертикальная ось – содержание парагенезиса; горизонтальная ось – парагенетический тип: 1 – глубинных лерцолитов, 2 – малоглубинных лерцолитов, 3 – эклогитов, 4 – мегакристовой ассоциации, 5 – гарцбургит-дунитов графитовой фации глубинности, 6 – гарцбургит-дунитов алмазной фации глубинности

Таким образом, таблицы 3-4 ИЗ видно, что ПО четырем ИЗ шести парагенетическим типам гранатов Тюнгская И Ханнинская площади различаются. Это с высокой долей вероятности означает, что данные содержат площади

Рис. 3-19. Графики содержаний парагенетических типов гранатов в пробах из крупных рек Муно-Мархинского междуречья. Парагенезисы: 1 – глубинных лерцолитов, 2 – малоглубинных лерцолитов, 3 – эклогитов, 4 – мегакристовой ассоциации, 5 – гарцбургит-дунитов графитовой фации глубинности, 6 – гарцбургит-дунитов алмазной фации глубинности

ИМК двух различных кимберлитовых тел (групп кимберлитовых тел).

Мунская площадь безусловно является ореолом рассеяния Верхнемунского поля, поскольку интегральная проба Верхнемунского поля 8024 (рис. 3-14), которая взята из русла реки Улах-Муна, сразу после последней трубки, попадает в один кластер (рис. 3-15) с пробами Мунской площади. Однако, важно узнать – насколько схожи между собой распределения парагенезисов гранатов в конкретных трубках Верхнемунского поля и Мунской площади. Для этого были взяты данные лаборатории 451 ИГМ СО РАН по микрозондовому анализу гранатов из трубок «Поисковая» и «Новинка» Верхнемунского кимберлитового поля. На основе этих данных был сделан парагенетический анализ по выше указанной методике (табл. 3-5).

Необходимо подчеркнуть, что нашей задачей является проверить только насколько схожи углы на графиках парагенезисов, т.е. проверить схожесть тенденций в распределении парагенезисов. В таблице 3-5 представлены результаты парагенетического анализа гранатов этих трубок.

	Парагенезисы						
Кимберлитовая трубка	1	2	3	4	5	6	
тр. Поисковая	63,30	2,12	6,53	21,04	5,55	1,47	
тр. Новинка	58,68	7,60	6,78	16,53	7,11	3,31	
Среднее значение	60,99	4,86	6,65	18,76	6,33	2,39	

Табл. 3-5. Результаты парагенетического анализа гранатов кимберлитовых трубок Верхнемунского и Далдынского полей. Парагенезисы: 1 – глубинных лерцолитов, 2 – малоглубинных лерцолитов, 3 – эклогитов, 4 – мегакристовой ассоциации, 5 – гарцбургитдунитов графитовой фации глубинности, 6 – гарцбургит-дунитов алмазной фации глубинности

Для сравнения парагенезисов гранатов трубок и площадей были построены графики парагенезисов (рис. 3-20). Из графика на рисунке 3-20, где сравниваются Мунская площадь и средние значения парагенезисов тр. Поисковая и тр. Новинка, хорошо видно, что имеет место схожесть углов графиков, т.е. общие тенденции действительно схожи.

Рис. 3-20. Графики распределения средних значений содержания парагенезисов Мунской площади, тр. Поисковая и тр. Новинка. Вертикальная ось – содержание парагенезиса; горизонтальная ось – парагенетический тип: 1 – глубинных лерцолитов, 2 – малоглубинных лерцолитов, 3 – эклогитов, 4 – мегакристовой ассоциации, 5 – гарцбургит-дунитов графитовой фации глубинности, 6 – гарцбургит-дунитов алмазной фации глубинности

Таким образом, из пяти выделенных площадей по результатам минералогического районирования, перспективными на открытие новых кимберлитовых полей являются четыре: Тюнгская, Ханнинская, Мархинская и Правобережная. Самой перспективной из них по результатам проведенных исследований является Правобережная (содержание гранатов гарцбургит-дунитов алмазной фации глубинности > 13%).

Интересно, что выделенные площади вытянуты в восточных - юго-восточных румбах в соответствии с течением рек. Поэтому необходимо учитывать возможность смещения индикаторных минералов вниз по течению рек. О реальности такого смещения свидетельствуют результаты исследований карста Муно-Мархинской площади [Афанасьев и др., 2001]. Установлено, что в самых верховьях реки Тюнг (выше верхней пробы на рис. 3-15) в русловом аллювии отсутствуют не только ИМК, но и в целом минералы тяжелой фракции, в том числе лимонит, рудная (магнетитовая) пыль, мелкие верхнекоровые альмандины – неизменные составляющие обычной шлиховой пробы. Эта же ситуация наблюдается в верховьях реки Эекит и реки Арга-Тюнг. Весь типичный набор минералов присутствует лишь в реликтах карстовых депрессий. Это означает, что во время развития руслового процесса минералы тяжелой фракции были полностью вынесены вниз по течению, видимо на достаточно значительное расстояние (возможно десятки километров), по мере размыва нижнеюрских отложений, которые ранее занимали огромную территорию и были основным древним коллектором ИМК. Генеральное направление перемещения определяется как юго-восточное [Плотникова и др., 1965], связанное с развитием Анабарской антеклизы наряду с развитием Вилюйской синеклизы (данный факт был установлен при исследовании М.И. Плотниковой водораздельных галечников территории Марха-Тюнгского междуречья, которая граничит с территорией исследований автора на юго-востоке). В этом процессе юрские отложения, занимавшие обширные территории, постепенно размывались, начиная с северозападных флангов, а продукты размыва смещались в юго-восточном направлении (рис. 3-21). Это объясняет вытянутость перспективных площадей вдоль русел рек и их в целом юго-восточное направление. Из этого следует также, что кимберлитовые тела могут быть и за пределами распространения ИМК в северозападных румбах, поэтому границы площадей в этом направлении следует оставлять открытыми.

Рис. 3-21. Основные направления сноса обломочного материала Муно-Мархинского междуречья с позднего мела по неоген (K₂ – N) (по [Плотникова и др., 1965]). (Стрелки – направления сноса)

К северо-западу на продолжении Ханнинской и Тюнгской площадей проходит Далдыно-Оленекская кимберлитоконтролирующая зона разломов [Брахфогель, 1984; Горев, 1998] (рис. 3-22), которая контролирует положение Алакит-Мархинского, Далдынкого и Верхнемунского кимберлитовых полей. С большой вероятностью можно предположить, что новые кимберлитовые поля располагаются в этой зоне на продолжении Ханнинской и Тюнгской площадей.

Также необходимо учитывать то, что бо́льшая часть этой зоны находится в области повышенной расчлененности рельефа, следовательно, от возможных кимберлитов будут образовываться протяженные механические потоки рассеяния

ИМК прямого сноса, которые можно будет обнаружить стандартными объемами опробования.

Рис. 3-22. Схема геоморфологического районирования, минералогического районирования и кимберлитоконтролирующих зон разломов Муно-Мархинского междуречья (зоны разломов по [Брахфогель, 1984; Горев, 1998])

Таким образом, суммируя главу можно констатировать следующее: первый опыт использования парагенетического анализа гранатов из кимберлитов для минералогического картирования и районирования алмазоносных площадей дал хорошие результаты. Впервые объективно, на представительном материале, площадь Муно-Мархинского междуречья разделена на относительно однородные участки, перспективные на обнаружение кимберлитовых тел. Метод парагенетического анализа показал высокую перспективность использования и может стать необходимым элементом при изучении алмазоносных площадей.

ЗАКЛЮЧЕНИЕ

В ходе проведенных исследований получены следующие результаты:

1. Разработанная районирования методика территории по степени горизонтальной расчлененности рельефа позволяет решать ряд вопросов по комплексному морфометрическому анализу рельефа территории, а также уточнения типов поисковых обстановок кимберлиты. Основным на преимуществом данной методики является то, что исходным материалом является только ЦМР. Данная методика может применяться для любой территории.

2. Характер ореолов индикаторных минералов и условия опробования руслового аллювия на открытых площадях зависят от рельефа, в первую очередь степени горизонтальной расчлененности, отражающей ОТ активность современных эрозионных процессов. Муно-Мархинское междуречье дифференцировано по степени горизонтальной расчлененности рельефа, что определяет различную эффективность минералогических поисков: бассейны рек Хання и Тюнг характеризуются низкой активностью эрозионных процессов, в том числе эрозии возможных кимберлитов, соответственно низкой эффективностью поисков (отсутствуют ИМК прямого сноса); бассейн реки Муна имеет повышенную активность эрозионных процессов и высокую результативность поисков (присутствует смесь ИМК прямого сноса и переотложенных).

3. Среди гранатов пироп-мальмандинового ряда Муно-Мархинского междуречья выделено шесть парагенетических типов: глубинных лерцолитов, малоглубинных лерцолитов, эклогитов, мегакристовой ассоциации, гарцбургитдунитов графитовой фации глубинности и гарцбургит-дунитов алмазной фации глубинности. Неоднородность площади по распределению парагенетических типов гранатов служит критерием идентификации механических ореолов рассеяния кимберлитов.

4. Создана база данных по микрозондовому анализу и парагенетическому анализу гранатов из шлиховых проб аллювия территории Муно-Мархинского междуречья, в основу которой легли накопленные многолетние данные по химизму гранатов лаб. № 451 ИГМ СО РАН, а также собственные данные автора. База данных использована для прогнозирования коренных источников алмазов Муно-Мархинского междуречья.

5. Муно-Мархинское междуречье по результатам парагенетического анализа гранатов из кимберлитов и минералогического районирования разделена на пять площадей. Различие выделенных площадей по соотношениям содержания парагенетических типов гранатов в шлиховых пробах свидетельствует о различии коренных источников в их пределах. Для четырех из них (Тюнгская, Ханнинская, Мархинская, Правобережная) источниками являются новые алмазоносные кимберлитовые поля.

6. По результатам сравнения содержаний парагенетических типов гранатов в пробах на выделенных площадях, а также в известных кимберлитовых трубках 1) значений установлено, что: соотношения средних содержания парагенетических типов гранатов в тр. Поисковая и тр. Новинка (Верхнемунское кимберлитовое поле) схожи с соотношением содержаний парагенетических типов гранатов Мунской площади; 2) Тюнгская площадь отличается от Ханнинской площади по содержанию четырех из шести парагенетических типов гранатов. Это с высокой долей вероятности означает, что данные площади содержат ИМК двух различных кимберлитовых тел (групп кимберлитовых тел); 3) Содержание парагенетических типов гранатов в пробах Правобережной площади отличается от всех остальных проб Муно-Мархинского междуречья отсутствием гранатов парагенезиса и большим содержанием (13,83 %) гранатов ЭКЛОГИТОВОГО гарцбургит-дунитов алмазной фации глубинности, что весьма оптимистично для оценки потенциальной алмазоносности ее коренного источника.

7. Неизвестные кимберлитовые поля, ореолами рассеяния которых являются Тюнгская и Ханнинская площади, возможно, располагаются к северо-западу от

указанных площадей, на их продолжении, в Далдыно-Оленекской кимберлитоконтролирующей зоне разломов. Бо́льшая часть этой области характеризуется сильной расчлененностью рельефа, следовательно, от возможных кимберлитов здесь будут образовываться протяженные механические потоки рассеяния ИМК прямого сноса, которые можно будет обнаружить стандартными объемами опробования.

СЛОВАРЬ ТЕРМИНОВ

Метод скользящего окна – локальное усреднение показателя, позволяющее снять влияние случайных явлений с эмпирических кривых и вскрыть закономерные пространственные изменения изучаемого признака. Наблюдаемые в ближайших точках (в пределах окна) данные суммируются и делятся на число точек в окне; полученное значение присваивается средней точке. Затем в заданном направлении окно перемещается на одну точку и операция повторяется. Размер окна зависит от характера распределения [Баранов, 1999].

Расчленение горизонтальное – плотность и густота долинной сети [Тимофеев, 1977]. В данной работе горизонтальная расчлененность, в значительной мере, определяется густотой гидросети, т.е. количеством водотоков, дренирующих данную местность.

Угол склона (крутизна склона, градиент) (англ. «slope») – одна из морфометрических характеристик пространственной ориентации элементарного склона, вычисляемая в процессе обработки цифровой модели рельефа; выражается в градусах или безразмерных величинах уклонов, равных тангенсам углов наклона [Баранов, 1999; Чандра, 2008].

Уступ рельефа (ребро рельефа) – линии пересечения двух граней рельефа [Тимофеев, 1977]. В данной работе ребрами являются русла рек, тальвеги, суходолы, хребты на водоразделах.

Цифровая модель рельефа (ЦМР, digital elevation model, DEM) – средство цифрового представления трехмерных пространственных объектов в виде трехмерных данных как совокупности высот в узлах регулярной сети с образованием матрицы высот. Обработка ЦМР служит для получения производных морфометрических или иных данных, включая вычисление углов наклона и экспозиции склона [Баранов, 1999].

Экспозиция склона (англ. «aspect») – одна из морфометрических характеристик пространственной ориентации элементарного склона, численно

равная азимуту проекции нормали склона на горизонтальную плоскость, т.е. азимуту падения склона [Баранов, 1999].

СПИСОК ЛИТЕРАТУРЫ

- Агашев А. М., Похиленко Н. П., Толстов А. В., Поляничко В. В., Мальковец
 В. Г., Соболев Н. В. Новые данные о возрасте кимберлитов Якутской алмазоносной провинции // Доклады Академии наук. 2004. Т. 399, № 1. С. 95-99.
- Апродов В.А. Рудный карст // Общие вопросы карстоведения. М.: Изд-во АН СССР. – 1962. – С. 15-24.
- Афанасьев В.П. Закономерности эволюции кимберлитовых минералов и их ассоциаций при формировании шлиховых ореолов // Геология и геофизика. 1991. № 2. С. 78-85.
- Афанасьев В.П. К методике минералогического картирования шлиховых ореолов кимебрлитовых тел // Геология и геофизика. 1989. № 5. С. 35-42.
- Афанасьев В.П. О механическом износе кимберлитовых минералов в шлихах // Сов. Геология. – 1986. – № 10. – С. 81-87.
- Афанасьев В.П. Типизация шлихо-минералогических поисковых обстановок Якутской алмазоносной провинции // Сов. Геология. – 1989. – № 1. – С. 24-33.
- 7. Афанасьев В.П., Бабенко В.В. Миграционные свойства кимберлитовых минералов // Доклады АН СССР. 1988. Т. 303, № 3. С. 714-718.
- Афанасьев В.П., Борис Е.И. Некоторые закономерности формирования древних ореолов рассеяния кимберлитовых минералов // Сов. Геология. – 1984. – № 6. – С. 92-98.

- Афанасьев В.П., Варламов В.А., Гаранин В.К. Зависимость износа кимберлитовых минералов от условий и дальности транспортировки // Геология и геофизика. – 1984. – № 10. – С. 119–125.
- Афанасьев В.П., Зинчук Н.Н. Основные литодинамические типы ореолов индикаторных минералов кимберлитов и обстановки их формирования // Геология рудных месторождений. – 1999. – Т. 41, № 3. – С. 281–288.
- Афанасьев В.П., Зинчук Н.Н. Проблемы шлихо-минералогических поисков месторождений алмазов на закрытых территориях Якутии // Руды и металлы. 1996. № 6 С. 25-32.
- Афанасьев В.П., Зинчук Н.Н., Похиленко Н.П. Морфология и морфогенез индикаторных минералов кимберлитов. – Новосибирск: Филиал «Гео» Изд. СО РАН. – 2001. – С. 210-227.
- Афанасьев В.П., Зинчук Н.Н., Похиленко Н.П. Поисковая минералогия алмаза. – Новосибирск, Академическое изд. «Гео». – 2010. – С. 515-545.
- Афанасьев В.П., Зинчук Н.Н., Похиленко Н.П., Кривонос В.Ф., Яныгин Ю.Т. Роль карста в формировании россыпной алмазоносности Муно-Мархинского междуречья (Якутская алмазоносная провинция, Россия) // Геология рудных месторождений. – 2001. – № 3. – С. 262-267.
- Афанасьев В.П., Зинчук Н.Н., Харькив А.Д., Соколов В.Н. Закономерности изменения мантийных минералов в коре выветривания кимберлитовых пород // В сб. «Минерагения зоны гипергенеза». – М.: Наука. – 1980. – С.45-54.
- Афанасьев В.П., Лобанов С.С., Похиленко Н.П., Коптиль В.И., Митюхин С.И., А.В.Герасимчук, Помазанский Б.С., Горев Н.И. Полигенез алмазов Сибирской платформы // Геология и Геофизика. – 2011. – Т.52, № 3 – С. 335-353.

- Афанасьев В.П., Логвинова А.М., Зинчук Н.Н. Эффект коррозионного растрескивания минералов // Изв. Вузов. Геология и разведка. – 2000. – №3 – С. 43-52.
- Афанасьев В.П., Николенко Е.И., Тычков Н.С., Титов А.Т., Толстов А.В., Корнилова В.П., Соболев Н.В. Механический износ индикаторных минералов кимберлитов: экспериментальные исследования // Геология и геофизика. – 2008. – Т. 49, № 2. – С. 120–127.
- Афанасьев В.П., Самданов Д.А., Зольников И.Д., Глушкова Н.В., Егорова Е.О. Поиски месторождений алмазов: роль рельефа в формировании поисковых обстановок // Отечественная геология. 2012. № 3. С. 25-30.
- Афанасьев В.П., Сибирцев Ю.М., Егоров А.Ю. О кимберлитовых минералах из древних прибрежно-морских коллекторов // Изв. вузов. Геология и разведка. – 1986. – № 2. – С. 48-55.
- Афанасьев В.П., Цыганов В.А., Бабенко В.В. Методика минералогического картирования древних шлиховых ореолов при прогнозировании погребенных кимберлитовых тел // Труды ЦНИГРИ. – 1991. – вып. 250. – С. 57-71.
- Афанасьев В.П., Яныгин Ю.Т. О погребенных первичных потоках рассеяния кимберлитовых тел в Мало-Ботуобинском районе // Геология и геофизика. 1983. № 6. С. 85-90.
- Баранов Ю.Б., Берлянт А.М., Капралов Е.Г., Кошкарев А.В., Серапинас Б.Б., Филиппов Ю.А. Геоинформатика. Толковый словарь основных терминов. – М.: ГИС-Ассоциация – 1999. – С. 28, 85, 90, 92.
- 24. Бобриевич А.П., Бондаренко М.Н., Гневушев М.А. и др. Алмазные месторождения Якутии. М.: Госгеолтехиздат. 1959. С. 129, 525.
- 25. Брахфогель Ф.Ф. Геологические аспекты кимберлитового магматизма северо-востока Сибирской платформы. – Якутск: Изд-во ЯФ СО АН СССР. – 1984. – С. 128

- Геологическая карта Российской Федерации масштаба 1:2500000. Гл. ред. Наливкин Д.В., ВСЕГЕИ. – 2007.
- 27. Геологическая карта Сибирской платформы и прилегающих территорий масштаба 1:1 500 000. Под ред. Малича Н.С. 1999.
- 28. Глушкова Н.В., Лямина В.А., Зольников И.Д., Добрецов Н.Н., Афанасьев В.П. Самданов Д.А., Болдырев И.И., Семенова С.А. Использование цифровых моделей рельефа для решения задач четвертичной геологии и геоморфологии Сибири // Квартер во всем его многообразии. Фундаментальные проблемы, итоги изучения и основные направления дальнейших исследований. Т. 1 (А-К): Материалы VII Всероссийского совещ. по изучению четвертичного периода (г. Апатиты, 12-17 сент. 2011 г.). Апатиты. 2011. С. 131-134.
- Горев Н.И. Кимберлитоконтролирующие зоны северо-востока Сибирской платформы. // В сб. «Геология, закономерности размещения, методы прогнозирования и поисков месторождений алмазов». – Мирный. – 1998. – С. 246-248.
- 30. Давыденко Д.Б. Морфометрическая модель поднятий конседиментационного типа как один из вариантов геолого-математического моделирования // Геоинформатика. 2008. № 3. С. 41.
- Девдариани А.С. Математический анализ в геоморфологии. М.: Недра. 1967. – С. 23-65.
- 32. Егорова Е.О., Афанасьев В.П., Самданов Д.А. Закономерности транспортировки индикаторных минералов при формировании механических ореолов рассеяния // Руды и металлы. – 2013. – № 6. – С. 35-39.
- 33. Крамер Г. Математические методы статистики. М.: Мир. 1975. С. 611.

- 34. Кривонос В.Ф., Федоров П.Т. Новые данные о природе локальных магнитных аномалий трубочного типа на восточном склоне Анабарской антеклизы // Геологи и геофизика. – 1971. – № 6. – С. 96-104.
- 35. Липатова В.А., Афанасьев В.П. Минералогическое и палинологическое обоснование существования досреднекарбоновых промежуточных коллекторов кимберлитовых минералов на севере Мало-Ботуобинского района // Доклады АН СССР. 1986. Т. 288, № 6. С. 1453-1456.
- 36. Николенко Е.И. Типоморфизм индикаторных минералов кимберлитов Муно-Мархинского междуречья: экзогенная эволюция, поисковая значимость: канд. дис. ... канд. геол.-мин. наук. ИГМ СО РАН, Новосибирск, 2008. – С. 5.
- Новиков И.С. Рельеф анабарской антеклизы в бассейне нижнего течения р. Большая Куонамка // Геология и геофизика. – 1995. – Т. 36, № 11. – С. 125-130.
- Новиков И.С. Этапы денудации и кайнозойская эволюция рельефа северовосточной части Анабарской антеклизы // Геология и геофизика. 1997. Т. 38, № 9. С. 1465-1474.
- 39. Плотникова М.И., Кардопольцева О.И., Салтыков О.Г., Уманец В.Н., Глушковский И.Б. Стратиграфия и литология «водораздельных галечников» Мархино-Тюнгского междуречья и палеогеография времени их накопления в связи с историей формирования алмазоносных россыпей в центральной и северо-восточной частях Сибирской плат формы // Геология алмазных месторождений. – М.: Изд-во АН СССР. – 1963. – С. 123-141.
- Подвысоцкий В.Т., Зинчук Н.Н., Афанасьев В.П. Морфологические особенности индикаторных минералов. Мирный, ЯНИГП ЦНИГРИ АК «АЛРОСА». 2000. С. 70.
- Прокопчук Б.И., Левин В.И., Метелкина М.П., Шофман И.Л. Древний карст и его россыпная минерагения. – М.: Наука. – 1985.

- 42. Прокопьев А.В., Парфенов Л.М., Томшин М.Д., Колодезников И.И. Чехол Сибирской платформы и смежных складчато-надвиговых поясов // В кн. «Тектоника, геодинамика и металлогения территории Республики Саха (Якутия)». – М.: МАИК «Наука/Интерпериодика». – 2001. – С. 113-125.
- 43. *Розен О.М., Манаков А.В., Зинчук Н.Н.* Сибирский кратон: формирование, алмазоносность. М.: Научный мир. 2006. С. 12-19.
- 44. Самданов Д.А. Комплексирование тектонических и минералогических критериев локализации алмазоносных кимберлитов на примере Якутской алмазоносной провинции // Тезисы докладов XLVIII Международной научной студенческой конференции «Студент и научно-технический прогресс». Новосибирск: НГУ. – 2010. – С. 128-129.
- 45. Самданов Д.А. Методика геоморфологического построения схем районирования алмазоносных территорий для оценки поисковых обстановок // Тезисы докладов XLIX Международной научной студенческой конференции «Студент и научно-технический прогресс». Новосибирск: НГУ. -2011. - C. 84.
- 46. Самданов Д.А., Афанасьев В.П., Тычков Н.С., Похиленко Н.П. Минералогическое районирование алмазоносных территорий: опыт применения парагенетического анализа гранатов из кимберлитов // Доклады Академии Наук. – 2016. – Т. 467. – № 2.
- 47. Самданов Д.А., Глушкова Н.В. Анализ цифровых моделей рельефа при геоморфологическом районировании территории по степени расчлененности рельефа для оптимизации поиска алмазоносных россыпей // Тезисы докладов XV Международного симпозиума студентов и молодых ученых им. академика М.А. Усова «Проблемы геологии и освоение недр». Томск: ТПУ. 2011. Т. №1 С. 461-462.
- 48. Самданов Д.А., Глушкова Н.В. Геоморфологическое районирование Муно-Мархинского междуречья (Якутия) с использованием ГИС. // Электронный
сборник тезисов докладов Пятой Сибирской международной конференции молодых ученых по наукам о Земле. Новосибирск: ИГМ СО РАН, ИНГГ СО РАН. – 2010.

- 49. Свидетельство о регистрации Базы данных № 2013621023. Гранаты Муно-Мархинского междуречья (Республика Саха) / Самданов Д.А., Похиленко Н.П., Афанасьев В.П., Тычков Н.С., Николенко Е.И., Черемных Л.В.; заявитель и правообладатель Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, опубл. 20.09.2013.
- 50. Соболев Н.В. О минералогических критериях алмазоносности кимберлитов // Геология и геофизика. – 1971 (3). – С. 70-80.
- 51. Соболев Н.В. Парагенетические типы гранатов. М.: Наука. 1964. С. 218
- 52. Соболев Н.В., Лаврентьев Ю.Г., Поспелова Л.Н., Соболев Е.В. Хромовые пиропы из алмазов Якутии // ДАН СССР. 1969. Т. 189, № 1. С. 162-165.
- 53. Соколов С.В., Юрченко Ю.Ю. Цифровая модель рельефа как основа районирования территорий по условиям ведения геохимических работ (на примере малого Хингана, Дальний восток) // Геоинформатика. 2010. № 4. С. 54-56.
- 54. Тимофеев Д.А., Уфимцев Г.Ф., Онухов Ф.С. Терминология общей геоморфологии. М.: Наука. 1977. С. 33, 100.
- 55. Тычков Н.С., Похиленко Н.П., Кулигин С.С., Малыгина Е.В. Особенности состава и происхождение пиропов аномального состава из лерцолитов (свидетельства эволюции литосферной мантии Сибирской платформы) // Геология и геофизика. 2008. Т. 49. № 4. С. 302-318.
- Хаин В.Е. Региональная геотектоника. Внеальпийская Азия и Австралия. М.: Недра. – 1979. – С. 7-19.

- 57. *Хмельков А.М.* Основные минералы кимберлитов и их эволюция в процессе ореолообразования. Новосибирск: АРТА. 2008. С. 161-176.
- 58. Чандра А.М., Гош С.К. Дистанционное зондирование и географические информационные системы. М.: Техносфера. 2008. С. 224-229.
- 59. Шамшина Э.А. Коры выветривания кимберлитовых пород Якутии. Новосибирск: Наука. – 1979. – С. 151.
- 60. Штех В.Г. Глубинное строение и история тектонического развития Вилюйской впадины. Изд. «Наука» Москва. 1965. С. 82.
- 61. Юшкин Н.П. Топоминералогия. М.: Недра 1982. С. 288.
- 62. Dawson J.B. & Stephens W.E. Statistical classification of garnets from kimberlite
 // J. Geol. 1975. № 83. p. 589-605.
- Grütter H., Latti D., Menzies A. Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry // Journal of Petrology. 2006. № 47. p. 801–820.
- Kuenen Ph.H. Experimental abrasion of sand grains // International Geological Congress: Report of the Twenty-First Ses. Norden. 8 Submarine Geology. Copenhagen. – 1960.
- Kuenen Ph.H. Experimental abrasion on sand // Amer. J. Sci. 1959. Vol. 257. –
 p. 212
- 66. Pokhilenko N.P., Sobolev N.V. Mineralogical criteria for kimberlite diamond grade // Kimberlites of Yakutia. Novosibirsk. 1995. p. 79-81.
- 67. Samdanov D.A., Tychkov N.S., Glushkova N.V. Structural-geomorphological zoning of Yakutian diamond province central part using GIS // Proceedings of "The 6th International Siberian Early Career GeoScientists Conference", 9 23 June, Novosibirsk, Russia. 2012. p. 240.

- Schulze D.J. A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds // Lithos v. 71. 2003. p. 195-213.
- 69. Schulze D.J. The Significance of Eclogite and Cr-poor Megacryst Garnets in Diamond Exploration // Explor. Mining Geol. 1997. Vol. 6, № 4. p. 349-366.

			Координаты Проз		Прозна инанрорании на	Кол-во
N⁰	Проба	Место			гранализированные	элементов в
			E°	N°	i pana i bi	анализе
1	801	Андай	116,48	65,69	51	9
2	808	Андай	116,46	65,69	24	9
3	812	Андай	116,40	65,73	27	9
4	T-21	Арга-Тюнг	117,02	66,65	132	4
5	734	Арга-Тюнг	116,42	66,89	77	9
6	AT-5	Арга-Тюнг	115,57	66,98	79	6
7	AT-12	Арга-Тюнг	115,79	66,96	200	6
8	AT-4	Арга-Тюнг	115,43	66,98	135	6
9	m\o 131	В.Солокут	118,90	66,23	116	6
10	130	В.Солокут	118,83	66,23	34	6
11	31a	В.Солокут	118,83	66,23	13	6
12	25	В.Солокут	118,83	66,23	11	6
13	744	Далдыкан (Тюнг)	117,50	66,90	60	6
14	844	Далдыкан (Тюнг)	117,58	66,84	34	6
15	1817	Даныра	115,32	66,02	38	6
16	1250	Джулуспар (Тюнг)	116,24	66,64	39	6
17	P-4	Джулуспар (Тюнг)	116,30	66,58	198	4
18	720	Дюлюспар (Хання)	116,28	66,08	204	9
19	721	Дюлюспар (Хання)	116,29	66,05	132	9
20	601	Дюлюспар (Хання)	116,24	66,13	161	6
21	907	Дюлюспар (Хання)	116,28	66,16	64	9
22	908	Дюлюспар (Хання)	116,28	66,17	41	9
23	199	Марха	114,97	65,78	121	6
24	191	Марха	114,81	65,89	36	6
25	183	Марха	114,70	65,94	88	6
26	122	Марха	115,43	65,69	32	9
27	125	Марха	115,47	65,71	29	9
28	137	Марха	115,32	65,57	137	6
29	225	Марха	115,31	65,69	246	6
30	227	Марха	115,43	65,51	142	6
31	238	Марха	115,55	65,41	167	6
32	E-64	Марха	114,31	66,27	22	6
33	E-67	Марха	114,39	66,24	107	6
34	E-70	Марха	114,50	66,20	200	6
35	14332	Марха	113,20	66,29	156	9
36	14334	Марха	113,52	66,37	154	9
37	14380	Mapxa	114,72	65,99	153	9
38	14532	Mapxa	114,64	66.10	160	9
39	14561	Mapxa	115.12	65.76	156	9

Таблица шлиховых проб Муно-Мархинского междуречья

			Координаты		Проанализированные	Кол-во
N⁰	Проба	Место	E°	N°	гранаты	элементов в янализе
40	14310	Марха	112.39	66.07	64	9
41	14318	Mapxa	112.31	66.17	174	9
42	14510	Mapxa	112.52	66.18	128	9
43	14375	Mapxa	114.72	66.00	146	9
44	14397	Mapxa	115.12	65.79	127	9
45	14618	Mapxa	114,75	65,99	136	9
46	14626	Mapxa	114.75	65.99	79	9
47	MN-20	Муна	116,02	67,29	101	9
48	8028	Муна	115,23	67.32	312	9
49	А	Муна	115,22	67,33	170	9
50	MN-038	Муна	116.31	67.26	130	9
51	MN-049	Муна	116.87	67.24	184	9
52	8024	Муна	115,14	67.30	191	9
53	8051	Муна	115,83	67.29	231	9
54	MN-12	Муна	115.14	67.35	208	9
55	MN-017	Муна	115,62	67.31	188	9
56	MN-054	Муна	117,18	67,24	158	9
57	MN-057	Муна	117,27	67,24	138	9
58	MN-069	Муна	118,06	67,43	110	9
59	MN-319	Муна	118,07	67,45	109	9
60	AG-33	Правобережье	114,35	65,32	8	9
61	AG-47	Правобережье	114,44	65,45	18	9
62	AG-50	Правобережье	114,41	65,47	68	9
63	Т-К-8	Тюнг	115,57	66,63	89	4
64	Т-К-7	Тюнг	115,55	66,65	76	4
65	P-2	Тюнг	116,35	66,58	172	4
66	P-10	Тюнг	116,70	66,60	51	4
67	T-35	Тюнг	117,43	66,67	147	4
68	T-22	Тюнг	117,07	66,63	185	4
69	T-36	Тюнг	117,58	66,64	217	4
70	23	Тюнг	118,39	66,45	300	4
71	28	Тюнг	118,67	66,49	31	4
72	21	Тюнг	118,43	66,46	132	4
73	32	Тюнг	118,83	66,46	157	4
74	T-5\96	Тюнг	114,84	66,84	26	6
75	506	Тюнг	118,61	66,49	140	9
76	520	Тюнг	118,71	66,49	79	9
77	1085	Тюнг	115,18	66,77	73	9
78	1100	Тюнг	115,72	66,57	61	9
79	1121	Тюнг	116,31	66,57	57	9
80	523	Тюнгкян	117,43	66,28	70	6
81	623	Тюнгкян	117,18	66,29	118	6
82	628	Тюнгкян	117,62	66,29	216	6

			Коорд	инаты	Прознацизированные	Кол-во
N⁰	Проба	Место			граналы	элементов в
			E°	N°		анализе
83	531	Тюнгкян	117,42	66,27	108	6
84	517	Тюнгкян	116,89	66,32	73	6
85	XAH-5	Хання	115,40	66,33	139	6
86	XAH-6	Хання	115,55	66,31	127	6
87	XAH-7	Хання	115,63	66,30	49	6
88	XAH-19	Хання	115,85	66,18	183	6
89	XAH-25	Хання	116,00	66,14	114	6
90	XAH-44	Хання	116,65	65,87	185	6
91	XAH-45	Хання	116,77	65,79	206	6
92	XA-8	Хання	115,62	66,29	79	6
93	XA-9	Хання	115,59	66,30	96	6
94	XA-10	Хання	115,65	66,28	165	6
95	X-1	Хання	115,51	66,33	98	6
96	XA-2	Хання	115,52	66,35	51	6
97	460	Хання	116,29	66,04	162	9
98	701	Хання	115,43	66,33	98	9
99	702	Хання	115,55	66,32	171	9
100	705	Хання	115,57	66,32	87	9
101	716	Хання	115,98	66,15	152	9
102	719	Хання	116,15	66,07	203	9
103	723	Хання	116,31	65,99	54	9
104	724	Хання	116,42	65,95	14	9
105	725	Хання	116,55	65,92	29	9
106	727	Хання	116,58	65,91	169	9
107	800	Чимидикян	119,52	66,70	200	6
108	704	Чимидикян	119,36	66,74	87	6
109	813	Чимидикян	119,59	66,66	153	6
110	657	Чимидикян	119,22	66,75	90	6
111	831	Чимидикян	119,75	66,54	161	6
112	216/2	Чимидикян	119,83	66,51	142	6
113	232	Чимидикян	119,69	66,32	14	6
114	К-66	Чимидикян	119,80	66,36	16	6
115	748	Ырыс-Юрях	117,41	66,79	72	6
116	E-48	Эекит	114,25	66,46	44	6
117	E-53	Эекит	114,05	66,38	114	6
118	E-52	Эекит	114,06	66,37	202	6
119	E-26	Эекит	114,13	66,60	14	6
120	OP-1	Эекит	114,05	66,67	49	6

Таблица хромистости гранатов из шлиховых проб Муно-Мархинского

междуречья

NG.	Πουσ	Cr2O3<0,2	Cr2O3>5	Cr2O3>7	Cr2O3>10	Cr2O3<2	алм. асс.
JN₽	прооа	%	%	%	%	%	%
1	801	29,41	38,89	19,44	0,00	21,57	8,33
2	808	8,33	27,27	4,55	0,00	20,83	4,55
3	812	37,04	41,18	5,88	0,00	18,52	5,88
4	T-21	29,55	30,11	11,83	2,15	16,13	2,15
5	734	6,49	33,33	6,94	0,00	11,11	4,17
6	AT-5	11,39	28,57	4,29	0,00	17,14	1,43
7	AT-12	15,00	28,24	9,41	0,59	22,35	3,53
8	AT-4	17,78	27,03	13,51	0,00	21,62	4,50
9	m\o 131	12,93	32,67	4,95	0,99	14,85	3,96
10	130	11,76	30,00	6,67	3,33	16,67	6,67
11	31a	38,46	25,00	25,00	12,50	37,50	25,00
12	25	27,27	9,09	0,00	0,00	9,09	0,00
13	744	18,33	16,33	2,04	0,00	20,41	0,00
14	844	26,47	16,00	4,00	0,00	36,00	4,00
15	1817	0,00	28,95	5,26	2,63	13,16	5,26
16	1250	0,00	23,08	0,00	0,00	25,64	0,00
17	P-4	36,36	20,63	4,76	1,59	30,95	3,17
18	720	72,55	12,50	3,57	0,00	53,57	1,79
19	721	61,36	35,29	7,84	0,00	37,25	1,96
20	601	31,06	15,32	1,80	0,90	28,83	1,80
21	907	50,00	18,75	0,00	0,00	10,94	0,00
22	908	39,02	20,00	4,00	0,00	12,20	0,00
23	199	10,74	26,85	9,26	4,63	18,52	4,63
24	191	13,89	38,70	9,67	3,23	19,35	0,00
25	183	5,68	44,58	15,66	2,41	12,05	4,82
26	122	6,25	50,00	36,67	3,33	10,00	26,67
27	125	0,00	51,72	20,69	0,00	6,90	13,79
28	137	12,41	27,50	10,83	3,33	22,50	7,50
29	225	8,54	32,00	10,67	4,00	16,87	9,33
30	227	28,87	33,66	12,87	0,99	14,85	4,95
31	238	32,93	32,14	11,61	2,68	14,29	5,36
32	E-64	27,27	37,50	18,75	6,25	12,50	12,50
33	E-67	22,43	43,37	19,28	1,20	14,46	3,61
34	E-70	31,50	40,88	17,52	0,73	21,17	5,84
35	14332	20,51	42,74	19,35	2,42	17,74	8,87
36	14334	34,42	37,62	21,78	1,98	20,79	7,92
37	14380	26,80	41,96	16,07	4,46	13,39	8,03

NG	Παρίο	Cr2O3<0,2	Cr2O3>5	Cr2O3>7	Cr2O3>10	Cr2O3<2	алм. асс.
JN≌	прооа	%	%	%	%	%	%
38	14532	32,50	36,11	17,59	3,70	21,30	4,63
39	14561	48,72	45,00	15,00	6,25	20,00	6,25
40	14310	78,13	35,71	14,29	0,00	14,29	0,00
41	14318	66,09	33,90	3,39	0,00	16,95	1,69
42	14510	12,50	31,25	15,18	1,79	16,96	0,89
43	14375	47,26	28,57	20,78	3,90	20,78	3,90
44	14397	35,43	37,80	25,61	2,44	26,83	7,32
45	14618	39,71	37,81	14,63	3,66	20,73	6,10
46	14626	48,10	36,59	24,39	0,00	7,32	9,76
47	MN-20	0,00	44,55	17,82	1,98	1,98	8,91
48	8028	4,17	28,43	10,37	1,34	36,46	7,36
49	MN-038	0,00	20,77	6,15	0,00	40,77	2,31
50	MN-049	0,00	19,02	4,35	1,90	44,02	2,72
51	8024	2,62	19,89	5,91	0,54	41,94	4,30
52	8051	1,30	30,70	12,28	21,93	28,07	5,26
53	MN-12	0,48	27,05	10,14	0,48	28,99	5,80
54	MN-017	0,00	12,77	2,66	0,00	43,09	1,06
55	MN-054	0,00	20,25	4,43	0,00	44,30	2,53
56	MN-057	0,00	20,29	6,52	0,72	36,23	1,45
57	MN-069	0,00	29,09	13,64	0,90	35,46	5,46
58	MN-319	0,00	32,11	7,34	0,00	38,53	4,59
59	А	5,29	11,18	1,86	0,00	38,51	4,35
60	AG-33	0,00	50,00	25,00	25,00	12,50	12,50
61	AG-47	0,00	61,11	38,89	0,00	5,56	22,22
62	AG-50	0,00	63,24	38,24	11,76	4,41	19,12
63	Т-К-8	32,58	28,33	11,67	1,67	26,67	5,00
64	Т-К-7	34,21	18,00	8,00	2,00	30,00	2,00
65	P-2	47,67	12,22	3,33	0,00	30,00	2,22
66	P-10	31,37	20,00	17,14	5,71	22,86	11,43
67	T-35	57,14	15,87	3,17	0,00	36,51	1,59
68	T-22	42,70	14,15	1,89	0,00	31,13	0,00
69	T-36	58,53	32,22	8,89	0,00	28,89	2,22
70	23	11,33	21,80	6,39	1,13	14,66	4,51
71	28	6,45	17,24	6,90	3,45	6,90	6,90
72	21	8,33	0,26	0,07	0,00	0,16	0,02
73	32	24,20	16,81	3,36	0,00	32,77	1,68
74	T-5\96	57,69	0,00	0,00	0,00	7,69	0,00
75	506	0,00	35,00	7,86	2,14	15,00	2,86
76	520	0,00	29,11	8,86	0,00	8,86	2,53
77	1085	0,00	20,55	8,22	2,74	23,29	0,00
78	1100	0,00	21,31	6,56	0,00	24,59	0,00
79	1121	0,00	24,56	5,26	0,00	12,28	0,00

Na	Παρίο	Cr2O3<0,2	Cr2O3>5	Cr2O3>7	Cr2O3>10	Cr2O3<2	алм. асс.
JN≌	прооа	%	%	%	%	%	%
80	523	42,86	20,00	0,00	0,00	15,71	0,00
81	623	50,00	20,34	5,08	0,00	11,02	1,69
82	628	35,65	20,86	6,47	0,72	32,37	2,16
83	531	64,81	21,05	7,89	0,00	12,96	2,63
84	517	41,10	11,63	0,00	0,00	27,40	2,33
85	XAH-5	42,45	28,75	7,50	1,25	30,00	5,00
86	XAH-6	22,83	27,55	8,16	0,00	18,37	6,12
87	XAH-7	12,24	23,26	2,33	0,00	20,93	2,33
88	XAH-19	14,21	24,20	5,10	0,64	21,66	2,55
89	XAH-25	15,79	23,96	11,46	2,08	23,96	6,25
90	XAH-44	22,16	21,53	7,64	0,69	29,86	3,47
91	XAH-45	18,93	28,74	5,39	1,20	43,11	4,79
92	XA-8	8,86	18,06	8,33	1,39	34,72	9,72
93	XA-9	7,29	16,85	2,25	0,00	21,35	2,25
94	XA-10	3,64	16,98	3,14	0,00	28,93	3,77
95	X-1	5,10	19,35	4,30	1,08	22,58	3,23
96	XA-2	1,96	23,53	5,88	1,96	21,57	0,00
97	460	3,09	36,31	12,74	0,64	6,17	4,46
98	701	53,06	34,78	4,35	2,17	19,57	2,17
99	702	62,57	32,81	9,38	1,56	21,88	4,69
100	705	60,92	38,24	5,88	0,00	14,71	2,94
101	716	10,53	35,29	12,50	2,21	5,88	5,15
102	719	24,14	22,73	3,90	0,00	24,68	3,25
103	723	75,93	7,69	0,00	0,00	22,22	0,00
104	724	57,14	33,33	16,67	0,00	21,43	0,00
105	725	79,31	16,67	0,00	0,00	10,34	0,00
106	727	27,81	27,05	6,56	0,00	18,93	1,64
107	800	0,50	33,67	8,04	1,51	12,06	5,03
108	704	0,00	37,06	9,79	2,10	3,50	5,59
109	813	0,00	34,64	9,15	1,96	9,15	5,23
110	657	0,00	40,00	13,33	1,11	4,44	10,00
111	831	18,01	26,52	9,09	1,52	19,70	6,82
112	216/2	2,82	28,99	13,04	0,00	7,25	5,07
113	232	7,14	46,15	7,69	0,00	30,77	0,00
114	К-66	0,00	18,75	0,00	0,00	12,50	6,25
115	748	0,00	25,00	4,17	0,00	16,67	1,39
116	E-48	45,45	0,00	0,00	0,00	33,33	0,00
117	E-53	28,95	27,16	12,35	3,70	22,22	2,47
118	E-52	23,76	35,06	17,53	3,90	15,58	5,84
119	E-26	21,43	27,27	27,27	9,09	27,27	9,09
120	OP-1	34,69	21,89	12,50	3,12	37,50	6,25

14510	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
p.Mapxa					0					- V
1	38,51	0,05	20,75	0,016	6,75	5,84	26,53	0,697	0,021	99,16
2	38,4	0,076	20,55	0,019	7,06	5,65	26,18	0,975	0,033	98,95
3	38,01	0,076	20,2	0,026	5,2	7,3	27	0,61	0,036	98,46
4	39,25	0,03	21,29	0,038	9,25	6,01	23,04	0,499	0,022	99,43
5	40,39	0,061	22,13	0,04	11,64	8,03	16,94	0,375	0,036	99,64
6	42,12	0,56	21,85	0,051	19,03	4,27	11,65	0,393	0,066	99,99
7	40,25	0,383	21,41	0,054	10,61	10,51	15,44	0,36	0,146	99,16
8	39,42	0,031	21,39	0,055	9,44	5,62	22,86	0,624	0,027	99,47
9	38,96	0	21,58	0,056	9,25	1,2	27,7	0,525	0,013	99,29
10	38,77	0,014	21,55	0,063	9,17	1,94	27,12	0,609	0,024	99,26
11	38,84	0,01	21,49	0,07	8,92	2,38	26,75	0,578	0,027	99,06
12	40,57	0,343	21,83	0,083	10,08	12,3	14,07	0,29	0,117	99,68
13	38,37	0	21,23	0,092	7,43	2,51	28,63	1,02	0,029	99,3
14	41,23	0,344	21,81	0,115	16,76	6,33	12,12	0,47	0,061	99,24
15	41,78	0,631	21,72	0,138	16,53	8,69	9,82	0,284	0,124	99,73
16	39,32	0,044	21,37	0,15	9,96	6,23	21,29	0,406	0,036	98,79
17	42,3	0,526	21,7	0,428	19,63	4,56	10,15	0,425	0,066	99,79
18	41,11	0,449	21,08	0,452	15,19	8,74	11,53	0,631	0,093	99,28
19	41,15	0,623	20,6	0,464	14,62	9,7	11,6	0,618	0,106	99,49
20	42,7	0,585	21,79	0,528	21,58	4,29	8,02	0,315	0,059	99,86
21	41,75	0,498	21,2	0,581	18,23	5,48	11,46	0,536	0,066	99,8
22	41,92	0,512	21,39	0,706	18,8	5,22	10,69	0,462	0,076	99,79
23	41,42	0,309	21,36	0,8	15,84	7,97	11,62	0,672	0,035	100,03
24	41,74	0,534	21,07	0,96	18,77	5,32	10,73	0,476	0,054	99,66
25	42,12	0,691	20,85	1,32	20,27	4,55	9,57	0,397	0,074	99,85
26	41,33	0,263	21,52	1,38	15,13	10,86	8,6	0,394	0,036	99,53
27	42,01	0,742	20,38	1,5	20,15	4,34	9,92	0,409	0,06	99,51
28	42,68	0,663	20,95	1,63	21,44	4,38	8,01	0,322	0,057	100,13
29	41,81	0,712	20,33	1,69	20,59	4,11	9,76	0,334	0,105	99,44
30	42,71	0,541	20,84	1,69	21,35	3,95	8,48	0,331	0,066	99,95
31	41,9	0,763	20,38	1,72	20,07	4,61	9,59	0,387	0,069	99,49
32	42,71	0,193	22,18	1,85	21,21	4,22	7,52	0,401	0,054	100,34
33	42,24	0,45	20,83	1,89	21,08	4,16	8,55	0,349	0,063	99,61
34	42,18	0,729	20,18	1,95	20,87	4,46	9,17	0,339	0,077	99,96
35	41,77	0,713	20,16	1,96	19,67	4,5	10,28	0,464	0,077	99,59
36	42,49	0,442	20,85	2,01	21,42	4,16	7,95	0,328	0,055	99,71
37	41,87	0,773	19,98	2,05	19,95	4,71	9,48	0,424	0,076	99,31
38	42,53	0,379	21,01	2,08	21,23	4,05	8,33	0,333	0,052	100

Таблица состава гранатов из шлиховых проб Муно-Мархинского междуречья

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
39	42,27	0,491	20,66	2,09	21,16	4,1	8,39	0,338	0,051	99,56
40	42,4	0,289	21,6	2,1	21,63	4,66	6,78	0,335	0,038	99,84
41	42,16	0,488	20,75	2,12	20,79	4,16	8,86	0,353	0,047	99,73
42	42,3	0,625	20,56	2,14	21,13	4,35	8,29	0,33	0,069	99,79
43	42,46	0,536	20,63	2,16	21,33	4,45	7,88	0,342	0,051	99,84
44	42,61	0,657	20,46	2,22	21,25	4,4	7,99	0,33	0,08	100
45	42,35	0,463	20,73	2,23	21,3	4,08	8,28	0,373	0,045	99,85
46	42,67	0,255	20,98	2,27	21,63	4,14	8,01	0,317	0,035	100,3
47	42,31	0,498	20,57	2,27	21,3	4,09	8,31	0,343	0,088	99,78
48	42,22	0,773	19,6	2,3	20,3	4,7	9,34	0,384	0,086	99,7
49	42,05	0,909	19,56	2,35	20,65	4,39	8,95	0,334	0,101	99,29
50	42,08	0,676	20,32	2,38	21,35	4,38	7,78	0,33	0,084	99,37
51	42,06	0,732	19,51	2,45	20,34	4,62	9,27	0,358	0,076	99,41
52	42,06	0,778	19,51	2,5	20,19	4,77	9,75	0,388	0,071	100,02
53	42,58	0,704	19,98	2,51	21,44	4,46	7,7	0,282	0,075	99,73
54	42,43	0,345	21,06	2,54	21,12	4,11	8,12	0,385	0,055	100,17
55	42,46	0,504	20,43	2,57	20,66	4,3	8,94	0,357	0,053	100,28
56	42,59	0,24	20,91	2,59	21,41	4,58	7,28	0,355	0,033	99,99
57	42,43	0,471	20,3	2,62	21,67	4,12	7,78	0,311	0,053	99,76
58	42,1	1,23	18,83	2,85	20,87	4,59	8,57	0,316	0,135	99,49
59	41,82	0,793	19,15	2,86	20,18	4,82	9,27	0,351	0,065	99,3
60	41,62	0,783	19,34	2,92	19,7	4,91	9,53	0,367	0,068	99,23
61	42,14	0,728	19,2	2,97	20,75	4,77	8,73	0,301	0,076	99,66
62	42,28	0,306	20,76	2,99	20,63	3,91	8,66	0,417	0,049	100,01
63	41,81	0,46	19,77	3,13	20,77	4,53	7,79	0,338	0,061	98,66
64	42,3	0,506	20,29	3,18	21	4,45	7,58	0,375	0,075	99,76
65	42,16	0,759	19,22	3,21	20,74	4,71	8,72	0,344	0,071	99,95
66	42,42	0,435	20,02	3,23	21,04	4,54	7,99	0,34	0,051	100,07
67	41,48	0,639	19,21	3,23	18,68	5,16	10,57	0,468	0,08	99,51
68	42,64	0,364	20,55	3,32	21,21	4,37	7,72	0,428	0,085	100,69
69	42,06	0,144	20,36	3,38	20,63	4,35	8,72	0,34	0,048	100,03
70	42,19	0,564	19,23	3,38	21,16	4,86	7,84	0,291	0,06	99,57
71	41,6	0,879	18,57	3,53	19,64	5,12	9,46	0,4	0,083	99,29
72	41,94	0,421	20,1	3,61	20,57	4,67	7,89	0,394	0,063	99,65
73	42,02	0,331	20,26	3,64	21,56	4,02	7,3	0,394	0,069	99,6
74	42,54	0,113	20,08	3,66	21,09	4,43	7,47	0,343	0,024	99,75
75	42,26	0,467	19,72	3,75	21,12	4,48	7,78	0,337	0,037	99,94
76	41,93	0,351	19,74	3,81	21,14	4,56	7,48	0,343	0,055	99,4
77	41,51	0,81	18,66	3,95	19,5	5,19	9,63	0,403	0,09	99,75
78	41,58	0,607	19,13	4,02	19,69	5,3	8,73	0,489	0,083	99,63
79	42,03	0,67	19,19	4,09	20,27	5,47	7,77	0,44	0,07	100,01
80	41,86	0,473	19,59	4,16	19,98	4,81	8,72	0,384	0,06	100,03
81	42,29	0,181	20,04	4,17	20,93	4,66	7,6	0,364	0,028	100,27

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
82	41,72	0,593	19,16	4,19	19,86	4,83	8,83	0,382	0,071	99,64
83	41,92	0,761	18,88	4,2	20,6	4,96	7,87	0,374	0,08	99,63
84	42,01	0,079	20,39	4,29	19,93	6,66	6,04	0,352	0,029	99,78
85	41,77	0,172	20,18	4,32	19,76	4,88	8,23	0,454	0,053	99,82
86	42,3	0,616	19,36	4,39	21,02	5,36	6,72	0,408	0,078	100,24
87	42,34	0,186	19,71	4,53	20,86	4,78	7,41	0,349	0,039	100,2
88	42,42	0,189	19,98	4,54	21,55	4,18	7,01	0,38	0,043	100,29
89	41,58	0	20,23	4,65	19,73	5,68	7,45	0,438	0,012	99,77
90	41,79	0,301	19,24	4,71	19,8	4,87	8,76	0,369	0,042	99,87
91	41,19	0,768	17,8	4,85	18,22	5,65	10,49	0,452	0,065	99,49
92	42,07	0,179	19,42	4,96	20,69	4,78	7,49	0,361	0,03	99,97
93	41,68	0,254	19,49	5	19,09	5,24	8,6	0,531	0,046	99,93
94	40,99	0,524	18,24	5,01	18,4	5,36	10,13	0,478	0,082	99,22
95	42,03	0,391	19,18	5,05	20,68	4,86	7,47	0,397	0,051	100,11
96	41,72	0,223	19,62	5,11	19,52	4,88	8,58	0,495	0,044	100,19
97	41,93	0,324	18,91	5,28	20,46	4,94	7,64	0,366	0,045	99,9
98	42,15	0,349	18,44	5,36	20,64	5,17	7,41	0,338	0,028	99,89
99	41,68	0,473	18,39	5,53	20,22	4,59	8,35	0,417	0,088	99,74
100	40,64	0,797	16,92	5,74	18	5,85	10,37	0,472	0,09	98,87
101	41	0,436	17,92	5,99	18,67	5,09	9,97	0,426	0,071	99,57
102	41,94	0,484	18,33	6	21,12	4,89	6,76	0,377	0,07	99,97
103	41,65	0,029	18,61	6,15	20,83	5,07	6,84	0,366	0,021	99,55
104	41,49	0,739	17,39	6,38	19,34	6,42	7,56	0,42	0,078	99,82
105	41,62	0,561	17,52	6,5	20,1	5,44	7,34	0,39	0,068	99,55
106	41,75	0,377	18,08	6,51	20,83	5,02	6,66	0,394	0,064	99,69
107	41,72	0,372	17,57	6,55	20,13	5,4	7,45	0,352	0,045	99,6
108	41,49	0,445	17,87	6,67	20,81	5,05	6,69	0,38	0,077	99,49
109	41,62	0,375	17,96	6,72	20,66	4,93	6,75	0,395	0,057	99,47
110	41,96	0,315	17,96	6,73	20,96	4,88	6,8	0,353	0,047	100,01
111	41,94	0,379	17,79	6,9	20,47	5,05	6,95	0,397	0,063	99,93
112	41,85	0,211	18	7,23	21,11	4,45	6,67	0,394	0,044	99,95
113	41,5	0,217	17,45	7,25	19,76	5,74	7,22	0,364	0,028	99,53
114	41,57	0,204	17,72	7,34	20,42	5,16	6,82	0,423	0,044	99,71
115	41,64	0,073	18,09	7,53	19,32	5,68	7,63	0,508	0,033	100,5
116	41,56	0,632	16,26	7,61	20,18	5,71	7,21	0,321	0,044	99,51
117	41,25	0,081	17,65	7,86	19,06	5,66	7,57	0,483	0,031	99,65
118	41,59	0,121	17,15	8,26	20,3	5,08	6,97	0,383	0,015	99,86
119	40,92	0,731	15,92	8,28	19,11	6,45	7,52	0,393	0,083	99,4
120	40,6	0,746	15,58	8,63	18,78	5,9	8,65	0,414	0,077	99,38
121	41,71	0,11	16,77	8,65	19,62	5,93	7,09	0,402	0,019	100,32
122	40,76	0,811	15,41	8,65	19,27	6,27	7,69	0,387	0,076	99,33
123	41,57	0,32	16,38	8,67	20,41	5,09	6,89	0,394	0,049	99,77
124	41	0,948	14,53	9,37	19,23	6,51	7,37	0,364	0,077	99,42

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
125	40,69	0,799	14,86	9,54	18,65	7,1	7,13	0,407	0,103	99,27
126	40,76	0,829	14,68	9,89	18,88	7,13	6,68	0,401	0,089	99,35
127	41,15	0,101	15,26	11,04	21,52	1,73	8,5	0,457	0,032	99,8
128	40,66	0,155	14,04	11,81	18,78	6,28	7,29	0,401	0,046	99,45
14332										
p.Mapxa										
1	41,586	0,38	20,915	2,267	20,586	4,228	8,481	0,34	0,106	98,889
2	40,979	0,947	16,814	5,97	17,706	6,547	10,237	0,407	0,092	99,699
3	41,814	0,543	18,651	5,212	20,802	4,851	7,066	0,323	0,085	99,347
4	39,286	0,111	21,497	0,066	8,953	5,548	24,505	0,634	0	100,6
5	41,461	0,093	16,151	9,591	20,958	3,934	7,061	0,39	0,067	99,706
6	42,16	0,219	20,494	3,491	21,246	4,647	6,938	0,318	0,018	99,531
7	41,581	1,496	19,275	1,342	19,064	5,045	11,667	0,323	0,118	99,911
8	41,137	0,528	21,529	0,044	16,286	5,377	14,77	0,388	0,062	100,121
9	42,038	0,997	19,817	1,953	20,524	4,433	8,847	0,255	0,118	98,982
10	41,942	0,439	20,034	3,477	19,942	4,575	8,873	0,294	0,056	99,632
11	38,667	0,131	20,864	0,006	6,57	6,288	26,975	0,955	0,021	100,477
12	40,887	0,064	22,74	0,05	13,132	9,201	13,835	0,225	0,038	100,172
13	41,672	0,113	17,416	7,301	19,896	5,729	7,031	0,328	0,007	99,493
14	41,266	1,089	17,465	5,409	19,253	5,556	8,862	0,362	0,106	99,368
15	41,64	0,337	20,457	3,521	19,916	4,738	8,529	0,417	0,081	99,636
16	40,997	0,375	14,765	9,481	18,625	6,955	7,094	0,309	0,019	98,62
17	41,459	0,206	19,021	5,549	18,739	7,016	6,806	0,386	0,061	99,243
18	42,554	0,144	20,891	2,632	21,393	4,267	7,638	0,266	0,039	99,824
19	41,502	0,889	19,423	2,479	20,709	4,789	8,427	0,279	0,109	98,606
20	41,997	0,449	20,084	3,702	20,95	4,433	7,186	0,297	0,092	99,19
21	42,353	0,87	20,983	0,561	21,322	4,387	8,561	0,236	0,098	99,371
22	42,189	0,35	21,273	1,615	21,002	4,713	7,589	0,26	0,051	99,042
23	41,293	0,006	17,94	7,169	19,38	5,828	7,485	0,424	0	99,525
24	39,509	0,082	21,843	0,157	10,209	5,736	22,2	0,617	0,039	100,392
25	41,2	0,41	20,46	2,486	17,895	6,011	10,637	0,451	0,073	99,623
26	41,763	0,654	19,353	3,715	20,719	4,967	7,81	0,311	0,082	99,374
27	42,265	0,373	21,318	2,164	21,64	4,204	7,398	0,291	0,071	99,724
28	41,762	1,123	19,815	1,802	20,804	4,574	9,033	0,271	0,099	99,283
29	41,712	0,344	18,987	5,192	21,284	4,634	6,832	0,307	0,077	99,369
30	39,835	0,071	21,92	0,072	10,786	5,166	22,087	0,561	0	100,498
31	41,717	0,351	18,435	5,889	20,843	4,624	6,92	0,344	0,089	99,212
32	38,343	0,07	20,875	0,029	5,995	6,29	28,027	0,766	0	100,395
33	41,703	1,183	19,706	1,643	20,037	4,837	9,795	0,31	0,069	99,283
34	41,206	1,088	19,107	2,635	19,996	5,094	9,38	0,302	0,093	98,901
35	41,438	0	19,11	5,579	20,022	5,542	7,065	0,374	0,014	99,144
36	41,23	1,256	19,631	1,512	19,168	4,98	10,732	0,357	0,082	98,948

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
37	41,663	1,177	18,019	3,658	20,795	5,433	7,814	0,229	0,068	98,856
38	39,056	0,142	21,446	0,061	8,625	6,274	23,74	0,564	0,028	99,936
39	38,058	0,501	14,554	0	0,357	35,017	10,19	0,081	0	98,758
40	41,615	0,474	19,67	3,926	20,443	4,659	7,713	0,319	0,069	98,888
41	41,62	1,109	19,992	1,441	20,286	4,628	9,497	0,277	0,079	98,929
42	42,136	0,828	19,565	2,848	20,835	4,694	8,093	0,232	0,081	99,312
43	41,892	0,54	19,702	4,332	20,764	4,557	7,798	0,328	0,041	99,954
44	41,783	1,003	20,732	0,389	19,007	4,747	12,013	0,384	0,084	100,142
45	41,602	0,314	16,707	8,316	21,199	4,407	6,788	0,354	0,026	99,713
46	42,219	0,339	20,943	2,167	21,034	5,031	7,566	0,277	0,022	99,598
47	42,063	1,001	19,314	2,969	21,06	4,763	8,604	0,271	0,092	100,137
48	39,299	0,147	20,672	0,033	6,76	6,177	26,889	0,718	0,042	100,737
49	41,614	0,582	20,655	1,313	18,782	3,885	13,158	0,423	0,093	100,505
50	42,646	1,037	20,245	1,175	21,813	4,307	8,446	0,226	0,125	100,02
51	42,631	0,216	20,57	3,079	21,622	4,437	7,519	0,269	0,051	100,394
52	42,187	0,8	20,363	2,368	20,879	4,986	8,013	0,285	0,08	99,961
53	40,152	0,106	21,38	0	9,29	5,732	23,907	0,473	0	101,04
54	42,035	0,201	19,674	4,761	21,726	3,679	7,18	0,336	0,051	99,643
55	42,207	0,727	20,901	1,74	21,416	4,423	8,066	0,285	0,06	99,825
56	39,805	0,056	21,17	0,141	7,869	6,229	25,083	0,792	0	101,145
57	41,517	0,569	16,998	6,581	20,127	5,853	7,458	0,296	0,042	99,441
58	42,223	0,166	20,999	3,373	20,139	4,864	8,219	0,417	0,059	100,459
59	42,004	0,732	17,872	5,321	20,544	5,512	7,652	0,302	0,077	100,016
60	41,746	0,01	15,859	9,94	22,186	2,664	7,042	0,334	0,022	99,803
61	42,599	0,938	20,141	1,676	21,591	4,489	8,092	0,225	0,08	99,831
62	42,337	0,001	19,153	5,814	22,471	2,888	6,938	0,342	0,024	99,968
63	42,014	0,429	18,94	5,269	20,983	4,99	7,066	0,343	0,081	100,115
64	42,377	0,357	20,994	2,189	21,303	4,815	7,598	0,247	0,033	99,913
65	42,638	0,102	20,994	2,945	21,088	4,596	7,676	0,315	0,014	100,368
66	39,945	0,118	21,171	0,044	8,243	6,41	24,389	0,677	0,038	101,035
67	42,326	0,145	19,254	5,291	21,556	4,808	6,324	0,271	0,043	100,018
68	41,71	0,17	18,61	6,233	19,158	5,853	7,971	0,442	0,022	100,169
69	42,674	0,37	21,062	2,34	22,103	4,015	7,203	0,261	0,082	100,11
70	42,519	0,27	20,609	2,858	21,506	4,504	7,506	0,271	0,013	100,056
71	40,414	1,796	12,842	10,404	18,455	7,591	7,799	0,346	0,093	99,74
72	42,548	0,595	20,831	1,623	21,709	4,193	7,921	0,271	0,047	99,738
73	41,063	1,2	15,194	8,29	18,704	7,462	7,639	0,365	0,102	100,019
74	41,661	0,141	16,016	9,289	21,167	4,162	6,881	0,341	0,017	99,675
75	42,354	0,991	19,608	2,693	20,631	4,9	8,685	0,273	0,103	100,238
76	42,065	0,016	18,47	6,726	21,569	3,819	6,994	0,35	0,025	100,034
77	42,358	0,223	19,386	4,854	21,552	4,759	6,591	0,287	0,077	100,087
78	42,252	0,528	21,517	1,506	21,008	4,029	8,489	0,335	0,092	99,756
79	42,385	0,557	22,304	0,192	20,574	3,956	9,735	0,337	0,072	100,112

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
80	42,297	0,615	20,068	3,241	20,613	5,087	7,671	0,317	0,056	99,965
81	42,41	0,315	20,81	2,936	21,462	4,333	6,827	0,282	0,068	99,443
82	42,422	0,696	22,459	0,109	20,564	3,324	10,441	0,278	0,18	100,473
83	41,6	0,032	16,712	8,948	22,829	1,728	7,098	0,395	0,031	99,373
84	42,154	1,129	19,829	1,685	20,644	4,65	9,184	0,254	0,121	99,65
85	41,628	0,029	16,318	9,639	23,36	1,119	6,894	0,373	0,007	99,367
86	42,181	0,866	20,969	0,876	20,274	4,335	10,08	0,278	0,115	99,974
87	39,987	0,054	21,51	0	9,238	5,975	23,3	0,583	0,005	100,652
88	39,531	0,101	20,882	0	7,225	5,579	26,682	1,037	0,006	101,043
89	40,763	0,451	21,816	0,074	14,097	5,081	17,944	0,34	0,149	100,715
90	42,286	0,778	20,114	3,112	21,368	4,327	7,46	0,309	0,116	99,87
91	40,184	0,083	22,354	0,068	10,17	6,654	21,021	0,38	0,034	100,948
92	42,441	0,714	20,986	1,697	21,674	4,373	7,691	0,278	0,094	99,948
93	41,434	0,016	18,768	6,019	18,893	6,22	7,96	0,43	0	99,74
94	38,891	0,163	20,728	0,008	5,533	6,505	28,18	0,707	0,02	100,735
95	42,37	0,686	20,879	1,815	21,243	4,22	8,394	0,294	0,06	99,961
96	40,447	0,667	21,186	0,026	15,473	5,345	16,523	0,438	0,056	100,161
97	41,422	0,194	16,949	7,865	19,651	6,183	6,963	0,356	0,024	99,607
98	41,768	0,376	19,363	4,886	20,639	5	7,091	0,336	0,081	99,54
99	40,66	1	16,59	5,827	17,528	6,304	10,972	0,442	0,132	99,455
100	41,499	0,052	18,863	5,114	20,169	5,497	7,377	0,315	0,047	98,933
101	41,183	0,659	17,631	6,028	20,512	5,175	7,095	0,35	0,07	98,703
102	38,126	0,192	21,446	0,015	7,234	5,71	26,483	0,641	0,024	99,871
103	41,736	0,634	20,925	1,577	21,292	4,184	8,363	0,274	0,097	99,082
104	41,032	0,024	18,048	6,849	18,156	7,165	7,756	0,439	0	99,469
105	41,015	0,099	17,874	6,461	19,988	5,823	7,137	0,336	0	98,733
106	38,976	0,396	18,842	0,008	0,389	36,225	4,31	0,124	0,017	99,287
107	40,586	0,065	16,319	8,884	17,37	7,554	8,028	0,487	0,023	99,316
108	39,576	0,107	21,127	0,057	8,811	5,682	24,587	0,591	0,053	100,591
109	40,458	0,265	13,343	11,76	18,498	7,002	7,676	0,317	0,05	99,369
110	41,061	0,203	17,35	7,155	19,776	6,19	7,011	0,319	0,045	99,11
111	41,552	0,952	17,169	5,825	20,233	5,812	7,743	0,277	0,061	99,624
112	40,583	1,072	16,748	6,069	18,772	6,675	8,444	0,389	0,102	98,854
113	39,763	0,06	21,261	0,015	8,77	5,585	24,924	0,501	0,007	100,886
114	41,534	0,772	18,668	4,513	20,497	5,311	7,6	0,305	0,07	99,27
115	42	0,019	18,331	6,725	23,584	1,741	6,425	0,304	0,027	99,156
116	42,095	0,186	20,58	3,49	21,445	4,479	6,945	0,311	0,024	99,555
117	41,47	0	19,063	5,627	21,093	4,011	7,277	0,324	0,032	98,897
118	41,635	0,742	19,506	2,92	20,915	4,667	8,123	0,269	0,084	98,861
119	41,53	0,959	19,859	2,085	20,041	4,787	9,336	0,302	0,087	98,986
120	41,977	0,124	20,75	2,733	21,444	4,482	7,563	0,299	0,039	99,411
121	41,797	0,673	20,711	1,702	21,391	4,073	8,321	0,284	0,104	99,056
122	41,472	0,621	19,945	3,219	21,577	4,519	7,179	0,29	0,075	98,897

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
123	41,411	0,357	20,503	2,492	20,972	4,919	7,602	0,281	0,009	98,546
124	40,771	0,619	16,526	7,412	19,813	5,887	7,423	0,32	0,078	98,849
125	41,609	1,114	19,681	1,732	20,394	4,654	9,435	0,284	0,099	99,002
126	40,643	0,361	14,659	9,39	19,386	6,678	7,37	0,314	0	98,801
127	41,863	0,991	19,564	2,193	20,781	4,794	9,05	0,271	0,081	99,588
128	40,315	1,164	13,843	9,927	17,557	9,004	7,027	0,365	0,114	99,316
129	42,186	0,309	19,725	4,13	21,056	4,699	7,567	0,316	0,038	100,026
130	40,802	0,778	15,934	8,212	19,307	7,149	6,802	0,349	0,089	99,422
131	41,791	0,126	17,965	7,19	22,281	2,697	7,273	0,388	0,019	99,73
132	41,514	0,358	17,993	6,228	20,129	5,815	7,342	0,301	0,03	99,71
133	39,133	0,131	20,799	0,01	7,619	6,065	25,985	0,791	0,011	100,544
134	39,711	0,096	21,195	0,019	8,525	5,864	24,307	0,909	0,035	100,661
135	41,914	0,403	20,402	2,483	21,224	4,46	7,617	0,286	0,052	98,841
136	40,403	0,195	14,877	10,389	20,002	5,07	7,352	0,422	0,081	98,791
137	40,077	1,477	13,983	8,66	19,128	6,736	7,681	0,32	0,156	98,218
138	40,881	0,064	14,415	9,956	18,77	6,857	7,174	0,335	0,013	98,465
139	40,169	0,117	22,406	0,027	10,236	11,861	15,29	0,241	0,01	100,357
140	41,371	0,124	18,519	5,656	21,477	4,138	6,873	0,326	0,033	98,517
141	39,079	0,065	21,663	0,047	9,053	5,965	23,865	0,555	0,024	100,316
142	41,499	0,127	19,775	4,614	20,078	4,998	7,807	0,419	0,055	99,372
143	38,86	0,075	21,102	0,025	7,488	6,665	25,43	0,592	0,019	100,256
144	41,064	0,485	20,461	2,375	18,716	4,789	11,09	0,407	0,098	99,485
145	41,423	0,432	18,179	5,723	20,016	5,31	8,376	0,302	0,048	99,809
146	41,108	0,426	20,424	2,939	21,767	3,648	7,187	0,278	0,134	97,911
147	41,334	0,011	19,908	4,611	19,657	5,566	7,97	0,443	0,022	99,522
148	41,535	0,034	19,914	3,856	18,474	8,449	6,56	0,304	0,022	99,148
149	41,479	0,266	19,76	4,482	19,65	5,154	8,127	0,43	0,062	99,41
150	39,247	0,15	21,405	0,01	8,355	8,069	22,503	0,487	0,02	100,246
151	41,99	1,165	19,544	2,072	20,852	4,767	8,909	0,273	0,101	99,673
152	41,572	0,915	19,112	3,592	20,348	4,855	8,226	0,321	0,073	99,014
153	41,44	0,268	18,902	5,439	20,904	4,706	6,98	0,368	0,024	99,031
154	38,868	0,161	20,651	0,027	5,802	6,32	28,217	0,684	0	100,73
155	41,708	0,472	18,02	6,186	21,27	5,026	6,567	0,267	0,076	99,592
156	41,199	0,085	17,813	7,123	19,272	5,634	7,676	0,455	0,032	99,289
14334										
p.Mapxa	29 (19	0.12	21 200	0.020	7.596	C 1C1	25 (17	0.604	0.011	100 515
	38,048	0,13	21,389	0,039	17.072	0,401	23,04/	0,004	0,011	100,515
2	40,451	0,076	10,835	1,/44	10.201	/,1/0	7,085	0,478	0,02	98,43/
	40,943	0,/12	20,200	2,051	19,291	3,1/1 6 101	9,949 26.072	0,391	0,081	98,793
4 5	30,121	0,001	21,285	0,039	7,389	0,181	20,073	0,705	0,004	100,458
5	38,524	1.250	12 626	0,037	1,399	3,901	20,42	0,074	0,07	100,405
0	40,264	1,239	13,030	9,901	18,243	1,217	8,496	0,209	0,096	99,383

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
7	41,439	0,034	17,868	7,335	18,646	6,313	7,928	0,462	0,024	100,049
8	39,225	0,106	20,885	0,044	7,319	6,156	25,977	0,769	0	100,481
9	39,55	0,053	21,056	0,031	8,078	6,634	24,249	0,601	0	100,252
10	39,216	0,049	20,901	0,01	7,515	6,373	25,737	0,766	0,033	100,6
11	41,209	0,056	17,707	7,56	18,963	6,004	7,669	0,436	0,038	99,642
12	39,66	0,083	21,025	0,053	8,568	6,365	23,963	0,668	0	100,385
13	39,336	0,131	20,626	0,027	7,019	6,59	26,001	0,754	0,026	100,51
14	39,049	0,105	21,099	0	6,375	6,568	27,08	0,68	0,008	100,964
15	39,176	0,08	21,38	0,036	7,96	6,045	25,37	0,654	0,04	100,741
16	40,109	0,12	21,499	0,089	10,952	5,609	21,413	0,841	0,023	100,655
17	41,492	0,082	17,519	7,942	19,021	5,943	7,711	0,459	0,05	100,219
18	42,357	0,75	21,081	1,408	21,05	4,041	9,046	0,283	0,047	100,063
19	42,294	0,408	20,767	2,515	21,463	4,245	8,004	0,305	0,047	100,048
20	42,478	0,787	19,374	3,67	21,692	4,859	7,135	0,247	0,056	100,298
21	41,747	0,018	17,287	8,571	23,483	0,876	6,95	0,402	0	99,334
22	39,139	0,094	20,961	0,012	7,122	7,328	25,233	0,648	0	100,537
23	39,536	0,068	21,151	0,042	9,372	5,767	23,58	0,554	0,033	100,103
24	42,039	0,889	19,058	3,466	21,075	4,901	7,985	0,284	0,093	99,79
25	39,943	0,082	21,364	0,079	10,3	5,157	23,116	0,554	0,009	100,604
26	41,948	0	21,995	2,219	20,053	5,233	8,017	0,353	0,025	99,843
27	39,127	0,123	20,442	0	6,973	5,848	27,062	0,8	0,064	100,439
28	39,655	0,128	21,081	0,01	8,124	6,212	25,345	0,348	0,024	100,927
29	41,739	0,027	17,867	7,047	20,245	5,165	7,363	0,348	0,05	99,851
30	39,943	0,092	21,303	0,021	9,966	5,858	22,797	0,47	0,031	100,481
31	38,976	0,129	20,596	0,009	6,217	6,441	27,473	0,689	0,013	100,543
32	42,079	0,031	18,781	6,296	21,535	4,032	6,915	0,352	0,004	100,025
33	42,409	0,753	21,395	0,398	19,393	5,148	10,637	0,308	0,113	100,554
34	42,117	0,885	19,218	2,966	21,112	4,84	8,004	0,242	0,106	99,49
35	41,072	0,837	14,777	9,187	18,942	6,888	7,409	0,336	0,069	99,517
36	42,398	0,795	18,446	4,352	21,378	5,108	7,421	0,255	0,051	100,204
37	42,242	0,57	21,051	1,761	21,094	4,432	8,349	0,294	0,06	99,853
38	42,221	0,985	19,663	2,503	20,799	4,62	8,633	0,274	0,122	99,82
39	41,209	0,161	14,147	11,74	20,053	5,066	7,09	0,373	0,058	99,897
40	42,85	0,017	21,434	3,108	24,069	1,485	6,323	0,282	0,018	99,586
41	39,772	0,057	21,177	0,064	7,953	6,646	24,669	0,575	0	100,913
42	41,269	0,956	17,868	5,065	18,581	6,181	9,5	0,405	0,104	99,929
43	42,875	0,432	21,34	1,883	21,182	4,214	7,894	0,298	0,071	100,189
44	39,158	0,124	20,837	0,026	6,789	6,049	26,942	0,821	0,04	100,786
45	41,106	0,046	16,873	8,259	19,651	5,692	7,697	0,43	0,02	99,774
46	41,808	0,762	18,647	4,348	20,771	5,306	7,485	0,269	0,077	99,473
47	42,324	0,542	20,006	3,877	21,32	4,369	7,141	0,344	0,076	99,999
48	39,203	0,065	20,773	0,004	7,242	5,437	26,896	0,672	0,058	100,35
49	41,628	0	20,336	4,262	18,94	5,982	8,26	0,421	0,006	99,835

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
50	41,914	0,671	20,895	1,898	20,672	4,459	8,551	0,299	0,051	99,41
51	41,644	0,27	19,734	4,576	19,722	5,267	8,172	0,455	0,032	99,872
52	41,404	0,121	16,942	7,816	19,748	5,937	7,147	0,342	0,006	99,463
53	39,084	0,168	20,645	0,009	7,157	6,123	26,164	1,067	0,03	100,447
54	39,779	0,075	21,282	0,026	9,149	5,821	23,788	0,622	0,032	100,574
55	42,38	0,408	21,182	1,95	21,072	4,032	8,305	0,296	0,086	99,711
56	41,497	0,061	16,342	9,369	20,92	3,825	7,283	0,443	0,011	99,751
57	39,631	0,088	21,532	0,049	9,263	6,629	23,02	0,476	0,005	100,693
58	42,238	0,828	20,885	1,651	21,164	4,521	7,868	0,316	0,07	99,541
59	42,68	0,767	20,862	1,742	21,269	4,596	8,14	0,287	0,058	100,401
60	41,647	0,741	17,738	5,617	20,438	5,64	7,621	0,303	0,065	99,81
61	39,193	0,066	20,945	0,025	6,313	6,207	27,282	0,94	0	100,971
62	41,93	0,159	19,49	4,894	20,748	4,982	7,134	0,301	0,023	99,661
63	42,236	0,104	18,355	7,054	22,303	2,884	6,933	0,362	0,077	100,308
64	41,45	0,314	18,114	6,219	20,246	5,104	7,932	0,346	0,031	99,756
65	41,539	0,302	19,759	4,236	19,856	4,913	7,93	0,426	0,052	99,013
66	41,829	0,771	17,256	6,223	20,024	5,769	7,674	0,295	0,093	99,934
67	38,254	0,124	20,138	0	3,502	6,841	30,862	0,719	0,037	100,477
68	42,259	0,818	19,361	2,851	21,407	4,649	7,503	0,253	0,086	99,187
69	39,778	0,1	21,139	0	8,773	5,358	25,023	0,457	0,032	100,66
70	41,851	0,354	21,399	1,767	18,875	4,816	10,91	0,414	0,03	100,416
71	41,255	0,285	18,921	4,983	17,283	7,661	9,286	0,42	0,029	100,123
72	39,56	0,027	20,979	0,055	7,631	6,027	25,641	0,666	0	100,586
73	39,264	0,145	20,828	0,013	7,097	6,434	25,905	0,708	0,031	100,425
74	38,774	0,146	21,077	0	6,896	6,91	26,105	0,708	0,029	100,645
75	41,987	0,567	18,45	5,646	21,135	4,313	7,692	0,332	0,051	100,173
76	42,081	0,366	22,034	0,811	19,772	5,229	9,251	0,333	0,06	99,937
77	42,594	0,495	20,242	2,324	21,655	4,388	8,051	0,237	0,054	100,04
78	42,076	0,456	20,067	3,718	21,01	4,633	7,499	0,333	0,07	99,862
79	38,86	0,106	21,287	0,039	7,436	6,728	25,402	0,614	0,058	100,53
80	41,94	0,24	19,09	6,06	20,38	4,94	7,76	0,548	0,064	101,01
81	41,78	0,788	20,3	2,51	19,56	5,07	9,79	0,457	0,075	100,34
82	38,47	0,103	21,06	0,055	4,07	9,04	26,46	1,08	0,03	100,37
83	39,03	0,107	21,12	0,04	7,09	5,95	26,09	0,994	0,03	100,46
84	38,34	0,141	20,91	0,057	7,42	6,09	26,15	0,76	0,018	99,88
85	42,27	0,264	20,55	3,9	20,56	4,44	8,38	0,562	0,062	100,98
86	43,08	0,667	21,05	2,33	21,22	4,37	7,96	0,402	0,057	101,14
87	40,47	0,147	21,46	0,548	12,49	5,39	19,76	0,502	0,044	100,81
88	42,61	0,681	21,09	1,87	21,61	4,12	8,3	0,361	0,079	100,73
89	41,4	1,22	14,99	8,69	19,38	6,29	7,79	0,37	0,076	100,21
90	39,53	0,14	21,54	0,056	8,82	6,21	24,09	0,645	0,042	101,07
91	42,57	0,498	20,59	3,39	21,58	4,41	7,18	0,411	0,043	100,67
92	39,26	0,147	21,27	0,101	7,79	6,28	25,43	0,691	0,019	100,98

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
93	41,67	0,095	16,63	9,22	19,74	5,68	7,44	0,483	0,04	101
94	38,8	0,117	20,76	0,025	6,89	6,19	26,58	1	0,014	100,38
95	39,17	0,139	21,31	0,094	7,51	6,28	25,64	0,765	0,053	100,96
96	39,1	0,109	21,21	0,07	7,64	5,89	26,35	0,891	0,044	101,3
97	39,34	0,111	21,46	0,039	7,84	6,79	24,38	0,681	0,024	100,67
98	38,36	0,171	21,05	0,064	6,25	6,48	27,29	0,665	0,009	100,33
99	41,64	1,15	19,95	1,88	19,75	4,87	10,64	0,45	0,085	100,42
100	41,95	0,283	19,07	5,6	21,97	4,22	6,71	0,352	0,057	100,21
101	41,16	0,389	18,74	6,06	19,67	5,78	7,77	0,531	0,068	100,16
102	42,22	0,443	19,77	4,41	22,17	4,35	6,99	0,378	0,08	100,81
103	41,57	0,579	19,68	4	20,04	4,85	9,4	0,409	0,064	100,59
104	41,96	0,086	17,19	9,03	23,98	0,819	6,99	0,49	0	100,53
105	42,04	0,352	19,79	4,96	20,22	5,16	7,9	0,5	0,046	100,97
106	42,74	0,641	21,7	1,52	21,72	4,24	7,82	0,369	0,059	100,82
107	39,07	0,17	21,26	0,034	7,67	6	25,67	0,708	0,04	100,61
108	38,98	0,155	21,1	0,047	7,31	6,07	25,84	0,765	0,04	100,31
109	42,7	0,198	19,89	4,04	21,57	5,01	7,18	0,377	0,033	101
110	38,47	0,168	20,93	0,035	6,64	6,16	27,1	0,86	0,063	100,42
111	42,32	0,73	20,64	2,62	21,77	4,63	7,4	0,359	0,058	100,52
112	42,45	0,074	20,3	4,51	22,59	3,27	7,27	0,435	0,03	100,93
113	42,49	0,072	19,94	5,03	20,36	6,06	6,68	0,379	0,023	101,04
114	42,42	1,17	17,9	5,02	21,39	5,2	7,45	0,337	0,066	100,95
115	42,09	1,27	20,02	1,62	20,13	4,75	10,52	0,396	0,14	100,92
116	41,48	1,19	19,77	1,92	20,01	4,9	9,98	0,398	0,089	99,73
117	42,36	0,071	19,87	5,39	22,28	3,46	7,03	0,424	0,02	100,91
118	39,19	0,135	21,48	0,02	8,45	7,52	22,58	0,453	0,056	99,88
119	41,17	0,209	17,83	7,18	18,96	6,36	7,63	0,616	0,068	100,03
120	42,57	0,091	17,23	9,34	23,72	1,34	6,74	0,441	0,013	101,49
121	42,1	0,642	21	1,79	21,51	4,33	8,15	0,36	0,063	99,94
122	39,55	0,112	21,32	0,054	8,8	5,81	23,96	0,689	0,043	100,33
123	42,81	0,397	20,57	4,11	22,29	4,46	6,07	0,388	0,057	101,16
124	40,89	0,244	18,23	6,8	19,62	6,03	7,68	0,509	0,059	100,07
125	38,71	0,182	20,9	0,009	6,47	6,55	26,34	0,705	0,042	99,9
126	39,29	0,109	21,35	0,041	8,13	6,17	24,42	0,662	0,022	100,19
127	42,82	0,549	20,3	3,89	21,35	4,41	7,24	0,399	0,086	101,04
128	39,23	0,428	13,46	10,28	11,31	16,9	6,96	0,389	0,063	99,02
129	38,7	0,153	21,15	0,044	7,7	6,11	25,17	0,714	0,028	99,77
130	42,5	0,161	20,09	4,56	20,89	4,6	7,7	0,473	0,051	101,02
131	42,92	0,971	21,18	0,667	20,09	4,09	11,09	0,436	0,139	101,58
132	42,13	1,34	19,89	1,32	19,88	4,89	10,35	0,419	0,095	100,31
133	42,89	0,635	19,78	3,83	21,35	5,07	7,12	0,301	0,078	101,05
134	39,65	0,138	21,54	0,057	9,01	5,98	23,52	0,669	0,027	100,6
135	39,09	0,083	20,78	0,075	6,99	6,14	26,11	1,09	0,039	100,39

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
136	41,92	0,311	19,2	5,71	20,06	5,32	7,97	0,507	0,073	101,07
137	42,21	0,12	18,5	7,03	20,54	5,46	7,08	0,471	0,029	101,43
138	42,25	0,932	17,93	5,17	21,05	5,19	7,96	0,356	0,078	100,91
139	42,11	0,041	20,64	4,23	20,19	5,78	7,22	0,407	0,021	100,64
140	42,34	0,629	20,86	1,95	21,49	4,13	8,75	0,393	0,101	100,64
141	42,4	0,428	19,53	4,68	21,72	4,89	7,52	0,321	0,051	101,53
142	42,66	0,385	19,54	4,68	20,96	5,05	7,73	0,343	0,03	101,39
143	42,84	0,883	19,95	2,22	21,66	4,66	8,11	0,317	0,073	100,7
144	42,03	1,07	19,44	2,78	20,4	4,93	9,18	0,376	0,091	100,3
145	41,84	0,195	18,63	6,11	20,62	5,7	7,07	0,369	0,031	100,55
146	43,01	0,511	20,88	2,78	22,24	4,28	6,94	0,364	0,054	101,07
147	42,92	0,324	21,31	2,14	21,92	4,07	7,71	0,319	0,053	100,77
148	41,38	0,175	16,55	9,37	21,27	2,86	8,4	0,476	0,041	100,52
149	38,87	0,129	21,05	0,062	7,7	5,89	25,12	0,863	0,039	99,72
150	39,21	0,135	21,37	0,027	8,82	6,07	23,62	0,63	0,03	99,91
151	43,33	0,591	21,37	1,52	21,86	4,28	8,03	0,312	0,09	101,38
152	41,86	0,099	17,58	7,44	20,01	6,27	7,12	0,361	0,037	100,77
153	42,27	0,228	21,87	2,11	20,97	4,61	7,84	0,476	0,034	100,42
14375										
p.Mapxa										
1	39,334	0,079	21,645	0	6,653	8,457	23,235	1,269	0,028	100,7
2	38,815	0,2	14,951	0	0,662	33,656	10,167	0,198	0	98,649
3	38,914	0,045	21,98	0	7,793	5,676	25,057	1,107	0,04	100,612
4	36,818	0,108	19,886	0	0,548	1,774	23,02	17,412	0,074	99,64
5	37,245	0,014	21,043	0	4,38	1,879	33,375	1,409	0,008	99,353
6	38,146	0,102	20,79	0	7,74	5,488	25,62	0,762	0,017	98,665
7	38,664	0,331	15,147	0,002	0,545	33,996	9,836	0,161	0,002	98,684
8	38,824	0,058	21,183	0,002	8,955	5,971	23,653	0,401	0,045	99,092
9	38,936	0,105	21,676	0,003	6,265	6,272	26,896	0,529	0,053	100,735
10	38,128	0,027	21,438	0,003	8,133	2,615	27,934	0,8	0,018	99,096
11	38,019	0,08	20,411	0,003	5,375	6,351	27,765	1,294	0,024	99,322
12	37,699	0,172	20,172	0,005	5,067	6,446	28,396	1,043	0,043	99,043
13	38,153	0,076	20,742	0,009	3,868	11,866	23,357	0,972	0,036	99,079
14	39,181	0,105	21,453	0,009	8,293	5,383	25,098	0,909	0,045	100,476
15	38,559	0	21,497	0,009	8,686	1,61	28,682	0,248	0,006	99,297
16	38,777	0,113	20,94	0,011	6,113	7,179	26,811	0,62	0,042	100,606
17	38,572	0,091	20,92	0,011	6,201	6,629	27,128	0,721	0,07	100,343
18	38,765	0,092	21,119	0,012	6,363	6,273	27,184	0,767	0,056	100,631
19	38,311	0,027	21,622	0,015	8,773	1,526	28,29	0,926	0,033	99,523
20	38,364	0,027	21,524	0,016	6,89	2,972	29,273	1,131	0	100,197
21	37,626	0,026	21,209	0,016	6,82	2,546	29,687	0,954	0	98,884
22	39,048	0,171	21,252	0,016	5,96	12,281	20,889	0,34	0,023	99,98

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
23	38,598	0,193	21,386	0,018	6,592	7,288	25,145	0,612	0,047	99,879
24	38,706	0,154	21,112	0,019	9,329	4,19	25,043	0,385	0,012	98,95
25	38,127	0,111	20,564	0,019	6,761	6,224	26,385	0,708	0,043	98,942
26	38,488	0,147	20,701	0,021	7,355	5,985	25,754	0,704	0	99,155
27	38,522	0,09	20,688	0,021	6,971	6,297	25,778	0,865	0,016	99,248
28	38,735	0,634	14,265	0,022	0,55	35,283	9,258	0,094	0,017	98,858
29	39,507	0,176	21,679	0,023	8,118	8,049	22,42	0,487	0,033	100,492
30	39,499	0,131	21,7	0,024	7,795	8,253	22,76	0,479	0,052	100,693
31	38,613	0,165	20,75	0,024	7,584	6,27	24,966	0,75	0,038	99,16
32	38,19	0,12	20,721	0,025	7,091	6,017	25,994	0,752	0	98,91
33	39,235	0,075	21,453	0,026	8,284	5,791	25,048	0,598	0	100,51
34	38,4	0,104	20,825	0,027	6,553	6,151	26,576	0,783	0,06	99,479
35	40,163	0,087	22,182	0,027	10,717	7,824	18,559	0,391	0,041	99,991
36	38,191	0	21,412	0,028	7,249	2,626	29,542	0,829	0,023	99,9
37	38,68	0,092	21,043	0,029	7,771	6,067	24,897	0,686	0,035	99,3
38	37,756	0,118	20,459	0,031	5,349	6,113	28,268	0,868	0	98,962
39	38,071	0,162	20,593	0,034	5,831	6,479	27,33	0,69	0,025	99,215
40	39,008	0,106	21,51	0,035	8,038	6,046	25,074	0,598	0,007	100,422
41	38,511	0,082	21,206	0,037	8,903	4,723	24,599	0,476	0,042	98,579
42	38,088	0,141	20,733	0,039	6,57	6,061	26,744	0,683	0,015	99,074
43	38,25	0,145	20,841	0,041	7,491	6,41	24,624	0,592	0,031	98,425
44	38,743	0,038	21,874	0,041	8,712	1,152	29,61	0,253	0,025	100,448
45	38,902	0,097	21,557	0,042	8,456	6,096	24,375	0,615	0,009	100,149
46	39,411	0,031	21,987	0,044	9,428	5,296	22,881	1,01	0,039	100,127
47	38,484	0,1	20,852	0,045	8,432	5,566	24,626	0,397	0,036	98,538
48	37,921	0,159	20,761	0,047	6,999	6,33	25,671	0,722	0,018	98,628
49	39,012	0,038	21,516	0,048	7,573	6,365	25,207	0,641	0	100,4
50	38,98	0,061	21,377	0,049	7,445	6,168	25,73	0,657	0,008	100,475
51	40,435	0,167	22,207	0,049	12,398	6,793	17,481	0,393	0,114	100,037
52	38,873	0,026	21,806	0,052	10,057	2,719	24,994	0,499	0,017	99,043
53	39,196	0,021	21,986	0,055	10,415	2,506	25,229	0,316	0	99,724
54	38,457	0,117	20,778	0,057	7,323	6,025	25,519	0,751	0,008	99,035
55	39,064	0,19	21,281	0,058	7,494	6,63	25,113	0,571	0,036	100,437
56	38,986	0,113	21,615	0,06	8,673	5,694	24,567	0,632	0,03	100,37
57	38,971	0,014	22,023	0,061	8,975	2,706	27,125	0,43	0	100,305
58	39,515	0,148	21,779	0,071	8,978	9,599	19,332	0,347	0,095	99,864
59	38,269	0,127	20,836	0,071	7,239	6,045	26,019	0,668	0,057	99,331
60	38,987	0,118	21,304	0,073	7,621	6,119	25,53	0,603	0,039	100,394
61	39,092	0,091	21,278	0,076	7,171	6,137	26,011	0,681	0,004	100,541
62	38,907	0,082	21,431	0,083	8,028	6,043	25,085	0,549	0,018	100,226
63	38,751	0,099	21,425	0,086	9,38	5,559	23,055	0,686	0,035	99,076
64	38,146	0,111	20,923	0,107	6,523	5,746	26,728	0,916	0,018	99,218
65	41,119	0,046	22,686	0,13	15,903	4,472	15,394	0,26	0,031	100,041

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
66	38,471	0,011	21,439	0,141	7,904	3,806	26,616	0,663	0	99,051
67	39,37	0,107	21,591	0,151	10,793	5,524	21,081	0,559	0,024	99,2
68	41,602	0,88	21,269	0,211	18,705	5,668	10,666	0,26	0,132	99,393
69	41,524	0,225	22,555	0,214	17,11	8,835	8,096	0,185	0,061	98,805
70	41,418	0,622	21,432	0,515	18,128	5,908	10,828	0,446	0,094	99,391
71	41,681	0,714	21,374	0,541	18,929	4,723	11,23	0,415	0,104	99,711
72	39,42	0,048	21,309	0,667	12,878	4,584	19,314	0,457	0,032	98,709
73	41,562	1,219	20,387	1,092	19,801	4,307	10,491	0,361	0,127	99,347
74	41,55	0,953	20,405	1,329	19,593	4,653	10,351	0,368	0,053	99,255
75	42,051	0,613	21,371	1,436	21,341	3,941	8,096	0,293	0,106	99,248
76	42,165	0,976	20,173	1,558	21,277	4,442	8,167	0,258	0,091	99,107
77	41,603	0,696	20,581	1,602	18,569	4,223	12,096	0,376	0,104	99,85
78	41,879	0,537	21,058	1,635	20,89	4,133	8,682	0,301	0,073	99,188
79	41,956	1,065	19,676	1,746	21,329	4,441	8,3	0,227	0,097	98,837
80	41,659	1,024	19,978	1,804	20,855	4,417	8,897	0,271	0,11	99,015
81	42,326	1,034	20,092	1,817	21,121	4,576	8,254	0,238	0,069	99,527
82	42,174	0,609	21,059	1,848	21,235	4,112	7,878	0,303	0,094	99,312
83	42,042	0,936	19,837	1,865	21,039	4,422	8,454	0,261	0,084	98,94
84	42,211	0,526	21,117	2,114	21,275	4,287	7,707	0,278	0,091	99,606
85	41,757	1,128	19,577	2,131	20,133	4,727	9,244	0,296	0,101	99,094
86	42,284	0,49	20,642	2,24	21,325	4,039	8,119	0,276	0,035	99,45
87	41,994	0,923	19,867	2,254	21,392	4,322	8,189	0,239	0,083	99,263
88	42,202	0,685	20,635	2,405	20,612	4,334	8,514	0,331	0,075	99,793
89	42,329	0,763	20,012	2,409	21,774	4,485	7,15	0,275	0,044	99,241
90	42,042	1,094	19,378	2,414	21,251	4,589	8,133	0,235	0,092	99,228
91	42,367	0,897	19,81	2,513	21,03	4,569	8,325	0,283	0,1	99,894
92	42,047	0,376	20,541	2,602	21,443	4,235	7,544	0,288	0,066	99,142
93	41,881	0,927	19,638	2,605	21,094	4,635	8,127	0,255	0,057	99,219
94	41,81	1,022	19,438	2,684	20,256	4,915	9,209	0,307	0,102	99,743
95	42,064	0,598	20,465	2,732	21,14	4,38	7,608	0,315	0,084	99,386
96	41,427	1,029	19,127	2,765	20,08	4,904	9,273	0,314	0,103	99,022
97	41,616	0,281	21,119	2,842	20,141	4,732	8,397	0,459	0,059	99,646
98	41,278	0,776	19,703	2,858	19,695	4,524	9,629	0,325	0,08	98,868
99	41,946	1,008	19,389	2,906	20,744	4,721	8,472	0,271	0,084	99,541
100	41,776	1,18	18,911	2,909	19,966	5,065	9,373	0,311	0,068	99,559
101	42,274	0,38	20,457	3,063	20,912	5,028	7,47	0,292	0,041	99,917
102	42,109	0,751	19,866	3,137	21,011	4,603	7,684	0,279	0,06	99,5
103	41,569	1,072	18,994	3,214	19,812	5,116	9,432	0,333	0,094	99,636
104	42,057	0,498	19,941	3,259	21,125	4,583	7,638	0,289	0,09	99,48
105	41,928	0,117	20,876	3,313	20,541	5,249	6,723	0,356	0,024	99,127
106	41,867	0,709	20,158	3,326	20,848	4,266	7,692	0,342	0,115	99,323
107	42,032	1,023	19,14	3,348	21,056	4,776	7,383	0,276	0,073	99,107
108	42,355	0,48	20,542	3,382	21,618	4,141	6,826	0,305	0,064	99,713

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
109	41,789	0,207	20,476	3,421	19,823	4,793	8,215	0,436	0,04	99,2
110	41,925	0,275	20,776	3,429	20,369	4,574	8,001	0,436	0,054	99,839
111	41,272	1,269	18,4	3,666	19,622	5,025	9,511	0,345	0,097	99,207
112	41,898	0,249	20,578	3,702	19,796	4,797	8,299	0,428	0,064	99,811
113	41,711	0,601	19,578	4,007	20,757	4,829	7,142	0,335	0,077	99,037
114	41,795	0,932	19,02	4,118	20,66	4,992	7,487	0,303	0,098	99,405
115	41,609	0,182	19,609	4,132	20,676	4,799	7,449	0,307	0,012	98,775
116	42,046	0,649	19,124	4,213	20,723	4,717	7,847	0,296	0,102	99,717
117	42,104	0,009	20,645	4,221	21,43	3,941	6,926	0,348	0	99,624
118	41,495	0,665	19,226	4,263	20,569	4,934	7,654	0,346	0,072	99,224
119	41,51	0,193	19,574	4,317	20,928	4,87	7,125	0,307	0,045	98,869
120	41,414	0,275	19,708	4,575	19,728	5,037	7,899	0,431	0,052	99,119
121	41,864	0,58	19,171	4,678	21,096	4,246	7,455	0,36	0,115	99,565
122	41,292	1,176	17,855	4,837	19,473	5,545	8,698	0,402	0,107	99,385
123	41,086	0,369	18,97	5,233	19,098	5,475	8,328	0,462	0,066	99,087
124	40,53	0,917	17,155	5,748	17,997	6,004	10,459	0,423	0,055	99,288
125	41,619	0,135	18,623	6,019	20,394	5,089	6,772	0,368	0,012	99,031
126	41,654	0,054	18,369	6,071	19,91	5,587	7,403	0,321	0,043	99,412
127	41,733	1,147	16,762	6,193	21,078	5,234	6,954	0,256	0,069	99,426
128	41,346	0,202	18,378	6,321	21,214	4,068	6,937	0,376	0,065	98,907
129	40,818	0,11	17,955	7,065	18,26	6,396	8,151	0,484	0,021	99,26
130	41,133	0,41	17,826	7,096	18,796	5,744	7,856	0,495	0,075	99,431
131	40,996	0,044	17,926	7,299	20,243	5,022	7,132	0,412	0,011	99,085
132	41,498	0,226	17,084	7,366	19,994	5,098	7,757	0,324	0,025	99,372
133	41,269	0,316	16,957	7,4	19,602	5,7	7,525	0,371	0,052	99,192
134	41,232	0,12	17,572	7,602	17,505	6,998	8,36	0,543	0,034	99,966
135	41,441	0,194	17,451	7,62	19,765	5,274	7,598	0,41	0,047	99,8
136	40,967	0,934	15,953	7,766	18,943	5,641	8,545	0,356	0,052	99,157
137	41,191	0,091	17,069	7,774	19,633	5,58	7,117	0,362	0,046	98,863
138	40,789	0,714	15,813	8,778	20,151	5,8	6,385	0,341	0,107	98,878
139	40,642	0,429	16,009	9,016	20,012	4,001	8,554	0,384	0,058	99,105
140	40,972	0,386	15,669	9,45	18,905	6,064	7,243	0,422	0,067	99,178
141	40,911	0,099	15,028	9,709	19,311	6,506	6,966	0,334	0,022	98,886
142	40,96	0,058	15,396	10,736	19,936	4,753	7,024	0,454	0,02	99,337
143	40,829	0,66	13,654	11,333	18,664	6,582	7,362	0,332	0,069	99,485
144	40,907	0,165	14,353	11,72	20,934	4,446	6,275	0,328	0,059	99,187
907										
р.дюлю-										
1 the tent	38 500	0.022	21 460	0	6 0 8 5	1 1 1 1 /	33 152	0.251	0.001	100 605
2	38 501	0,025	10 582	0	0,085	22 007	16 54	1 308	0,001	100,003
2	38 115	0,407	20.040	0	3 156	22,771 5 767	20.822	1,370	0,049	100,300
3	30,113	U	20,908	U	5,430	5,101	<i>23,032</i>	1,743	0,039	100,12

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
4	38,393	0,107	20,648	0	3,515	9,598	26,996	0,637	0	99,894
5	38,4	0,031	20,852	0	4,533	6,836	28,291	0,833	0,007	99,783
6	37,704	0,021	20,579	0,006	2,353	5,078	31,841	2,197	0,036	99,815
7	37,673	0,035	20,582	0,012	1,299	6,013	33,595	0,36	0,097	99,666
8	38,281	0,024	21,019	0,014	5,625	1,586	33,414	0,275	0	100,238
9	39,11	0,031	21,501	0,016	8,136	1,592	29,337	0,744	0,053	100,52
10	38,863	0,05	21,006	0,017	6,377	6,505	26,093	0,903	0,042	99,856
11	39,248	0,124	21,408	0,017	8,917	7,383	21,926	0,492	0,023	99,538
12	37,728	0,028	21,006	0,018	3,971	0,989	34,976	1,33	0	100,046
13	41,308	0,846	21,551	0,018	17,57	4,92	13,297	0,455	0,065	100,03
14	39,016	0,054	21,061	0,019	8,118	5,888	24,71	0,793	0,014	99,673
15	37,085	0,009	20,764	0,019	1,299	3,134	35,129	3,317	0	100,756
16	38,976	0,003	21,376	0,02	8,114	4,609	25,688	1,006	0,014	99,806
17	39,255	0,061	21,058	0,022	7,669	6,129	25,479	0,326	0,013	100,012
18	39,615	0,12	21,398	0,025	10,196	6,454	21,272	0,551	0,025	99,656
19	38,822	0,039	21,391	0,028	7,778	1,229	29,434	1,413	0,056	100,19
20	38,653	0,752	15,882	0,03	0,495	34,716	8,671	0,154	0	99,353
21	38,786	0,063	20,801	0,03	6,092	6,522	26,55	1,203	0	100,047
22	38,951	0,166	21,06	0,03	7,962	5,968	24,76	0,613	0,034	99,544
23	38,772	0,092	20,713	0,036	4,381	10,802	23,643	1,437	0	99,876
24	39,493	0,08	21,43	0,037	9,011	5,66	23,516	0,612	0,031	99,87
25	38,731	0,036	20,75	0,038	7,416	5,663	26,689	0,338	0,056	99,717
26	39,022	0,118	20,928	0,038	7,347	6,362	25,47	0,701	0,012	99,998
27	41,243	1,047	21,198	0,044	17,942	4,903	12,677	0,394	0,088	99,536
28	38,202	0,041	21,084	0,046	6,118	2,715	30,097	1,133	0,002	99,438
29	39,425	0,278	21,511	0,051	8,241	7,385	22,332	0,763	0,048	100,034
30	38,884	0,087	20,869	0,056	6,892	6,718	25,547	0,614	0	99,667
31	39,887	0,075	21,406	0,058	9,575	5,86	22,646	0,61	0,038	100,155
32	39,428	0,106	21,747	0,067	9,222	5,714	24,1	0,434	0	100,818
33	39,061	0,059	21,013	0,236	7,532	6,084	25,269	0,667	0	99,921
34	42,007	0,966	21,202	0,645	19,617	4,549	10,647	0,323	0,106	100,062
35	42,017	0,714	21,616	0,906	20,133	4,367	9,487	0,29	0,103	99,633
36	42,027	1,135	20,669	0,964	20,2	4,348	10,089	0,284	0,124	99,84
37	42,311	0,766	20,943	1,597	21,232	4,412	7,946	0,22	0,106	99,533
38	42,102	0,125	22,159	1,94	19,309	4,977	9,083	0,441	0,034	100,17
39	41,939	1,024	20,253	1,949	20,301	4,557	9,013	0,32	0,151	99,507
40	42,424	0,957	20,358	2,091	21,411	4,502	7,651	0,275	0,101	99,77
41	42,26	0,71	20,836	2,24	20,94	4,459	8,06	0,329	0,105	99,939
42	42,394	0,037	21,822	2,582	20,375	4,689	7,889	0,356	0,045	100,189
43	42,462	0,333	21,278	2,683	21,857	3,999	6,963	0,336	0,056	99,967
44	41,642	0,148	21,398	2,798	19,382	5,197	8,879	0,461	0,051	99,956
45	42,366	0,468	20,604	2,879	20,939	4,46	7,843	0,322	0,061	99,942
46	42,404	0,468	20,857	2,959	21,521	4,161	6,939	0,34	0,113	99,762

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
47	41,485	0,096	21,124	3,013	18,89	5,798	8,768	0,465	0,016	99,655
48	42,117	0,194	20,674	3,296	20,724	4,684	7,812	0,331	0,039	99,871
49	42,396	0,433	20,758	3,435	21,852	4,279	6,355	0,312	0,049	99,869
50	42,166	0,232	20,485	3,444	21,03	4,467	7,48	0,361	0,065	99,73
51	42,485	0,532	20,331	3,578	21,982	4,512	5,987	0,237	0,072	99,716
52	42,007	0,677	19,814	3,839	20,472	4,751	8,214	0,277	0,101	100,152
53	42,379	0,393	20,281	3,883	21,006	4,63	7,34	0,324	0,048	100,284
54	42,813	0,02	20,318	4,465	24,29	1,37	5,966	0,312	0,021	99,575
55	41,599	0,027	20,118	4,547	18,782	6,029	8,11	0,488	0,014	99,714
56	42,059	0,025	20,173	4,613	20,735	5,156	6,796	0,352	0,024	99,933
57	41,672	0,664	18,976	4,788	20,696	5,282	7,276	0,285	0,109	99,748
58	41,464	0,056	19,79	4,974	18,478	6,263	8,172	0,489	0,002	99,688
59	42,094	0,186	19,171	5,175	20,737	5,356	6,445	0,244	0,067	99,475
60	41,836	0,002	19,515	5,257	18,655	6,477	7,75	0,438	0	99,93
61	41,935	0,417	19,217	5,326	19,877	5,311	7,616	0,36	0,061	100,12
62	41,792	0,288	18,887	5,533	20,073	5,278	7,56	0,343	0,05	99,804
63	41,676	0,123	18,936	6,164	19,897	5,846	6,589	0,354	0,046	99,631
64	41,308	0,04	18,532	6,334	18,058	7,029	7,721	0,521	0,007	99,55
908										
р.Дюлю-										
спар	27.96	0.029	21.025	0.002	4 777	2.22	20,000	4 102	0	00.700
	37,86	0,028	21,035	0,003	4,///	2,22	29,606	4,193	0	99,722
2	38,363	0,029	20,771	0,011	4,086	7,007	28,311	1,081	0	99,659
3	38,339	0,055	21,172	0,011	7,085	2,304	29,21	1,32	0,015	99,731
4	37,93	0,02	20,812	0,016	3,634	4,353	30,501	2,82	0,004	100,09
5	38,73	0,107	20,519	0,017	4,487	10,964	25,534	1,/1	0,016	99,884
0	38,992	0,120	21,054	0,018	1,750	5,978	25,440	0,599	0,003	99,972
/	39,390	0,104	21,428	0,021	8,703	6,401	23,130	0,584	0,028	99,861
8	38,392	0,125	21,007	0,020	4,945	0,794	27,828	0,048	0,041	99,800
9	39,243	0,009	21,293	0,035	8,037	0,000	24,34	1,2	0,021	100,200
10	28 717	0,121	21,107	0,039	0,530 5,400	0,113	27,43	0,012	0,000	100,095
11	28,717	0,08	20,700	0,042	3,499	7,134	20,851	0,915	0,004	99,940
12	28 122	0,085	20,801	0,044	1,117	5,021	26,555	6 210	0,014	100,441
13	20.256	0,009	21,003	0,048	4,040	0,235	24,177	0,219	0	99,94
14	39,230	0,119	21,101	0,004	8,341 8 278	7,105	22,920	0,338	0	99,728
13	28.007	0,087	21,073	0,102	0,218	4,401	20,327	0,517	0,009	99,000
10	30,997	0,109	21,022	0,100	1,5/5	0,11/	23,140	0,703	0,018	99,911
1/	41,034	0,735	21,418	1 265	19,908	4,340	7,08	0,5	0,091	77,438 00 633
10	42,409	0,722	21,47	1,303	21,403	4,520	7,004	0,200	0,079	99,022
19	42,120	0,900	20,947	1,41	21,238	4,30	1,984 0 100	0,239	0,085	99,293
20	41,928	0,893	21,095	1,3/8	20,393	3,039	0,189	0,239	0,073	99,409 00,502
21	42,005	U,1ð1	∠1,843	1,8/4	20,299	4,311	0,384	0,373	0,039	77,373

	SiO2	TiO2	Al2O3	Cr2O3	MgO	CaO	FeO	MnO	Na2O	Сумма
22	42,071	0,552	20,983	2,327	21,532	4,74	6,884	0,245	0,052	99,386
23	42,101	0,892	20,573	2,336	21,258	4,451	7,732	0,309	0,134	99,786
24	42,294	0,308	21,199	2,414	21,341	4,768	6,775	0,274	0,036	99,409
25	42,497	0,033	21,842	2,698	22,547	2,156	7,203	0,447	0,065	99,488
26	41,87	0,103	21,135	2,862	19,428	4,837	9,056	0,521	0,061	99,873
27	41,764	0,035	21,241	3,163	18,985	5,434	8,745	0,446	0	99,813
28	41,53	0,117	20,977	3,186	19,206	5,224	8,776	0,464	0,021	99,501
29	41,545	0,03	20,837	3,421	18,631	5,745	9,116	0,486	0,05	99,861
30	42,308	0,429	20,375	3,652	21,933	4,586	5,766	0,231	0,079	99,359
31	42,047	0,506	19,993	3,751	21,198	5,264	6,072	0,244	0,063	99,138
32	41,712	0,135	20,317	4,194	19,24	5,56	8,138	0,455	0,008	99,759
33	41,351	0,029	20,154	4,374	19,253	5,613	7,926	0,434	0,025	99,159
34	41,957	0,517	19,465	4,401	21,029	4,988	7,089	0,271	0,076	99,793
35	41,749	0,359	19,707	4,513	20,506	4,749	7,82	0,423	0,062	99,888
36	41,581	0,346	19,415	4,861	20,153	5,311	7,319	0,349	0,077	99,412
37	41,633	0,187	19,178	5,226	19,547	5,365	8,111	0,399	0,035	99,681
38	41,524	0,464	18,156	5,96	19,36	6,618	6,706	0,319	0,041	99,148
39	41,064	0,133	18,249	6,003	16,049	10,346	7,575	0,326	0,065	99,81
40	40,935	0,632	17,42	6,688	17,862	6,974	8,854	0,437	0,095	99,897
41	41,06	0,122	17,611	7,451	19,573	5,832	7,31	0,471	0,036	99,466

Таблица объединенных шлиховых проб Муно-Мархинского междуречья

Проба	Новая объедин. проба	Проба	Новая объедин. проба	
801		14561	14561	
808	And	14310		
812		14318	– Mr-4	
T-21	T-21	14510	14510	
734	734	14375	14375	
AT-5	AT-5	14397	14397	
AT-12	AT-12	14618		
AT-4	AT-4	14626	Mir-2	
m\o 131	m\o 131	MN-20	MN-20	
130		8028	L A	
31a	Sol	А	Au	
25		MN-038	MN-038	
744		MN-049	MN-049	
844	Dal	8024	8024	
748		8051	8051	
1817		MN-12	MN-12	
122	Dan	MN-017	MN-017	
125		MN-054	MN-054	
1250	Diu	MN-057	MN-057	
P-4	Dju	MN-069	MN-069	
720		MN-319	MN-319	
721	Du-1	AG-33		
601		AG-47	Pr	
907		AG-50		
908	Du-2	Т-К-8		
199	199	Т-К-7	Tu-4	
191	- Mr_1	1100		
183	1011-1	P-2		
137	137	P-10	Tu-3	
225	225	1121		
227	227	T-35	Tu_2	
238	238	T-36	1 u-2	
E-64	- Mr_3	T-22	T-22	
E-67	1011-5	23	23	
E-70	E-70	21	21	
14332	14332	32	32	
14334	14334	28	T	
14380	14380	520	10-1	
14532	14532	506	506	

Пробя	Новая объедин.			
IIpoou	проба			
T-5\96	Tu-5			
1085				
523	Tia-1			
531	-Jw -			
517	Tia-2			
623	1 Ju 2			
628	628			
XAH-5	Ha-1			
701	110 1			
X-1	На-2			
XA-2	114-2			
702	Vo 3			
705	Ла- 3			
XAH-7	Ye 4			
XA-8	Λα-4			
XAH-6	XAH-6			
XA-9	XA-9			
XA-10	XA-10			
XAH-44	XAH-44			
XAH-45	XAH-45			
XAH-19	XAH-19			
XAH-25	XAH-25			
460	460			
716	716			
719	719			
723				
724	Xa-1			
725				
727	727			
800	800			
704				
657	Ch1-2			
813	813			
831	831			
216/2				
232	Chi-1			
К-66				
E-48				
E-26	Yik			
OP-1				
E-53	E-53			
E-52	E-52			

Таблица содержаний парагенетических типов гранатов в шлиховых пробах Муно-

Мархинского междуречья

Na	Πασδο	Место	Парагенетические типы гранатов					
ua ubo	прооа		1	2	3	4	5	6
1	And	Андай	53,45	6,03	4,31	31,03	3,45	1,72
2	AT-4	Арга-Тюнг	55,83	10,83	10,00	14,17	5,83	3,33
3	AT-12	Арга-Тюнг	61,11	8,89	6,11	18,89	3,89	1,11
4	AT-5	Арга-Тюнг	57,89	15,79	6,58	17,11	1,32	1,32
5	734	Арга-Тюнг	60,81	18,92	1,35	12,16	5,41	1,35
6	T-21	Арга-Тюнг	66,67	14,58	5,21	9,38	3,13	1,04
7	м\о 131	В.Солокут	60,00	11,82	3,64	17,27	6,36	0,91
8	Sol	В.Солокут	54,55	16,88	5,19	15,58	2,60	5,19
9	Dal	Далдыкан	54,36	18,79	2,68	20,81	3,36	0,00
10	Dju	Джулуспар	46,49	15,68	12,43	22,16	2,16	1,08
11	Du-2	Дюлюспар	54,74	16,84	6,32	20,00	1,58	0,53
12	Du-1	Дюлюспар	38,93	8,40	17,56	30,53	3,82	0,76
13	Mr-4	Mapxa	22,54	9,25	60,69	6,36	1,16	0,00
14	14510	Mapxa	68,64	6,78	10,17	11,86	1,69	0,85
15	14332	Mapxa	57,14	8,27	7,52	15,79	6,02	5,26
16	Mr-3	Mapxa	62,96	4,63	11,11	14,81	2,78	3,70
17	E-70	Марха	51,59	13,38	15,92	13,38	2,55	3,18
18	E-52	Марха	64,16	5,20	12,72	11,56	2,89	3,47
19	14532	Марха	61,21	2,59	10,34	18,10	5,17	2,59
20	14375	Марха	55,29	7,06	14,12	17,65	2,35	3,53
21	14380	Mapxa	56,35	7,14	15,08	12,70	4,76	3,97
22	Mr-2	Mapxa	57,97	6,52	11,59	15,22	4,35	4,35
23	14397	Mapxa	56,67	10,00	11,11	14,44	3,33	4,44
24	14561	Mapxa	53,26	9,78	13,04	17,39	3,26	3,26
25	225	Mapxa	64,29	6,35	13,49	8,73	5,56	1,59
26	137	Mapxa	58,27	6,30	6,30	18,11	6,30	4,72
27	227	Mapxa	56,88	11,93	11,93	10,09	6,42	2,75
28	238	Mapxa	58,40	8,80	14,40	10,40	4,80	3,20
29	14334	Mapxa	61,76	5,88	4,90	14,71	6,86	5,88
30	Mr-1	Mapxa	66,95	14,41	2,54	13,56	0,85	1,69
31	199	Марха	53,57	16,07	6,25	16,07	3,57	4,46
32	Dan	Mapxa	61,86	14,43	0,00	8,25	8,25	7,22
33	MN-12	Муна	63,46	4,33	2,88	19,71	6,25	3,37
34	8051	Муна	67,83	3,48	4,35	17,83	2,61	3,91
35	8024	Муна	53,16	4,21	5,79	30,00	3,68	3,16
36	Ad	Муна	55,46	1,05	12,61	21,64	6,09	3,15
37	MN-017	Муна	53,19	3,72	10,11	28,19	3,72	1,06

NG	Πτοδο	Место	Парагенетические типы гранатов					
JN≌	Jie Tipooa		1	2	3	4	5	6
38	MN-038	Муна	55,38	2,31	10,77	27,69	3,85	0,00
39	MN-049	Муна	57,07	2,17	7,61	26,63	4,35	2,17
40	MN-054	Муна	51,90	2,53	12,03	26,58	5,70	1,27
41	MN-057	Муна	65,22	3,62	2,90	22,46	4,35	1,45
42	MN-069	Муна	57,27	4,55	3,64	24,55	5,45	4,55
43	MN-319	Муна	54,63	5,56	3,70	29,63	5,56	0,93
44	MN-20	Муна	76,24	6,93	0,00	0,99	12,87	2,97
45	Pr	Правобережье	65,96	4,26	0,00	5,32	10,64	13,83
46	Tu-5	Тюнг	71,43	15,71	0,00	12,86	0,00	0,00
47	Tu-3	Тюнг	55,61	15,61	11,71	13,17	1,46	2,44
48	T-22	Тюнг	62,16	12,61	8,11	15,32	1,80	0,00
49	23	Тюнг	58,97	18,68	1,83	14,29	1,83	4,40
50	21	Тюнг	56,00	24,80	0,80	15,20	1,60	1,60
51	506	Тюнг	52,85	27,15	0,00	13,57	4,29	2,14
52	Tu-1	Тюнг	66,06	15,60	1,83	10,09	2,75	3,67
53	Tu-4	Тюнг	52,51	12,29	8,38	21,79	3,35	1,68
54	Tu-2	Тюнг	48,65	14,05	17,84	15,14	3,78	0,54
55	32	Тюнг	50,00	13,85	7,69	25,38	2,31	0,77
56	Tja-2	Тюнгкян	36,72	17,97	17,19	26,56	0,78	0,78
57	Tja-1	Тюнгкян	38,00	14,00	14,00	31,00	2,00	1,00
58	628	Тюнгкян	45,96	12,42	9,94	29,81	0,00	1,86
59	Xa-4	Хання	52,03	15,45	12,20	12,20	5,69	2,44
60	XA-10	Хання	54,55	13,33	10,30	15,15	4,24	2,42
61	XA-9	Хання	63,54	13,54	8,33	9,38	4,17	1,04
62	Ha-2	Хання	58,50	16,33	4,08	15,65	4,08	1,36
63	XAH-45	Хання	56,35	14,92	3,87	20,44	2,21	2,21
64	460	Хання	66,88	19,11	0,00	8,92	1,91	3,18
65	XAH-6	Хання	60,75	8,41	7,48	12,15	6,54	4,67
66	716	Хання	61,31	13,14	0,73	14,60	5,84	4,38
67	Ha-1	Хання	49,64	11,51	10,07	23,02	3,60	2,16
68	XAH-44	Хання	51,87	16,25	7,50	19,38	3,13	1,87
69	Xa-3	Хання	47,93	13,22	15,70	19,01	2,48	1,65
70	719	Хання	53,01	14,46	6,02	21,08	4,22	1,20
71	XAH-19	Хання	52,44	18,29	4,27	21,95	2,44	0,61
72	XAH-25	Хання	50,96	13,46	6,73	23,08	0,96	4,81
73	Xa-1	Хання	41,86	11,05	11,63	27,33	6,40	1,74
74	727	Хання	53,08	10,77	6,15	26,15	2,31	1,54
75	800	Чимидикян	55,50	22,00	0,00	14,50	5,50	2,50
76	Chi-2	Чимидикян	61,58	23,73	0,00	4,52	5,65	4,52
77	813	Чимидикян	60,84	27,27	0,00	5,59	2,10	4,20
78	Chi-1	Чимидикян	57,34	21,10	2,29	11,47	5,05	2,75
79	831	Чимидикян	50,63	16,88	0,63	19,38	8,13	4,38

No	IInche	Мосто	Парагенетические типы гранатов					
Jv≊ 11pooa	Mecro	1	2	3	4	5	6	
80	E-53	Эекит	53,49	11,63	12,79	18,60	1,16	2,33
81	Yik	Эекит	43,42	9,21	11,84	28,95	3,95	2,63

139

Парагенетические типы гранатов (в шапке): 1 – глубинных лерцолитов; 2 – малоглубинных лерцолитов; 3 – эклогитов; 4 – мегакристовой ассоциации; 5 – гарцбургит-дунитов графитовой фации глубинности; 6 – гарцбургит-дунитов алмазной фации глубинности.

Таблица кластеризации проб по содержанию парагенетических типов гранатов в шлиховых пробах Муно-Мархинского междуречья

N⁰	Проба	Место	Кластер	Дистанция
1	Mr-4	Марха	1	0,00
2	AT-4	Арга-Тюнг 2		0,36
3	AT-12	Арга-Тюнг	рга-Тюнг 2	
4	м\о 131	В.Солокут	2	0,74
5	14510	Марха	2	0,86
6	14332	Марха	2	0,53
7	Mr-3	Марха	2	0,44
8	E-70	Марха	2	0,69
9	E-52	Марха	2	0,49
10	14532	Марха	2	0,48
11	14375	Марха	2	0,51
12	14380	Марха	2	0,37
13	Mr-2	Марха	2	0,27
14	14397	Марха	2	0,36
15	14561	Марха	2	0,43
16	225	Марха	2	0,64
17	137	Марха	2	0,55
18	227	Марха	2	0,56
19	238	Марха	2	0,36
20	14334	Марха	2	0,51
21	MN-12	Муна	2	0,68
22	8051	Муна	2	0,74
23	Xa-4	Хання	2	0,70
24	XA-10	Хання	Хання 2	
25	Pr	Правобережье	3	0,00
26	And	Андай	4	0,42
27	8024	Муна	4	0,38
28	MN-017	Муна	4	0,32
29	MN-038	Муна	4	0,46
30	MN-049	Муна	4	0,14
31	MN-054	Муна	4	0,40
32	MN-057	Муна	4	0,60
33	MN-069	Муна	4	0,60
34	MN-319	Муна	4	0,40
35	Ad	Муна	4	0,58
36	AT-5	Арга-Тюнг	5	0,50
37	734	Арга-Тюнг	5	0,51
38	T-21	Арга-Тюнг	5 0,55	
39	Sol	В.Солокут	5	0,67

N⁰	Проба	Место	Кластер	Дистанция
40	Dal	Далдыкан	5	0,71
41	Mr-1	Марха	5	0,60
42	199	Марха	5	0,61
43	Tu-5	Тюнг	5	0,95
44	Tu-3	Тюнг	5	0,59
45	T-22	Тюнг	5	0,71
46	23	Тюнг	5	0,48
47	21	Тюнг	5	0,59
48	506	Тюнг	5	0,76
49	Tu-1	Тюнг	5	0,49
50	XA-9	Хання	5	0,61
51	Ha-2	Хання	5	0,36
52	XAH-45	Хання	5	0,54
53	460	Хання	5	0,53
54	800	Чимидикян	5	0,61
55	Chi-2	Чимидикян	5	0,93
56	813	Чимидикян	5	0,87
57	Chi-1	Чимидикян	5	0,47
58	Dan	Mapxa	6	0,57
59	MN-20	Муна	6	1,38
60	XAH-6	Хання б		0,44
61	716	Хання б		0,49
62	831	Чимидикян б		0,85
63	Dju	Джулуспар	Іжулуспар 7	
64	Du-2	Дюлюспар	7	0,60
65	Du-1	Дюлюспар	7	0,83
66	Tu-4	Тюнг	7	0,33
67	Tu-2	Тюнг	7	0,70
68	32	Тюнг	7	0,28
69	Tja-2	Тюнгкян	7	0,83
70	Tja-1	Тюнгкян	7	0,70
71	628	Тюнгкян	7	0,62
72	Ha-1	Хання	7	0,27
73	XAH-44	Хання	7	0,43
74	Xa-3	Хання	7	0,38
75	719	Хання	7	0,49
76	XAH-19	Хання	7	0,57
77	XAH-25	Хання	7	0,77
78	Xa-1	Хання	7	0,80
79	727	Хання	7 0,43	
80	E-53	Эекит	7	0,54
81	Yik	Эекит	7	0,58